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ABSTRACT 

Recent years have received much attention to wavelets because of its comprehensive mathematical power and good 

application potential in many interesting physical phenomena. We introduce definition and brief historical development 

of wavelets, the fundamentals of Hilbert-space, Fourier transform and general theorems needed. In this paper we also 

briefly review some of the available methods and propose a method [Section9] based on Fourier transform, multiple 

shift orthogonality and normalization to obtain filter coefficients to certain restricted cases. We also propose 

convergence analysis. 
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________________________________________________________________________________________________ 

 

1. WAVELET, HISTORY AND APPLICATIONS: 

 

A wavelet is a wave pattern of small size, that is, its graph oscillates only over the short distance or damps very fast; it 

means value over the whole domain equates to zero. A wavelet is localizable both in time (position) and frequency 

(scale).  

 

Wavelet: An oscillatory function )()( 2 RLx ∈ψ  with zero mean is a wavelet if it has the desirable properties: 

 

1. Smoothness: )(xψ is n times differentiable and that their derivatives are continuous. 

 

2. Localization: )(xψ is well localized both in time and frequency domains, i.e. )(xψ  and its derivatives must decay 

very rapidly. For frequency localization )(ˆ ωψ must decay sufficiently fast as ∞→ω  and that )(ˆ ωψ becomes flat 

in the neighborhood of 0=ω . The flatness is associated with number of vanishing moments of )(xψ , i.e. 

           �
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= 0)( dkxx
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)(ˆ
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in the sense that larger the number of vanishing moments more is the flatness when ω  is small. 

 

3. The admissibility condition 
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suggests that �ψ̂ �����  decays at least as�����	  or �
���	   for 0∈> . 

 

Let RbRaxba ∈∈ ,),(,ψ be a family of functions generated from mother wavelet )(xψ  by scaling (a) and 

translation (b) and defined by 
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that a is a measure of degree of compression and b signifies that 
ba ,ψ is centred (localized) around b.{ )(, xbaψ } is an  

orthonormal  basis of  ).(2
RL . 

 

Dyadic Wavelet: Let �  ���  and �  ����.The function 
kj ,ψ stands for the dyadic wavelet shrunk by a factor of  ��   

if �   is positive (magnified by a factor ���   if �   is negative) and shifted by ���� units. 

 

Examples of Wavelets [10, pp. 288-289] 

  

1. Gaussian wavelet: 
2
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2.   Mexican Hat or Maar’s Wavelet:  
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3.    Haar Wavelet (1910):   ( )
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4. Poisson Wavelet:  
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5. Morlet wavelet: ��
�
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2x
xix ωψ , 

 

The word, wavelets or ondelets was first introduced by J. Morlet, a French Geophysicist working in an oil company, 

Elf. Acquitaine, at the beginning  of 1980’s. The wavelet, which started attracting the scientific community of early 

eighties, is a synthesis of ideas which originated from various specialties including  Mathematics (Harmonic analysis: 

Calderon-Zygmund Operator, Little Wood-Paley Theory(1937), Franklin basis, and atomic decomposition of function), 

Physics (coherent states formalism in quantum mechanics and renormalization group) and Engineering (quadratic  

mirror filters side bent coding  in signal processing and pyramidal algorithm in image processing).  

 

In fact the first orthonormal wavelet basis was discovered by Alfred Haar (1909) and was refined by P. Franklin in 

1927.  J.O. Stromberge (1981) was of course the first to be credited for constructing orthonormal basis of 

{ },,),2(2)(:)( 2/

,

2 ZkjkxxRL jj

kj ∈−= ψψ  where j, k represent scale and translation parameters respectively. 

For positive j the graphical display of kj,ψ is wider and flatter, whereas for negative j, the same is narrower and 

sharper.  

 

In 1982, Morlet introduced the idea of transform and in 1984 Grossman and Morlet succeeded in establishing the 

inversion formula. In 1985, Y. Meyer, a pure mathematician, used Littlewood Paley methods of 1930’s and Calderon’s 

method of 1960’s to formalize the notion of a wavelet. In 1986 Mallat realized that coarse features in an image are 

large objects, whereas fine scale feature should be studied much more locally. Subsequently, Daubechies, Grossman, 

Mallat, Meyer and Strang have developed the theory of wavelets to a considerable extent [11, p. 11]. The first 

application of a wavelet is due to Morlet (1983) and is { }2/24/1 22

)( xkikx
eeex

−−− −= πψ   at 2

1

)2log2(π=k  . 

 

Wavelet analysis is probably the most recent solution to overcome the shortcoming of Fourier transform. In the case of 

wavelet, we normally do not speak about time-frequency representation but about time–scale representation, scale 

being in a way the opposite of frequency, because the term frequency is reserved for the Fourier transform, since from 

Literature it is not always clear what is meant by small and large scales. It is defined as follows: The large scale is the  

big picture, while the small scale shows the details. Thus going from large to small scale is in this context equal to 

zooming in.  
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Applications of Wavelets  

 

Electronics (signal compression and denoising; image and speech analysis), Computer (computer graphics, neural 

network), Mathematics (approximation theory,  matrix theory, numerical analysis of ODEs and PDEs, operator theory, 

inverse problems),  Mathematical Statistics (sampling theory, regression, density and function estimation, factor 

analysis modeling and forecasting in time series analysis, spatial statistics, pattern recognition), Meteorology (structure 

of the clouds), Universe (structure of galaxies and universe), Biomedical (bio-acoustics, electro-cardiography (ECG), 

electroencephalography (EEG)), Biomedical Imaging (biomedical image processing, i.e. noise  reduction, image 

enhancement and detection of micro calcification in manimograms, computer assisted  magnetic resonance imaging 

(MRI), functional image analysis), Fluid (turbulence) and many more. 

