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ABSTRACT 
In this paper a new class of open sets in topological spaces, namely semi generalized b-strongly b*-open (briefly, 
sgbsb*-open) set is introduced. We give some basic properties and various characterizations of sgbsb*-open sets. Also 
we introduce sgbsb*-neighbourhood in a topological spaces and investigate some basic properties. 
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1. INTRODUCTION 
 
In 1970, Levine[8] introduced the class of generalized closed sets. The notion of generalized closed sets has been 
extended and studied exclusively in recent years by many topologists. In 1996, Andrjivic [16] gave a new type of 
generalized closed sets in topological spaces called b-closed sets. A.Poongothai and R.Parimelazhagan [21] introduced 
sb*-closed sets and investigated some of their properties in 2012. Later in 2017, P.Selvan and M.J.Jeyanthi introduced 
generalized b-strongly b*-closed sets and investicated some of their properties.    
 
In this paper, we introduced a new class of open sets namely semi generalized b-strongly b*-open sets sets, using the 
generalized b-strongly b*-interior operator instead of the interior operator in the definition of semi-open sets. The 
notion of semi generalized b-strongly b*-closed set and its different characterizations are given in this paper.  
 
2. PRELIMINARIES 
 
Throughout this paper (X, 𝜏) represents a topological space on which no separation axiom is assumed unless otherwise 
mentioned. (X, 𝜏) will be replaced by X if there is no changes of confusion. For a subset A of a topological space X, 
cl(A) and int(A) denote the closure of A and the interior of A respectively. We recall the following definitions and 
results. 
 
Definition 2.1: Let (X, 𝜏) be a topological space. A subset A of the space X is said to be  

(i) semi-open [6] if A⊆ cl(int(A)) and semi-closed [3] if int(cl(A))⊆A. 
(ii) 𝛼-open [7] if A⊆ int(cl(int(A))) and 𝛼-closed if cl(int(cl(A)))⊆A. 
(iii) b-open [3] if A⊆int(cl(A))∪cl(int(A)) and b-closed if int(cl(A))∩cl(int(A)) ⊆A. 
(iv) regular open[8] if int(cl(A))=A and regular closed if cl(int(A))=A. 
(v) 𝜋-open [13] if A is the union of regular open sets and 𝜋-closed if A is the intersection of regular closed sets. 

 
Definition 2.2: Let (X, 𝜏) be a topological space and A⊆X. The b-closure (resp.pre-closure, semi-closure, 𝛼-closure) 
of A, denoted by bcl(A) (resp.pcl(A),scl(A), 𝛼cl(A)) and is defined by the intersection of all b-closed (resp. pre-closed, 
semi-closed, 𝛼-closed) sets containing A. 
 
Definition 2.3: Let (X, 𝜏) be a topological space and A⊆X. The b-interior (resp.pre- interior, semi- interior, 𝛼- 
interior) of A, denoted by bint(A) (resp.pint(A),sint(A), 𝛼int(A)) and is defined by the intersection of all b-open (resp. 
pre-open, semi-open, 𝛼-open) sets contained in A. 
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Definition 2.4: Let (X, 𝜏) be a topological space. A subset Aof X is said to be 

(i) strongly b*-closed [9](briefly sb*-closed) if cl(int(A)))⊆U whenever A⊆U and U is b-open in (X, 𝜏). 
(ii) Generalized b-strongly b*-closed [10](briefly gbsb*-closed) if bcl(A)⊆U, whenever A⊆U and U is sb*-open 

in (X,𝜏).  
The complements of the above mentioned closed sets are their respective open sets. 
 
Definition 2.5: [12] A subset N of a space X, is called a neighbourhood (simply, nbhd) of A⊆X if there exists an open 
set U such that A⊆U⊆N. 
 
Lemma 2.6: For any subset A of a topological space (X, 𝜏), 

(i) sint(A)=A∩cl(int(A)) 
(ii) pin(A)=A∩int(cl(A)) 
(iii) scl(A)=A∪int(cl(A)) 
(iv) pcl(A)=A∪cl(int(A)). 

