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ABSTRACT 
In this paper we have considered a prey-predator model with Holing type IV of predation and independent harvesting 
in either species. The purpose of the work is to offer mathematical analysis of the model and to discuss some significant 
qualitative results that are expected to arise from the interplay of biological forms. Our study shows that using the 
harvesting efforts as controls, it is possible to break the cycle behaviour of the system and drive it to a required state. 
Also it is possible to introduce globally stable limit cycle in the system using the above controls. 
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INTRODUCTION 
 
In population dynamics, group defense is a term used to describe the phenomenon whereby predator is decreased, or 
even prevented altogether, due to the increased ability of the prey to better defend or disguise themselves when their 
numbers are large enough. An example of this phenomenon is described by Tener [11]. Lone musk ox can be 
successfully attacked by wolves. Small herds of musk ox (2 to 6 animals) are attacked but with rare success. No 
successful attacks have been observed in larger herds. A second example described by Holmes and Bethel [12] involves 
certain insect populations. Apparently, large swarms of insects make individual identification difficult for their 
predators. The third example was observed by Davidowicz, Gliwicz, and Gulati [18]. Filamentous algae are often 
qualified as inedible by herbivorous zooplankton. However, experiments show that Daphnia can consume them at low 
concentrations, while they jam their filtering apparatus in high concentrations.   
 
In a famous paper Rosenzweig [17] warns that "man must be careful in attempting to enrich ecosystems in-order to 
increase its food yields.  There is a real chance that such activity may result in a decimation of the food species that are 
wanted in greater abundance". 
 
Later on several other mathematicians like H.I Freedman, G.S.K. Wolkowicz [9] Franz Rothe and Donglar S. Shafer 
[22], Shigai Ruan and Dongmei Xiao [25], etc.,  worked on several predator prey systems where there is group defence 
on the part of the prey and illustrated the warning of Rosenzweig. In this work we consider predator prey system, which 
is prone to the warning of Rosenzweig, and study the effect of harvesting on the biological interplay of predators and 
the prey population. We find strategies under which we can avoid the danger of predator extinction.  Hence we assume 
that both predator and prey species are harvested independently and the system dynamics are observed treating the 
harvesting efforts as parameters of the system. From this study, we can always deduce the results for the sub cases 
where only one of the species is harvested. 
 
In this work we assume that the coupled equations governing the dynamics of predator prey interaction are 
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where x, y denote the prey and predator population respectively. 0>γ  represents the intrinsic growth rate of the prey, 
K is the carrying capacity of the prey in the absence of the predator and harvesting in the environment.  
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The term 2xa
x
+

 denotes the functional response of the predator. This response function is termed as Holling type IV 

function. 0>µ  is the conversion factor denoting the number of newly predators for each captured prey. D>0 is the 

natural death rate of the predator and a  is the half saturation value.    
 
The dynamics of the system (1) and (2) is studied in Shigui Ruan and Dongmei Xiao [25]. If we assume that both 
predator and prey species are harvested which corresponding harvesting effors E1 ≥ 0, E2 ≥ 0 respectively, then the 
system (1) and (2) gets modified and takes the following form. 
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where the terms E1x and E2y represent the catch of the respective species per unit time. Actually it is more appropriate 
to take these terms as q1E1x and q2E2y where q1 and q2 represent the catchability coefficients of the prey and predator 
respectively. But, for the sake of mathematical simplicity, we have taken these terms to be unity. From (3) and (4), we 
see that the dynamics of the prey is governed by the logistic equation in the absence of predator and harvesting. For 
ecological information of the system (3) and (4), one can refer [4]-[8] and [15]-[16].  
 