 

2. PRELIMINARIES: 

 

Definition: Let H be a Hillbert space with inner product �� � . A set of vectors }{ nx is an orthogonal system if 

mnmn xx δ=, . 

 

Lemma: 1 [10, p.355].   A set of vectors �
�� is orthonormal iff for every finite set of complex numbers ����, we have  

              �� ���� 
���  ������ .    

  

Definition: Let H be a Hilbert space. A set of vectors }{ nx is a Riesz system, if there exist constants ∞<≤≤ Cc0  

such that for any finite set of complex numbers ���� 
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Definition: Let  )(2 RL
 
is a vector space of square integrable function, i.e.
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In particular , and we say that f  is square integrable . 

Definition: Let 
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. We say that f  is  integrable. 

Lemma: 2 If ),(1 RLf ∈  then ≤� dxxf
R

)(
1

)( fdxxf
R

=� . 

Definition: [4, p. 367]: Let CRf →: be a function. Then support of f , denoted by s�����, is the closure of the set

{ }0)(: ≠∈ xfRx . We say f
 
has compact support if s����� is a compact set.  

In other words,  f has compact support if there exists ∞<r  such that supp [ ],, rrf −⊆ that is, such that 

0)( =xf
 
for all 
 satisfying .rx >

 
 

Definition: A sequence ����  of orthonormal basis in a Hilbert space � is called a frame if there exist constants  

 � ! " # such that 

                ���� $ � ���� �����%�&	 $ !����������'����(� 

 

The constants  ���)*�! are called frame bounds. If   !� then frame is called tight. 

 

Cauchy-Schwartz Inequality:  For ),(, 2
RLgf ∈  
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Triangle Inequality:  For ),(, 2 RLgf ∈
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Lemma: 3 Suppose ),(, 2
RLgf ∈ satisfies a Lipschitz condition of order ]1,0(∈α , which means that there exists a 

constant + , -
 
such that for all Ryx ∈,  

               ���
� . ��/�� $ +�
 . /�0. 

 

For details refer to Frazier [4, pp. 349-351] and Pinsky [10, pp. 304-305].  

 

Fourier Transform and Properties 

 

Fourier Transform. Fourier transform [FT] is a well known mathematical tool to transform time domain signal to 

frequency domain for efficient extraction of information and vice- versa. 

 

Definition (Fourier transform): For )(1 RLf ∈ or )(2 RL and R∈ω , define  

               

( ) � −==
R

ix
dxexfffF

ωω )(ˆ)( , 

where f̂  is called the Fourier transform of f  and the mapping ∧  is called the Fourier transform. 

 

Inverse Fourier Transform:  For g )(1 RL∈  and Rx ∈ , we define 
vg , the inverse Fourier transform of g by   

              

ωω ω
degxg

ix

R

v �= )(ˆ)( .   

The mapping 
ν

 is the inverse Fourier Transform. 

               

Characteristics of Fourier Transform: [16, pp. 30-31] 

 

Boundedness: 
1

ˆ),(ˆ ffRLf ≤∈
∞

∞
 

Uniform Continuity: )(ˆ ωf is uniformly continuous on ∞<<∞− ω .  

Decay:  For 0)(ˆ),(1 →∈ ωfRLf  when ∞→ω [Reimann Lebesgue Lemma]. 

Linearity: [ ] [ ] [ ])()()()( xgFxfFxgxfF βαβα +=+ . 

Derivative: ( ) )(ˆ)()( ωω fixfF
nn =�

	



�
�


. 

Plancherel’s Identity: gfgf ˆ,ˆ, = . If fg = , then the above identity reduces to  

              

22
f̂f = .  

The function 
2

)(ˆ ωf is called the energy spectrum. Analogously, the area below the curve 
2

)(ˆ ωf is equal to 

dxxf
2

)(� - the energy content of the signal. 

Shifting: )(ˆ)( 0

0 ωω
fexxFf

xi−=− . 

Scaling: �
�

�
�
�

�
=

a
f

a
axFf

ωˆ1
)( . 

Symmetry: [ ][ ] )()( xfxfFF −= . 

 

Convolution: The convolution of f and g is defined as  
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Modulation Theorem: )(*)()()( ωω GFxgxf =  [by symmetry property]. 

Moment Theorem: � =
R
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Discrete Signal: ��  1 2� 34 5 ���������  #�6� 7 8 8 � 3 . 68 
Fourier coefficients��9  	

:���;
��<�=� :�������4 )  �:

� > 6�7 8 8 �#� 8 8 � .:
� . 

 

Uncertainty Principle: 

 

Definition: [2, pp. 123-124]. Let�� � � ?��@�. The dispersion of � about the point � � A is the quantity 

�����������������BC�  D �E . ������E���*E%
�%
D D���E���*E%
�%

8 
 

The dispersion about a point  � is the measure of deviation or spread of its graph from E  �. This dispersion will be 

small if the graph of � is concentrated near E  � and is spread out away from��E  �. 