 
Definition 2.7: [11] Let A be a subset of a topological space (X, τ). Then the union of all gbsb*-open sets contained in 
A is called the gbsb*-interior of A and it is denoted by gbsb*int(A). That is, gbsb*int(A)=∪{V:V⊆A and V∈gbsb*-
О(Χ)}. 
 
Definition 2.8: [11] Let A be a subset of a topological space (X, τ). Then the intersection of all gbsb*-closed sets in X 
containing A is called the gbsb*-closure of A and it is denoted by gbsb*cl(A). That is, gbsb*cl(A)=∩{F: A⊆F and 
F∈gbsb*-Ϲ(Χ)}. 
 
Remark 2.9: [11] For any subset A of a topological space (X, 𝜏), 

(i) X\gbsb*cl(A)=gbsb*int(X\A) 
(ii) X\gbsb*int(A)=gbsb*cl(X\A). 

 
Definition 2.10: [11] Let A be a subset of a topological space X. A point x∈X is said to be gbsb*-limit point of A if 
G∩(A\{x})≠ 𝜙, for every gbsb*-open set G containing x.  
 
Definition 2.11: [11] The set of all gbsb*-limit points of A is called the gbsb*-derived set of A and is denoted by 
Dgbsb*(A).  
 
Lemma 2.12: [11] For any subset A of a topological space (X, 𝜏), 

(i) gbsb*int(A)= A\Dgbsb*(X\A) 
(ii) gbsb*cl(A)= A∪Dgbsb*(A) 

 
3. Semi generalized b-strongly b*-open set   
 
Definition 3.1: A subset A of a topological space (X,𝜏) is said to be a semi-generalized b-strongly b*-open set(briefly, 
semi-gbsb*-open or sgbsb*-open) if A⊆cl(gbsb*int(A)).  
 
Theorem 3.2: Every open set is sgbsb*-open. 
 
Proof: Let A be an open subset of a topological space (X,𝜏). Then A=int(A)⊆cl(int(A)) ⊆cl(gbsb*int(A)) and hence A 
is sgbsb*-open. 
 
Remark 3.3: The converse of the above theorem is not true which is shown in the following example. 
 
Example 3.4: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {a,b}, {a,b,c}, X}. The set {b,c} is sgbsb*-open but not an open 
sets. 
 
Theorem 3.5: Every semi-open set is sgbsb*-open. 
 
Proof: Let A be a semi-open subset of a topological space (X, 𝜏). Then cl(gbsb*int(A))⊇cl(int(A))⊇A and hence A is 
sgbsb*-open. 
 
Remark 3.6: The converse of the above theorem is not true which is shown in the following example. 
 
Example 3.7: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {b}, {a,b}, {b,c}, {a,b,c}, {b,c,d}, X}. The set {b} is sgbsb*-open 
but not a semi-open set. 
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Theorem 3.8: Every 𝛼-open set is sgbsb*-open. 
 
Proof: Let A be a 𝛼-open subset of a topological space (X, 𝜏). Then A⊆int(cl(int(A))) ⊆cl(int(A)) ⊆ cl(gbsb*int(A)) 
and hence A is sgbsb*-open. 
 
Remark 3.9: The converse of the above theorem is not true which is shown in the following example. 
 
Example 3.10: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {a,b}, {a,b,c}, X}. The set {a,c} is sgbsb*-open set but not a 𝛼-
open set. 
 
Theorem 3.11: Every regular open set is sgbsb*-open.  
 
Proof: Let A be a regular open subset of a topological space (X, 𝜏). Since every regular open set is open and by 
Theorem 3.2, A is sgbsb*-open. 
 
Remark 3.12: The converse of the above theorem is not true which is shown in the following example. 
 
Example 3.13: Let X = {a, b, c, d} with 𝜏={𝜙,{a},{b},{a,b},{b,c},{a,b,c},{b,c,d}, X}. The set {a,b,c} is sgbsb*-open 
but not a regular-open set. 
 
Theorem 3.14: Every 𝜋-open set is sgbsb*-open.  
 