EXISTENCE OF EQUILIBRIUM POINTS 
 
From the dynamics of the system (3) and (4), it is easy to observe that if E1≥ γ then the system admits only one 

equilibrium point given by S1 = (0, 0) which is trivial equilibrium. Moreover, in this case, we have t
dt
dx

∀< 0  which 

implies that x approaches zero as t→∞. As a result, 
dt
dy

 becomes negative for large t and hence y also goes to zero 

eventually. If  γ > E1 then  there  exists  another  equilibrium  point  on  the  boundary  of  the  first quadrant  given  by 
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Looking for an interior equilibrium point, we solve the following equations. 
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and (6)  implies               
( ) ( ) 02

2
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Note that the equation (7) is quadratic in x. Now let us consider the case where the system parameters satisfy the 
relation.  
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In this case we obtain the interior equilibrium point 
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Therefore under the assumption that (8) and (9) hold good, the system admits three equilibrium points S1(0,0), 
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In this case, there is no interior equilibrium point in the first quadrant. Therefore in this case the system admits only two 

equilibrium points given by S1(0,0) and
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Case-(iii):  ( ) 04 2
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In this case the system has at most four equilibrium points given by S1(0, 0), 















−= 0,1 1

2 γ
EKS , S4(x1,y1)  and 

S5(x2,y2) 
where 

( )
( )2

2
2

2

1 2
4

ED
EDa

x
+

+−−
=

µµ
 and 

( )
( )2

2
2

2

2 2
4

ED
EDa

x
+

+−+
=

µµ
 ; 

( )2
1

1
11 xa

K
xEy +





 −−=

γ
γ   and 

( )2
2

2
12 xa

K
xEy +





 −−=

γ
γ  

 
Clearly S1, S2 are boundary equilibrium points and S4, S5 are interior equilibrium points. More precisely, there are three 
possibilities.   
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the interior equilibrium point S4 (x1,y1). The interior equilibrium point S5(x2, y2) is biologically meaningless for 
the reason given in (a).  
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(c) When  2
11 xEK >

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, the system has four equilibrium points S1(0, 0), S4(x1,y1) and S5 (x2,y2) where S1, S2 

are boundary equilibrium points and S4, S5 are interior equilibrium points.  
 

Finally we observe that S3, S4 are mutually exclusive. i.e., if the system admits S3 as its interior equilibrium 
then S4 does not appear in the picture and vice versa. The system cannot admit S5 as its equilibrium point 
without having S4 as its equilibrium point as the x coordinate of S4 is always less than that of S5. 

      
NATURE OF THE EQUILIBRIA 
 
Now we wish to study the nature of these equilibrium points and their dependence on the harvesting efforts. During the 
stability analysis of these equilibrium points, we come across the following important equations.  
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All these curves are represented in Fig.1. We are aware that the interior equilibrium points are nothing but the 
intersection points between the predator isocline and the prey isocline depends on the values of the system parameters. 
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Figure-1 
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Figure-2 

If ( )211 , JJx ∈   then S4 is unstable. If 
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admits two interior equilibrium points S4 and S5 the dynamics of the system under goes lot of changes. S5 always enters 
the system as saddle with one of its unstable manifold branches connecting S5 and S2. Thus the presence of S5 brings in 
several paths leading to S2. That is possibility of extinction of predator species. The phase portraits of the paths of the 
system in different regions are shown in the following figures. In the region A the prey-predator isoclines and paths of 
the system (3) and (4) are shown in Fig.3 we can find S2 is globally asymptotically stable whenever (E2, E1) is restricted 
to the region A. Clearly S1 is saddle. 

 
Figure-3 
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Now let us consider (E2, E1) ∊ B1. The geometric configuration of the paths of (3) and (4) in B1 is shown in Fig.4. In 
this region S4 is globally asymptotically stable and S1,S2 are unstable. Now consider (E2, E1) belonging to B2. In this 
region the geometric configuration of the system is 

 
Figure-4 

 
shown in Fig.5. In this case also all solutions initiating in the interior of the first quadrant will move as shown in Fig.5 
and eventually approach S4 thus making S4 globally asymptotically stable in the interior of the first quadrant as earlier 
S1 and S2 are saddle 

 
Figure-5 

 
Now let us consider the behaviour of the system in the region C. In this case the interior equilibrium point S4 is unstable 
and all solutions initiating in the interior of the first quadrant will approach a limit cycle surrounding S4. The points    
S1, S2 are unstable(Refer Fig. 6). 
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Figure-6 

 
When(E2,E1)∊ D the paths initiating in the region I to V will move in any one of the ways shown in the figures 7,8 and 
9. 