In frequency domain, 

�����������������B0�F  D �� . G��H�F���H�*�%
�%
D DH�F���H�*�%
�%

8 
 

Theorem: 1 (Uncertainty Principle) [2, pp.125-127]. Suppose � is a function in  ?��@� which vanish at >-�IJK .-. 

Then  

������������������������BC�8 �B0�F L 	
M  

 for all points �� G � A. 

 

The statement implies that BC� and �B0�F cannot simultaneously be small. In other words, when the time-frequency cell 

is narrow in time it is wider in frequency and vice-versa. In case of Gaussian function ��E�  	
N�=O ;�

PQ
QRQ equality is 

achieved. 

 

3. MATHEMATICAL THEORY OF WAVELET: 

 

Continuous Wavelet Transform [CWT] 

 

The wavelet transform or wavelet analysis is probably the most recent solution to overcome the shortcomings of the 

Fourier transform.  

 

Wavelet constitutes a family of functions derived from one single function and indexed by two labels, one for position 

and other for frequency. That is, the wavelet transform of a one dimensional function is two dimensional; the wavelet 

transform of a two dimensional function is four dimensional. One imposes some additional condition on the wavelet 

function in order to make the wavelet transform decrease quickly with decreasing scale. These are the regularity 

conditions and state that the wavelet function should have some smoothness and concentration in both time and 

frequency domains. 

 

The CWT of a function )()( 2
RLxf ∈  at a scale a and position b with respect to )()( 2

RLx ∈ψ is given by  

                 

[ ] ��
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bx
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a
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In 
ba ,ψ the parameter b  gives the position of the wavelet, while the dilation parameter � governs frequency “for 

smaller values of ��" #�, the wavelet is contracted in the time domain and the wavelet transform gives information 

about the finer details of the signal. For large values of��, the wavelet expands and the wavelet transform gives a global 

view of signal” (cf. [12, p.17]).  Fig.1 [11, p.19] shows two dialation of the Morlet wavelet. If 1>a  there is a 

stretching of )(xψ  along the time axis whereas if 10 << a  there is a contraction of )(xψ .  
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Fig.1. A Morlet wavelet dilated by factor of 2/1=a and 3=a . 

 

 
 

The CWT as an Operator: The CWT takes a member of the set of square integrable function of one real variable in 

)(2 RL and transforms it to a member of the set of functions of two real variables. Thus, it can been seen as a mapping 

operator from )(2
RL  to the latter set. 

 

Define   [ ] ).,()( baWxfW ≡ψ  Then ][ fWψ  is to be read CWT with respect to )(xψ of��. The notation for the 

operator use ψ  as a subscript to remind us of the fact that the transform depends not only on the function )(xf
 
but 

also on the mother wavelet.  

 

We now enumerate various properties of CWT using the operator notation: 

 

Linearity:  

            
[ ] [ ] [ ])()()()( xgWxfWxgxfW ψψψ βαβα +=+                                

for scalar βα , and function ).()(),( 2
RLxgxf ∈

 
 

Translation:  

      
 
     

[ ] [ ]ττψ −=− baWxfW ,)(     

 

Scaling:  

            
�	
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=�

	



�
�



αααα
ψ

ba
WfW ,)

1
(

1
     for 0>α    

 

Wavelet Shifting: Let ).()(ˆ τψψ −= xx  Then  

            

[ ] ( )τψ abaWxfW += ,)(ˆ
 .                    

                               

Observe that the CWT obtained by shifting the wavelet is different from the one obtained by shifting the signal. 

 

 

Energy Conservation:  

           D ���
���%
�% *
  	

S D D ���� ba ,ψ ���%
T

%
�%

UCUV
CQ . 

 

Localization: Let ��
�  ��
 . 
T� be the Dirac pulse at the point 
T, then ������������WXY�Z��� ��  	
NCψ 2[\�VC 5. 
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Wavelet Series: A function )(2
RL∈ψ is said to be orthonormal wavelet if the family { }

Zkjkj ∈,,ψ , where   

             2,
2

, ),2(2 ψψψψ =−= kj

j
j

kj kx           

                            

satisfies the conditions  

            
ZmlkjO mkijmlkj ∈>=< ,,,;....., ,,,, δψψ

 
 

Wavelet series expansion of )(2 RLf ∈ is defined by  

           

,)()(
,

,,�
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−∞=

=
kj

kjkj xxf ψβ          

                                            

where the wavelet coefficients 

           
�
∞
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>==< dxxxff kjkjkj )()(, ,,, ψψβ .    

 

4. MULTIRESOLUTION ANALYSIS: 

 

The purpose of multiresolution analysis is to write a function )(2
RLf ∈ as a collection (sequence) of its successive 

approximations, each of which is a smoothed version of the previous one. 

 

Definition: A multiresolution analysis [MRA] of )(2
RL  is a sequence { }

ZnnV
∈

of the closed subspaces of functions 

)(2 RLf ∈ satisfying the following properties: 

 

(i) (Monotonicity) is ZnVV nn ∈∀⊂ +1        )( 1 ZnVV nn ∈∀⊂ −  

(ii) { } n
n

n
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∞
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(iii) (Dailation) 
0)( Vxf ∈  iff ZnVxf n

n ∈∀∈)2( , i.e. all the spaces are scaled versions of the central space V0. 

(iv) (Existence of scaling) There exists a scaling function 0)( Vx ∈ϕ  when integer translates space 0V , i.e. for each

)()( 2 RLxf ∈           
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and { }Zkkx ∈− ),(ϕ  is an orthogonal basis  for 0V . 