Proof: Let A be a 𝜋-open subset of a topological space (X, 𝜏). Since every 𝜋-open set is open and by Theorem 3.2, A is 
sgbsb*-open. 
 
Remark 3.15: The converse of the above theorem is not true which is shown in the following example. 
 
Example 3.16: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {a,b}, {a,b,c}, X}. The sets {a,c} and {a,d} are sgbsb*-open sets 
but not a 𝜋-open sets. 
 
Theorem 3.17: Every gbsb*-open set is sgbsb*-open. 
 
Proof: Let A be a gbsb*-open subset of a topological space (X, 𝜏). Then A⊆cl(A)=cl(gbsb*int(A)) and hence A is 
sgbsb*-open. 
 
Remark 3.18: The converse of the above theorem is not true which is shown in the following example. 
 
Example 3.19: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {b, c, d}, X}. The set {a, c, d} is 
sgbsb*-open but not a gbsb*-open set. 
 
Theorem 3.20: Every b-open set is sgbsb*-open. 
 
Proof: Let A be a b-open subset of a topological space (X, 𝜏). Then and hence A⊆cl(A)= cl(bint(A))⊆cl(gbsb*int(A)) 
is sgbsb*-open. 
 
Remark 3.21: The converse of the above theorem is not true which is shown in the following example. 
 
Example 3.22: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {b, c, d}, X}. The set {a, c, d} is 
sgbsb*-open but not a b-open set. 
 
Theorem 3.23: A subset A of X is sgbsb*-open if and only if there exists a gbsb*-open set U such that U⊆A⊆cl(U).  
 
Proof: Necessity. If A is sgbsb*-open, then A⊆cl(gbsb*int(A)). Take U=gbsb*int(A). Then U is an gbsb*-open set in 
X such that U⊆A⊆cl(U).  
 
Sufficiency. Assume that there is an gbsb*-open set U such that U⊆A⊆cl(U).  
Now U⊆A ⟹ U=gbsb*int(U)⊆gbsb*int(A) ⟹ A⊆cl(U)⊆cl(gbsb*int(A)). Therefore A is sgbsb*-open. 
 
Theorem 3.24: The union of two sgbsb*-open sets is also a sgbsb*-open set. 
 
Proof: Let A and B be two sgbsb*-open sets in a topological space (X, 𝜏). Then A⊆cl(gbsb*int(A)) and 
B⊆cl(gbsb*int(B)). Now, A∪B⊆ cl(gbsb*int(A))∪cl(gbsb*int(B)) ⊆cl(gbsb*int(A) ∪gbsb*int(B))⊆ 
cl(gbsb*int(A∪B)). Therefore, A∪B is sgbsb*-open. 
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Remark 3.25: Arbitrary union of sgbsb*-open sets of a topological space is also a sgbsb*-open set. 
 
Remark 3.26: The finite intersection of sgbsb*-open sets need not be a sgbsb*-open, which is shown in the following 
example. 
 
Example 3.27: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {b, c, d}, X}. The sets {b, c, d} and 
{a, c, d} are sgbsb*-open set but their intersection {c, d} is not a sgbsb*-open set. 
 
Theorem 3.28: If a topological space (X, 𝜏), let 𝜏𝑠𝑔𝑏𝑠𝑏∗={U∈sgbsb*-O(X, 𝜏)/ U∩A∈sgbsb*-O(X, 𝜏) for all A∈sgbsb*-
O(X, 𝜏)}. Then  𝜏𝑠𝑔𝑏𝑠𝑏∗  is a topology on X. 
 