 
Figure-7 

 
Figure-8 
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Figure-9 

 
Now let us consider the case (E2, E1) ∊ G. In this case S2, S4 are stable S1, S5 are saddle. (Refer Fig. 10). In case when    
(E2, E1) ∊ H, Fig. 11 exhibit the stable nature of S2, S4 and S1, S5 are saddle. 

 
Figure-10 

 
Figure-11 
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SUMMARY AND CONCLUSIONS 
 
In this work, we have considered a predator-prey system where there is group defence on the part of the prey discrete 
harvesting in both the species. We associate the group defences to the considered system by assuming the predator 
response function to be Holling type IV. This work presents the Predator-prey model. This analysis also illustrates 
methods to control the predator-prey system. 
 
The considered system admits at most four equilibrium points, of which two are interior equilibrium points and the 
other two are boundary equilibrium points. The interior equilibrium points are represented by S3(x*,y*), S4(x1,y1),  

S5(x2,y2)  and the boundary equilibrium points are represented by S1(0,0), 

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equilibrium point S3 and the equilibrium point S4  are mutually exclusive in the sense that if the system admits S3 as its 
interior equilibrium then S4  does not appear in the picture and vice versa.  Also the system may admit S4 as the only 
interior equilibrium or it may be admit both S4&S5 as its interior equilibrium points. But S5 alone cannot be admitted as 
the systems interior equilibrium point without S4 being one as the x-coordinate of S4 is always less then that of S5.  As 
long as the system admits S4 as its sole interior equilibrium, it may either be globally stable or the system   would admit 
a limit cycle. Thus in this case any solution initiating in ( ){ } { }40,0/, Syxyx −>> will either approach S4 or a 
limit cycle surrounding S4 depending on whether the unique interior equilibrium point S4 is stable or unstable 
respectively.  If the system admits two interior equilibrium points namely S4 &S5, the dynamics of the system under 
goes lot of changes.  S5 always enters the system as saddle with one of its unstable manifold branches connecting S5 
and S2.  Thus, presence of S5 brings in several paths leading to S2.  That is possibility   of extinction of predator species.  
From this observation, we see that the extinction of predator species can be avoided if S5 does not get in to the picture. 
i.,e., the system does not admit as its equilibrium point.  This can be achieved by using the harvesting efforts E1 &E2 as 
controls. The predator extinction can be avoided if we can restrict the harvesting efforts (E2r,E1) to the region 
B1∪B2∪C.In this case all the paths initiating in the positive quadrant will approach S4 or  a limit cycle surrounding S4 
which depend on the other parameters of the system. In either case, we are assured of persistence of both the species 
prey and predator.  Thus the strategy for the persistence of both the species is to limit (E2, E1) to B1∪B2∪C. extinction 
of predator species.  From this observation, we see that the extinction of predator species can be avoided if S5 does not 
get in to the picture. i., e., the system does not admit as its equilibrium point. This can be achieved by using the 
harvesting efforts E1 &E2 as controls. The predator extinction can be avoided if we can restrict the harvesting efforts 
(E2r, E1) to the region B1∪B2∪C. In this case all the paths initiating in the positive quadrant will approach S4 or  a limit 
cycle surrounding S4 which depend on the other parameters of the system.  In either case, we are assured of persistence 
of both the species prey and predator.  Thus the strategy for the persistence of both the species is to limit (E2,E1) to 
B1∪B2∪C. 
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