 

Suppose ( ) Zkjkxx
jj

kj ∈−= ,,22)( 2/

, ϕϕ . Since ZkVxk ∈∀∈ 0,0 )(ϕ  due to (iv).  Further, if Zj ∈  

condition (iii) implies that the family { }∞
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∈−=

k

jj

kj Zkjkxx ,),2(2)( 2/

, ϕϕ  is an orthogonal basis for .jV
 
By 

definition part (iv) means that for any � � ?��@�, there exists a sequence �����&	%  such that each �� � ] �̂��_  and 

�����&	%  converges to � in ?��@�, that is ��� . �� ` # as ) ` -. 

 

The functions, consisting of translations and dilations of wavelet function )2( kxj −ψ , form a complete and 

orthonormal basis of ).(2
RL

 
 

The relation between two functions is expressed as  
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Thus for k > 0, ⊕=+ 01 VV j
)(

0
j

j

j
W

=
⊕ , i.e. 

1+jV  can be expressed as a linear combination of functions in orthogonal 

spaces 
0V and jjW j .....,,1,0, = and analysed separately at different scales. 
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jW is a decomposition of )(2
RL into mutually orthogonal subspaces. Thus, 

0)( Wx ∈ψ  such that kj ,ψ  is a complete orthonormal basis of 
jW , i.e. { })(, xkjψ  is an orthonormal basis of )(2

RL

. 

Note that for certain values of j and N,   
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A scaling function can be used to expand a general function: Projection  a�b ?��@� c�dcefg �̂ � 
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It satisfies the following convergence property 
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where dxkxxfc
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k � −= )2()( ϕ ; C , p are constants. 

 

Moment = 0 implies scaling bases can be represented as polynomials of degree ( )1
2

−N . 

 

Theorem: 2 [2, p. 205]. Let �̂ ����� � h be a given MRA with scaling function � and a��� projection of � � ?��@� onto 

�̂ such that 
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then for � sufficiently large 
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Remarks: Let for ,0>r has compact support, that is, rxtsxx >∀= .0)(ψ . This means ( )xj2ψ  has compact 

support �	
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2
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, i.e. when
j

r
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2
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The graph of ))2(2()2( kxkx
jjj −−=− ψψ is obtained by translating the graph of )2( x

jψ by xj−2  along x-

axis (to the right if and to the left if 0<k . Hence if support of ψ  is in [ ]rr, , then )2( kx
j −ψ  has support 

inside [ ]rkrk
jjjj −−−− +− 22,22  . Finally, graph of 

kj ,ψ  is obtained from the graph of )2( kx
j −ψ by after 

multiplication by
j2 , which stretches the graph in y direction by this factor. For r very small 

kj ,ψ is centered near the 

point k
j−2  and has a scale of about

j−2 . 

 

)0>k
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5. GENERAL THEOREMS: 

 

If  n�op is an orthonormal basis then it is a tight frame, since 

������������������q���� �����
�

�&	
 ����8�� 

 

Sufficient condition for }{ mnψ  to constitute a frame in ?��@� 
 

Theorem: 3 Let  ψ  and �T such that 

i) r)�	s�t�sC\ � �
∞

−∞=m

�ψ̂ ��Tu���
� " # 

ii) v��	s�t�sC\ �
∞

−∞=m

�ψ̂ ��Tu���
� " #� 

iii) �ψ̂ ��Tu� > 
�� $ +�6 > �
����	w��  for some �" # i.e. decays at least  as fast as ������������6 > �
����	w���for some 

�" #� then there exists �x " # such that              

     ���������� mnψ �
�  �T
u �4 ψ ��Tu
 . )�T� form a frame for any �T , �xT, i.e. for any  �T � ����������� y#� �xz8 

 

Theorem: 4 For the scaling function it holds D ��
�*
  6{  or equivalently��|�#�  6, where �|��� is the Fourier 

transform of �. 

 

Theorem: 5 For a given multiresolution analysis, there exists an orthonormal wavelet basis for ?��@�8 Let  W�  be the 

orthogonal complement of  �̂ �� in  �̂w	  Then += 0

2 )( VRL )(
0

j
j

W
∞

=
⊕ . In particular, each � � ?��@�

  
can be uniquely 

expressed as a sum � }ii  with }i � Wi, where }i~s are mutually orthogonal. Equivalently, the set of all wavelets  

�����������is an orthogonal basis for ?��@�8
  
 

 

Theorem: 6 [5]. For any ) � � there exists Daubechies MRA with function���  and � that have compact support of 

length �� . 6. Moreover, Daubechies wavelet has � vanishing moments, i.e. 

 

�����������
i�ψ ��Q�{�  #�������  #�� . 6. 

 

Theorem: 7 Let���ψ  be an admissible mother wavelet satisfying    

�����������D�6 > �
�� �ψ �
�� *
 , �. 

 

i)  If � is bounded function that satisfies Lipschitz condition of order G,  # , G $ 6� then  �Wψ ���� ��� $ +���0w	 �4   

for some constant + " #. 

 

ii) If � is bounded and continuous at 
T with # , G $ 6, i.e. ���
 > �� . ��
T�� $ G���0     for some G " #8 
 

Then �Wψ ���� ��� $ +���	 �4 y���� > ����z� for some constant + " #8 
 

Lemma: 4 Suppose � � ?	�@� ��?��@� satisfies D ��
�*
  6�%
�%  and D�
�0 ���
��*
  +� , -8� 

 

Then   ��� �4 ��� ��i� . �������� $ +	+���u0. 