Proof: Clearly 𝜙, X∈  𝜏𝑠𝑔𝑏𝑠𝑏∗. Let 𝑈𝛽 ∈  𝜏𝑠𝑔𝑏𝑠𝑏∗ and U=∪ 𝑈𝛽. Since each 𝑈𝛽 ∈  𝜏𝑠𝑔𝑏𝑠𝑏∗ , then by Remark 3.23, 
U∈sgbsb*-O(X, 𝜏). Let A∈sgbsb*-O(X, 𝜏). Then 𝑈𝛽 ∩A∈sgbsb*-O(X, 𝜏) for each β. Hence U∩A=(∪ 𝑈𝛽) ∩A=∪
(𝑈𝛽 ∩A) ∈sgbsb*-O(X, 𝜏). Therefore U∈  𝜏𝑠𝑔𝑏𝑠𝑏∗ . Let U1,U2∈  𝜏𝑠𝑔𝑏𝑠𝑏∗. Then U1,U2∈sgbsb*-O(X, 𝜏) and from 
definition of  𝜏𝑠𝑔𝑏𝑠𝑏∗, U1∩U2∈sgbsb*-O(X, 𝜏). If A∈sgbsb*-O(X, 𝜏), and from definition of 𝜏𝑠𝑔𝑏𝑠𝑏∗ , 
U1∩U2∩A ∈sgbsb*-O(X, 𝑡). Hence U1∩U2∈  𝜏𝑠𝑔𝑏𝑠𝑏∗. This shows that  𝜏𝑠𝑔𝑏𝑠𝑏∗  is closed under finite intersection. Hence  
𝜏𝑠𝑔𝑏𝑠𝑏∗ is a topology on X. 
 
Theorem 3.29: A subset A is sgbsb*-open iff cl(A)=cl(gbsb*int(A)).  
 
Proof: Necessity. Since A is sgbsb*-open, A⊆cl(gbsb*int(A)). Hence cl(A)⊆cl(gbsb*int(A)). Also we have, 
cl(gbsb*int(A))⊆cl(A). Hence cl(A)=cl(gbsb*int(A)). 
 
Sufficiency. Take U=gbsb*int(A). Then U is a gbsb*-open set in X such that U⊆A⊆cl(A)=cl(gbsb*int(A))=cl(U). 
Therefore by Theorem 3.23, A is sgbsb*-open. 
 
Theorem 3.30: Let A be sgbsb*-open and B⊆X such that A⊆B⊆cl(A). Then B is sgbsb*-open.  
 
Proof: Since A is sgbsb*-open, A⊆cl(gbsb*int(A)). Since gbsb*int(A)⊆gbsb*int(B), cl(gbsb*int(A))⊆cl(gbsb*int(B)). 
Therefore by the above theorem, B⊆cl(A)=cl(gbsb*int(A))⊆cl(gbsb*int(B)). Hence B is sgbsb*-open. 
 
Theorem 3.31: For a subset A of a topological space (X, τ) the following statements are equivalent:  

(i) A is sgbsb*-open.  
(ii) A⊆cl(gbsb*int(A)).  
(iii) cl(gbsb*int(A))=cl(A).  
(iv) cl(A\Dgbsb*(X\A))=cl(A).  

 
4. Semi-generalized b-strongly b*-closed set. 
 
Definition 4.1: A subset A of a space (X, τ) is called a semi-generalized b-strongly b*-closed set(briefly, semi-gbsb*-
closed or sgbsb*-closed) if X\A is sgbsb*-open. The set of all sgbsb*-open sets in (X, τ) is denoted by sgbsb*-O(X, τ).     
 
Theorem 4.2: For a topological space (X, τ), 

(i) Every closed set is sgbsb*-closed. 
(ii) Every semi-closed set is sgbsb*-closed. 
(iii) Every 𝛼-closed set is sgbsb*-closed. 
(iv) Every regular closed set is sgbsb*-closed. 
(v) Every 𝜋-closed set is sgbsb*-closed. 
(vi) Every gbsb*-closed set is sgbsb*-closed. 
(vii) Every b-closed set is sgbsb*-closed. 

 
Theorem 4.3: A subset A of a space (X, τ) is sgbsb*-closed if and only if there is a gbsb*-closed set F in (X, τ) such 
that int(F)⊆A⊆F.  
 
Proof: Necessity. Suppose A is sgbsb*-closed. Then X\A is sgbsb*-open. Then there exists a gbsb*-open set U in X 
such that U⊆X\A⊆cl(U) which implies X\U⊇A⊇X\cl(U). That implies, X\U⊇A⊇int(X\U) where X\U is gbsb*-closed 
in X.  
 