 

Or equivalently,����� ��i� . ��� �4 �������� $ +	+�����0w	 �4 �. 
 

Theorem: 8 [5] Let � be continuous function with compact support that satisfies:  

 

i) ���
 . ���i�_ is an orthonormal system 
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ii) 1)( =� dxx
R

ϕ  

iii) Only finite number of the coefficients �i in����
�  ( )� −
k

k kxa 2ϕ  are non-zero. Then � is a scaling function,  

i.e.�� can be used in construction of MRA. 

 

Theorem: 9 [5] Suppose that the polynomial  a���  	
���i�i  satisfies: 

i) ��a�6�  6 

ii) �a���� � # for�any � with ���  6 

iii)�a�����>�a�.����  6 for�any � with ���  6 

Then the iteration��T  �YT�	Z,   ���
�  �
k

�i���	��
 . �� converges pointwise and in ?��@� to a scaling 

function �. 

 

Lemma: 5 Let ��ψ � �?��@�� then  

(i) The set ���
 . )���&���  is orthonormal iff    �����|�� > ������  6 

(ii) The set ���
 . )���&���    and �ψ �
 . m��u&��
�

   are biorthogonal, i.e. 

         0, =�� mn ψϕ  �'m� )  iff ����|�� > ����ψ̂ �� > ����  #� 
where ���
�  ��
 . )�  and mψ �
�  ψ �
 . m�. 
 

Lemma: 6 The scaling function � satisfies the following conditions: 

i) ���|�� > ������  6 

ii) �|���  � 2t�5�| 2t�5 

 

where ���� is a����  periodic function that belongs  to  ?�Y#���Z and satisfies �������� > ���� > �����  6. 

 

Lemma: 7 The set �ψ �
 .m��u&��
�

 are orthonormal iff  � �ψ̂ �� > ������  6 and�ψ̂ ���  32t�5 ψ̂ 2t�5 , 

where 3��� is a�����  periodic function that belongs  to  ?�Y#���Z and satisfies���3����� > �3�� > ����  68 
 

Lemma: 8 The Fourier transform of any function � � WT can be written in the form �F���  �����ψ̂ ���,  where 

����� is a periodic function with period �� and ψ̂   is a independent of �. Moreover, �� � ?�Y#���Z and ����Q�{� 
�����QYT��=Z8 
 

Frequency Domain Characterization of Filter Coefficients: 

  

Fourier Transform of ������ is  

���������������������= 	
N��

k

����;�<it 8 
 

Fourier Transform of ������ is  

�����������������3���= 	
N��

k

����;�<it8 
 

Notice that ����  #� and ��#�  68 
�|���  � 2t�5�| 2t�5  �|�#�� � 2t��5��&	          [��E�  �

∞

−∞=k

�iN����E . �] 

�����  32t�5 ψ̂ 2t�5  32t�5� 3 2t��5��&�      [ψ �E�  �
∞

−∞=k

�iN����E . �] 

 

Lemma: 9 Suppose 3b@ ` � satisfies 3�#�  6� �3���� $ 6 for all � � @ and there exist G " # and + , � such that  

����������������3���� . �3�#�� $ +���0    '� � @ 

 

 For ) �N, let 
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����������������3���� �32���5 8
�

�&	
 

Then 3���� converges as ) ` � uniformly on every bounded subset of @, hence pointwise at every point � � @. 

 

Theorem:10 [9] Let �  �
�  be the number of vanishing moments for a wavelet 

jkψ  and let � � ���@�.Then the 

wavelet coefficients decay as following:  

�������������H*�iH $ �����2�w	�5 �I�t�����
�������� 

 

where �� is a constant independent of �� � and � and ���i  ���� � jkψ �    i�� � iw��	�� ¡ .  
 

Notice that 

���������������*�i  ¢ ��
�
jkψ �
�*
�

����
 

           ��
�  � �� 2� ��4 5 2[�
�
Q�5

£

�¤
��	
�&T > ����� 2[�

�
Q�5

£

�¤ � � � �   i�� � 
¡     
 

Theorem: 11 [9] If ψ  has � vanishing moments, then  

(a) ��#�  6. 

(b)   
U£
Ut£�����t&=  #�������  #�6� 7 � � . 68 

 

Corollary: [9]  

                ��)��  �6��)�;¥;)#��)�¦** §    
 

Lemma: 10 [9] 

                ����)�  ¨T��� ) � h. 

 

6. GENERALIZED MOMENTS: 

 

Probability Densities: The functions ���
� and  
2ψ �
� of orthonormal scaling function and wavelet are the 

probabilities densities. 

 

Generalized Moments: The generalized moments of  ��
� and ψ �
� are defined as: 

����������������©i�d  �
R


i��
���
 . E�*E  

����������������ªi�d  �
R


iψ �
�ψ �
 . E�*E  
©	�T, ª	�T are the first moments (the means) of  ��
� and ψ �
� respectively. 