Sufficiency. Suppose there is a gbsb*-closed set F in (X, τ) such that int(F)⊆A⊆F which implies X\int(F)⊇X\A⊇ X\F. 
Since X\int(F)=cl(X\F), we have cl(X\F)⊇X\A⊇X\F where X\F is a gbsb*-open set. Hence X\A is sgbsb*-open. 
Therefore A is sgbsb*-closed.  
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Theorem 4.4: A⊆X is sgbsb*-closed if and only if int(gbsb*cl(A))⊆A.  
 
Proof: Necessity. Suppose A is sgbsb*-closed. Then X\A is sgbsb*-open. Therefore X\A⊆cl(gbsb*int(X\A)) and 
hence int(gbsb*cl(A))⊆A.   
 
Sufficiency. Assume that int(gbsb*cl(A))⊆A. Take F=gbsb*cl(A). Then F is a gbsb*-closed set in X such that 
int(F)⊆A⊆F and hence A is sgbsb*-closed. 
 
Theorem 4.5: If A is sgbsb*-closed in X and B⊆X is such that int(A)⊆B⊆A. Then B is sgbsb*-closed in X. 
 
Theorem 4.6: The intersection of two sgbsb*-closed sets is also sgbsb*-closed. 
 
Proof: Let A and B be two sgbsb*-closed sets in a topological space (X, 𝜏). Then int(gbsb*cl(A))⊆A and 
int(gbsb*cl(B))⊆B. Now, int(gbsb*cl(A∩B))⊆ int(gbsb*cl(A)∩gbsb*cl(B))= int(gbsb*cl(A))∩int(gbsb*cl(B))⊆A∩B. 
Therefore, A∩B is sgbsb*-closed. 
 
Remark 4.7: Arbitrary intersection of sgbsb*-closed sets of a topological space is also a sgbsb*-closed set. 
 
Remark 4.8: The union of sgbsb*-closed sets need not be a sgbsb*-closed set. 
 
Theorem 4.9: If A is sgbsb*-closed and U is sgbsb*-open in X, then A\U is sgbsb*-closed in X.  
 
Proof: Since A\U=A∩(X\U), A and X\U are sgbsb*-closed sets, by Theorem 4.6,  A\U is sgbsb*-closed in X. 
 
Theorem 4.10: A subset A is sgbsb*-closed iff int(A)=int(gbsb*cl(A)).  
 
Proof: Necessity. Since A is sgbsb*-closed, int(gbsb*cl(A))⊆A. Hence int(gbsb*cl(A))⊆int(A). Also we have, 
int(A))⊆int(gsb*cl(A)). Hence int(A)=int(gbsb*cl(A)). 
 
Sufficiency. Take U=gbsb*cl(A). Then U is a gbsb*-closed set in X such that int(U)⊆A⊆U. Therefore by Theorem 
4.3, A is sgbsb*-closed. 
 
Theorem 4.11: For a subset A of a topological space (X, τ) the following statements are equivalent:  

(i) A is sgbsb*-closed.  
(ii) int(gbsb*cl(A))⊆A.  
(iii) int(gbsb*cl(A))=int(A).  
(iv) cl(A∪Dgbsb*(A))=cl(A).  

 
Theorem 4.12: Let A be a sgbsb*-closed in X. Then  

(i) sint(A) is sgbsb*-closed. 
(ii) If A is regular open, then pint(A) and scl(A) are also sgbsb*-closed. 
(iii) If A is regular closed, then pcl(A) is also sgbsb*-closed. 

 
Proof: Let A be a sgbsb*-closed set of X. 

(i) Since cl(int(A)) is closed, then by Theorem 4.2, cl(int(A)) is sgbsb*-closed. By Lemma 2.6, sint(A) is 
sgbsb ∗-closed. 

(ii) Suppose A is regular open, then int(cl(A))=A. By Lemma 2.6, scl(A)=A. Since A is sgbsb*-closed, then scl(A) 
is sgbsb*-closed. Similarly pint(A) is sgbsb*-closed. 