             ��
�  �
n

��N����
 . )�� ���ψ �
�  �
n

��N����
 . )�  
 

Theorem:12 [13] Let��«  �� . �8 The vector  ©i  n©i�dp , E $ «, is a solution of the system 

            2� . 	
�� 5 ©i  �i�   

where�� <�  �����w<���,     .« $ r� � $ « is the translation matrix (or Lawton matrix). The vector �i has 

components 

���������������i�d  	
����

l n

�¬���
=

k

j 1

��® )�3i���	��w�d�  .« $ r� � $ «8 
 

Remark:  ©	�d  ©	��d. 
 

Note:  ©T�d  ¨�E�. 
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Theorem: 13 [15]  
�����
© 	�T 

	
��

i

�<©	�< > 	
��

i

r�<�, 

where ��  �
i

�<��w< satisfy ���i  ¨��� and ��  ���. 

Theorem: 14 [15] The mean ª	�T  D
ψ ��
�*
 is at the center of support of  ψ �
�, i.e. equal to 
���	
� . 

 

7. SCALING FUNCTION AND WAVELET: 

 

The scaling function ��
��is the solution of dilation equation of a particular type  

              

),2()( kxax
k

k −= �
∞

−∞=

ϕϕ kk ha 2=                                                                                      (1)                

The constants �i are called filter coefficients. The associated wavelet �(x),� is orthogonal to scaling function, defined 

by ψ  

                   )2()1()(
1

2

1 kxax
Nk

k

k −−= �
−=

− ϕψ .                                                                          (2) 

 

Daubechies Wavelet: 

 

Daubechies wavelets are compactly supported functions. This means that they have non zero values within a finite 

interval and have a zero value everywhere else. That’s why it is useful for representing the solution of differential 

equation. In 1988, Ingrid Daubechies defined scaling function as 

              

)2()(
1

0

kxax
N

k

k −=�
−

=

ϕϕ  

where N  denotes the genus of the Daubechies wavelet. The functions generated with these coefficients will have supp

]1,0[)( −= Nϕ  and )12/( −N  vanishing wavelet moments. 

 

Derivation of Filter Coefficients: 

 

The N coefficients ka are uniquely derived under the following conditions: 

1.  0=ka for }1.....,,2,1,0{ −∉ Nk  

2. Area under the scaling function is normalized to unity, i.e. � = 1dxϕ  implies �
−

=

=
1

0

.2
N

k

ka  

3. The translates of scaling function � are required to be orthonormal, i.e. 
lkdxlxkx ,)()( δϕϕ =−−�   

 

        yield  ,2 02

1

0

llk

N

k

k aa δ=−

−

=

� 11
22

−≤≤− NN l . 

4. The first �  ¯
Q  moments 0)( =� dxxx lψ , i.e. ,0)1(

1

0

=−�
−

=

k

N

k

lk
ak  1.....,,2,1,0

2
−= Nl  

The functions, consisting of translations and dilations of wavelet function )2( kxj −ψ , form a complete and 

orthonormal basis of ).(2 RL  The last condition is derived when a function ��
�  �
∞

−∞=k

G¬
¬ is exactly represented 

by the expansion f  of the form )2()( kxaxf
k

k −= �
∞

−∞=

ϕ
 

and that , ��
�� )(xψ "� #8 
 

Construction of Scaling Function: 

 

There are no explicit formulae for the basic scaling function and wavelet. Cascade algorithm, successive 

approximation, Daubechies-Lagarias algorithm and subdivision scheme are the methods which involve direct 

evaluation of scaling function and wavelet at dyadic rational points.  

 

Cascade Algorithm: The dilation equation is expressible in the matrix form as 3�  ��°±²J³�´µ¶�·I¸´�´µI´���r� 
#�·¹º�I»»�r , #� r " � . 6. The solution Y3 . �Z�  # is the set of Eigen vectors corresponding to Eigen value 1, is not 
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unique. Normalization condition is imposed, i.e. .1,.....,2,1,01)( −=∀=�
∞

−∞=

Nii
i

ϕ  Once � is known for the 

integral values of x, ��r¼�� can be found. The process can be repeated to get � 2 ½
Q�5 � r� � � h8   

 

For details refer to Chen et al. [3], Maninder [7], Sabina[12], Soman [14] and Mishra-Sabina [17]. 

 

Fig.1. 2D graph of scaling (phi) and wavelet (psi) functions of Daub6 

 
 

Fig.2. 3D graph of scaling function of Daub6 

 
 

8. EVALUATION OF FILTER COEFFICIENTS: 

 

To find ¾¿À for Daub4  

 

Taking Fourier transform to two scale relation 

            ),2()( kxax
k

k −=� ϕϕ
 

We find 

��������������Á ���  ay;�<t �Â z�|y� �4 z�  
where a��� is given by  

0 1 2 3 4 5
-0.5

0

0.5

1

1.5

x

p
h
i

0 1 2 3 4 5
-2

-1

0

1

2

x

p
s
i
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k

k

k zazP �=
2

1
)(  

Similarly taking Fourier transform to associated wavelet relation, Ãe obtain 

 

������������������  Äy;�<t �Â z�|y� �4 z�  
where  Ä���  	

��
k

�.6�i�	�i�i    .�a�.��	�. 
 

Remarks: a�6�  6 implies a�.6�  #� i.e. �  .6 is a repeated root of a���. Thus for finite number of non zero 

�iv, a��� is a  polynomial with �  .6 a root, is expressible as  

����������������a���  �6 > ���ax���, ax�.6� � #, �  �
� � 

 

where ax��� is the product of the remaining factors of a after dividing out � > 6 an appropriate number of times. 

For N=4, let a���  �6 > �����G > Å��. 
������������a�6�  6 Æ G  	

M. Å8  
������������Ya�r�Z� > Ya�.r�Z�  6Æ 6ÇÅ�� . ÈÅ > 	

�  #�� i.e.��Å  	ÉNÊ
Ë  . 

 

Selecting –ve sign, ��Å  	�NÊ
Ë . So  

��������������a���  	
Ë �6 > ���Ìy6 > NÍz > y6 . NÍz�Î  

                     = 
	
�[�T� > �	�� > ����� > �Ê��Ê], 

where �T�  	wNÊ
M � �	�  ÊwNÊ

M � ��  Ê�NÊ
M � �Ê  	�NÊ

M  . 

 

If we choose�Å  	wNÊ
Ë  , the coefficient will be in reverse order. Narcowich[8] points out that the above method does 

not work for �  Í8 
 

Bezout Technique [6] 

 

Consider wavelets with � vanishing moments.  

To find �����  2	wÏÐ½Ñ� 5��T���,      �T��� � # 

 

which satisfies the orthogonal relation 

   ���������������� > ���� > ����  68                                                                                     (3) 

 

Ò¹´²¸¶��� 	wÏÐ½Ñ�  	wScÓt
� . <

� vr)�  ;�<ÑQ+¦v 2t�5 . 

           �������  ��������kkkkkkk   +¦v� 2t�5¡
� ��T����� . 

���������������� > ����  ��� > ����� > ��kkkkkkkkkkkkk   vr)� 2t�5¡
� ��T�� > ����8  

 

(3) gives��� +¦v� 2t�5¡
� ��T����� >  vr)� 2t�5¡

� ��T�� > ����  6                                                                                 (4) 

 

As �T��� has real coefficients; this implies that ��T����� is an even function. So we can write in terms of cosines. 

Since 

����������������+¦v�  6 . �vr)� 2t�58  
 

Letting��/  vr)� 2t�5 and��T�����  Ô�/�,                                                                                                                    (5) 

 

(4) implies Bezout equation:  Y6 . /Z�Ô�/� > /�Ô�6 . /�  6. 

 

Daubechies proved that Ô�/�  �2� > � . 6
� 5 /i8                        

 

Theorem: 15 [Bezout] If �	 and �� are polynomials of degree )	 and  )� respectively, with no common zeros, then 

there exist unique polynomials Ô	 and Ô� of degree )� . 6�and�)	 . 6   respectively, so that 

         �����	�
�Ô	�
� > ���
�Ô��
�  68  
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Lemma: 11 The general solution of the Bezout equation, where r is the arbitrary polynomial  

             �6 . 
��Ô	�
� É 
�Ô��6 . 
�  6, 

 

 where  Ô	�/�  �
−

=

1

0

p

k

2) > � . 6
� 5 /i > /�Õ�/� and 

       �������Ô��/�  É�
−

=

1

0

p

k

2) > � . 6
� 5 /i . /�Õ�6 . /�8 

 

Since Ô	  Ô�  Ô implies additional constraint  

���������������Õ�
� > Õ�6 . 
�  # . 

 

Therefore� Õ must have odd symmetry about 
  	
� so that 

��������������Ô�/�  �
−

=

1

0

p

k

2� > � . 6
� 5/i > /�Õ 2	�. /58                                                                                                     (6) 

 

Further ��/  vr)� 2t�5  	
� . ScÓt

�  �_
M > 	

� . 	
M_,   �  ;�<t 8 

 

Example: For �  �� (6) implies��Ô�/�  6 > �/. 

 

Using (5), 

�����������������T�����  È� . �� . 6  .��� . È� > 6�8  
 

The roots are �  � É NÍ. If we take  � > NÍ , 

��������������T���  NÊ�	
� 2� . y� > NÍz58  

 

����  2	w_� 5
��T��� leads to the filter coefficients �T� ��	�� ��� �Ê. Coefficients for �  Í� È� Ö� Ç are shown in tabular 

form in Maleknejad et al.[6].With standard substitution �  ;�<t� ���T����� turns into a Laurent polynomial with 

power ranging from × )�´¹�)� where ) is the degree of Ô. If we multiply ���T����� by �� it turns to a regular polynomial 

of degree �). If the roots are real or lie on the unit circle, then the roots of this polynomial come in the form �i� 	_�. For 

simplicity if we select �i � �  6��� 7 8 8 � ) be the choosen roots, then  

�����������������T���  �_�_Ø��_�_Q�7778�_�_Ù�
�	�_Ø��	�_Q�777�	�_Ù�  

  

will be a solution of equation ���T�����  Ô�/�. 
 

9. FILTER DESIGN AND CONVERGENCE: 

 

Here we propose a convenient method to find filter coefficients to certain restricted cases with input from [14].  

 

We calculate the filter coefficients by using multiple double shift orthogonality property, normalization and 

Theorem9(i). 