(iii) Suppose A is regular closed, cl(int(A))=A. Then by Lemma 2.6, pcl(A)=A, and hence sgbsb*-closed.  
 
5. sgbsb*-neighbourhood 
 
Definition 5.1: Let X be a topological space and let x∈X. A subset N of X is said to be a sgbsb*-neighbourhood 
(shortly, sgbsb*-nbhd) of x if there exists a sgbsb*-open set U such that x∈U⊆N. 
 
Definition 5.2: A subset N of a space X, is called a sgbsb*-nbhd of A⊆X if there exists an sgbsb*-open set U such that 
A⊆U⊆N. 
 
Theorem 5.3: Every nbhd N of x∈X is a sgbsb*-nbhd of x. 
 
Proof: Let N be anbhd of point x∈ X. Then there exists an open set U such that x∈U⊆N. Since every open set is 
sgbsb*-open, U is a sgbsb*-open set such that x∈U⊆N. This implies, N is a sgbsb*-nbhd of x. 
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Remark 5.4: The converse of the above theorem need not be true which is shown in the following example. 
 
Example 5.5: Let X = {a, b, c, d} with topology 𝜏 = {𝜙, {a},{b}, {a,b}, {b,c}, {a,b,c}, {b,c,d}, X}. In this topological 
space (X, 𝜏), sgbsb*-O(X) = { 𝜙, {a}, {b}, {a,b},{a,d}, {b,c}, {a, b, c}, {a,b, d}, {a, c, d}, {b, c d}, X} The set {a,d} is 
the sgbsb*-nbhd of d, since {a,d} is sgbsb*-open set such that d∈{a,d}⊆ {a, d}. However, the set {b, d} is not a nbhd 
of the point d. 
 
Remark 5.6: Every sgbsb*-open set is a sgbsb*-nbhd of each of its points. 
 
Theorem 5.7: If F is a sgbsb*-closed subset of X and x∈X\F, then there exists a sgbsb*-nbhd N of x such that N∩F=𝜙. 
 
Proof: Let F be sgbsb*-closed subset of X and x∈ X\F. Then X\F is sgbsb*-open set of X. By Theorem 4.6, X\F 
contains a sgbsb*-nbhd of each of its points. Hence there exists a sgbsb*-nbhd N of x such that N⊆ X\F. Hence 
N∩F=𝜙. 
 
Definition 5.8: The collection of all sgbsb*-neighborhoods of x∈X is called the sgbsb*-neighborhood system of x and 
is denoted by sgbsb*-N(x). 
 
Theorem 5.9: Let (X, 𝑡) be a topological space and x ∈ X. Then 

(i) sgbsb*-N(x)≠ 𝜑 and x∈each member of sgbsb*-N(x) 
(ii) If N ∈ sgbsb*-N(x) and N ⊆ M, then M ∈ sgbsb*-N(x). 
(iii) Each member N ∈ sgbsb ∗-N(x) is a superset of a member G∈ sgbsb ∗-N(x) where G is a sgbsb*-open set. 

 
Proof: 

(i) Since X is sgbsb*-open set containing x, it is a sgbsb*-nbhd of every x∈X. Thus for each x∈X, there exists 
atleast one sgbsb*-nbhd, namely X. Therefore, sgbsb*-N(x)≠ 𝜑. Let N∈sgbsb*-N(x). Then N is a sgbsb*-
nbhd of x. Hence there exists a sgbsb*-open set G such that x∈G ⊆N, so x ∈ N. Therefore x∈every member N 
of sgbsb*-N(x). 

(ii) If N sgbsb*-N(x), then there is a sgbsb*-open set G such that x∈G⊆N. Since N⊆M, M is sgbsb*-nbhd of x. 
Hence M∈sgbsb*-N(x). 

(iii) Let N∈sgbsb*-N(x). Then there is a sgbsb*-open set G, such that x ∈ G⊆N. Since G is sgbsb*-open and x∈G, 
G is sgbsb*-nbhd of x. Therefore G∈sgbsb*-N(x) and also G⊆N. 
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