 

Following Remark (Section8), consider the polynomial 

 

 

 

 

Using a�6�  6�Úµ¶¹º¶�Û� and Ü  	
�£,  

                  Ü  �
−

=

1

0

p

i

�<�   i.e. ���	  Ü . �
−

=

2

0

p

i

�<8 
Thus 

 

 

 

 .
2

N
p ,)1()(

1

0

=�
	



�
�


+= �

−

=

p

i

i

i

p
zazzP

�
	



�
�


++= −

−

−

=

� 1

1

2

0

)1()( p

p

p

i

i

i

p
zazazzP
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(7) 

 

      

I.  For �  � 

                a���  �6 > ���Y� > �Ü . ���Z , Ü  6¼È8 
 

Convolution of �6��86� with ��� Ü . ���gives �� Ü > �� �Ü . �� Ü . �8 
 

Applying double shift orthogonality, we obtain  

��������������������� . �Ü� . Ü�  # . 

 

This gives �  	wNÊ
Ë   taking +ve sign.  

Using of the fact that  
k

k

k zazP �
=

=
3

02

1
)( , we find that  

                �T�  	wNÊ
M � �	�  ÊwNÊ

M � ��  Ê�NÊ
M � �Ê  	�NÊ

M  

 

Here �
=

=
3

0

2
k

ka

 

is satisfied. 

The corresponding Daub 4 filter coefficients �i~±��are as given in the Table1 by using �
=

=
3

0

2
k

kh , since kk ha 2= . 

Taking –ve sign in a will reverse the order of coefficients. 

 

II. For  �  Í 

           P���  �6 > ��ÊY� > �� > �Ü . � . ����Z�� Ü  6¼Ý8  
 

Convolving �6� È� Ç� È� 6��with ��� �� �Ü . � . ��� give filter ��� Í� > �� �� > �� > Ü� ÍÜ . ��� ÍÜ . Í� . ��� Ü . � . �8 
Applying first and second double shift orthgonality, we obtain 

 

�������������È�.�� > �Ü . ��� > ���Ü . ��� > ÍÜ�  #  

            6�.�� > �Ü . ��� > ��Ü . ���  #  

 

These imply 

           �È�� . ÈÜ� . ÛÜ�  #. 

 

That is, �  	�N	T
	Þ   taking -ve sign. 

 

Also 

�������������Ý�� . Ý��Ü . �� . ÍÜ�  #,  i.e. 

�������������Ý�� . �	wN	T�
� � . Ê

ÞM  #8 
 

Thereby  

���������������  	wN	Twß�	wN	T�QwÞ
Ê�    taking +ve sgn. 

Solving in the way as in (I) above and using 
k

k

k zazP �
=

=
5

02

1
)( �� will give Daub6 filter coefficients as shown in 

Table1.  

 

Taking +ve sign in b will reverse the order of coefficients. 

 

III. Now let��  È and  

 ��������������a���  �6 > ��MY� > �� > +�� > �Ü . � . � . +��ÊZ, Ü  6¼6Ç8 
 

On convolving �6� È� Ç� È� 6� with ��� �� +� �Ü . � . � . +��, we obtain filter as ��� È� > �� Ç� > È� > +� Ü > Í� >
Ö� > Í+� ÈÜ . Í� > �+� ÇÜ . Ç� . Ö� . �+� ÈÜ . È� . È� . Í+�    �Ü . � . � . +. 

 

Applying three double shift orthogonality,           
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            6Ö��Ü . � . +� > Ý+�Ü . +� . à�� > à�+ > �ÝÜ�  #                                                                                       (8)      

 

            È��Ü . �� > �Ç��Ü . � . +� . ÍÈ�+ > Ç+�Ü . +� . àÈ�� > Ü�  #                                                                  (9)                                                                         

and   

            ��ÝÜ . Ý� . Û� . à+� > ��Ü . � . +�  #                                                                                                       (10) 

 

By solving (8), (9) and (10), we obtain 

 

���������������  #8Í�ÖÝ##Í#ÍÖÇ� �  .#8�Û��ÇÖ6ÛÈ�Í� +  #86#ÇÛÛàÖ�ÛÝÍ8  
Solving in the way as in (I) above and using  

k

k

k zazP �
=

=
7

02

1
)(  will give Daub6 filter coefficients as shown in 

Table1.  

 

Beyond �  È� the theory is hard to apply. 

 

Table of Filter Coefficients 

 

Table1: Filter coefficients for Daub �  È� Ç� Ý�  
 

� �����������  È ����������  Ç ��������  Ý 

0   0.4829629131445341   0.3326705529500825  0.2303778133088964 

1   0.8365163037378077   0.8068915093110924  0.7148465705529154 

2   0.2241438680420134   0.4598775021184914  0.6308807679298587 

3 -0.1294095225512603  -0.1350110200102546 -0.0279837694168599 

4   -0.0854412738820267 -0.1870348117190931 

5    0.0352262918857095  0.0308413818355607 

6    0.0328830116668852 

7   -0.0105974017850690 

 

Complete  data for  N=2,4,6,8,10,12,14,16,18,20, based on some other techniques, are available in Altaisky [1, p. 75] 

and Vidakovic [15]. 

 

Now we propose and prove the following Lemma:  

Lemma: 128  Let a��� be defined by (7). For � ` -� �a��� is convergent if la
p

i

i >�
−

=

2

0

   and ��� , ���� �  C½
C½áØ8 

Proof: Let  la
p

i

i >�
−

=

2

0

. Then 0
2

0

<−�
−

=

p

i

ial  so that  
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p

i

i

p zazzP �
−

=
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2
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)1()(  

                         = ��
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=
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−
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a��� will be convergent if � �<���
<&T ��w<�� �is convergent.  

 

D’Alembert Ratio Test implies that ��� , ����Ãµ¶º¶��  C½
C½áØ8 
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