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ABSTRACT 
The Mathematical verification of inequalities for Harmonic mean 𝐻 < 𝐻′ < 𝐻𝑐  and Heron mean  𝐻𝑒 < 𝐻𝑒′ < 𝐻𝑒𝑐  for 
two positive arguments respectively in 𝑎, 𝑏 ∈ (1, 3/2], 𝑎′,  𝑏′ ∈ (3/2, 2] and 𝑎𝑐 ,  𝑏𝑐 ∈ (3,∞) are discussed. 
 
 
1. INTRODUCTION 
 
The Hand book of Means and their Inequalities, by Bullen [1], gave the tremendous work on Mathematical means and 
the corresponding inequalities involving huge number of means. The authors in [2, 3, 4] discussed about the relations 
between the well-known means and series. The generalization of the means is discussed in [5, 6, 18, 19]. Relevant to 
this paper the authors in [12-16] established the good number of inequalities, double inequalities, introduces new 
means, studied homogenous functions as application, inequalities are obtained. The set of arbitrary non negative real 
numbers y ∈ (0, �1/2]�  and 𝑦′ = (1 − y) ∈ [1/2, �1) � is represented as a function in the form given by [1]. 

𝑓(𝑦) = �
𝑦, for   0 < 𝑦 ≤

1
2

(1 − 𝑦), for  
1
2
≤ 𝑦 < 1

� 

 
In the discussion of the famous inequalities due to Ky Fan, the following are the standard notations in n variables. 

𝐴𝑛   = 𝐴𝑛   (𝑦1, 𝑦2, … … … 𝑦𝑛)       𝐴′𝑛   =  𝐴′𝑛   (1 − 𝑦1, 1 − 𝑦2, … … … 1 − 𝑦𝑛) 
𝐺𝑛   = 𝐺𝑛   (𝑦1 , 𝑦2 , … … …𝑦𝑛)        𝐺′𝑛   =  𝐺′𝑛   (1 − 𝑦1, 1 − 𝑦2, … … … 1 − 𝑦𝑛) 
𝐻𝑛   = 𝐻𝑛   (𝑦1, 𝑦2, … … … 𝑦𝑛)       𝐻′𝑛   = 𝐻′𝑛   (1 − 𝑦1, 1 − 𝑦2, … … … 1 − 𝑦𝑛) 

has been introduced and later on strengthened by several authors namely Rooin etal. , Sandoor et al. and  others [20-
28]. This work motivates us to develop two double inequalities in this paper. The following are the few definitions of 
means from the above survey papers. 
 
For given 𝑛 arbitrary non negative real numbers 𝑦1, 𝑦2, … … … 𝑦𝑛 ∈  (0, �1/2]� unweighted Arithmetic mean, Geometric 
mean and Harmonic means are represented respectively by 𝐴𝑛,   𝐺𝑛 and 𝐻𝑛 are given by 

 𝐴𝑛   =  1
𝑛
∑ 𝑦𝑖𝑛
𝑖=1                   𝐺𝑛   =  ∏ �𝑦𝑖𝑛𝑛

𝑖=1                𝐻𝑛   =  𝑛
∑ 1

𝑦𝑖
𝑛
𝑖=1
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Also, the Arithmetic, Geometric and Harmonic means of the set of elements1 − 𝑦1, 1 − 𝑦2, … … … 1 − 𝑦𝑛. Represented 
by   𝐴′𝑛,   𝐺′𝑛 and 𝐻′𝑛 are given by;       

𝐴′𝑛   =  1
𝑛
∑ 1 − 𝑦𝑖𝑛
𝑖=1        𝐺′𝑛   =  ∏ �1 − 𝑦𝑖

𝑛𝑛
𝑖=1                𝐻′𝑛   =  𝑛

∑ 1
1−𝑦𝑖

𝑛
𝑖=1

 

 
It is of main importance to consider an interval to define index and conjugate index sets. Such a consideration can be 
methodically deduced starting from the complete set of reals. Let 𝑅 be the set of index numbers which is nothing but 
the set of real numbers. Let 𝑎 ∈ 𝑅+, 𝑎 ≠ 1, the conjugate index of  𝑎 is denoted by 𝑎𝑐 and is defined in [1] as  𝑎𝑐 = 𝑎

𝑎−1
 

and 𝑏𝑐 = 𝑏
𝑏−1

 . It is clear that for 𝑎 = 1, 𝑏 = 1, 𝑎𝑐 , 𝑏𝑐 are not defined so we study for 𝑎, 𝑏 ∈ 𝑅+ − (1). Further for 
𝑎, 𝑏 ∈ (0, 1) , 𝑎𝑐 and 𝑏𝑐 are negative and the mean definition does not hold. Therefore, we shall consider               
𝑎, 𝑏 ∈ (1,∞). 
 
Recall some definitions and propositions which are essential to develop this paper. 
 
Definition 1.1: [1] For any 𝑎, 𝑏 ∈ (1,∞), then  𝑎𝑐 = 𝑎

𝑎−1
   and 𝑏𝑐 = 𝑏

𝑏−1
  are the conjugates of a and b. 

 
Definition 1.2: [1] For two real numbers  𝑎, 𝑏 ∈ (1,∞), then Harmonic mean and Heron means are respectively given 
by  𝐻 = 2𝑎𝑏

𝑎+𝑏
  and  𝐻𝑒 = 𝑎+√𝑎𝑏+𝑏

3
 . 

 
Definition 1.3: The set of arbitrary non negative real numbers  y ∈ (1, �3/2]�  and y′ = (3 − y) ∈ [3/2, 2) � is represented 
as a function in the form given by; 

𝑓(𝑦) = �
𝑦 1 < 𝑦 ≤

3
2

(3 − 𝑦)
3
2
≤ 𝑦 < 2

� 

 
Proposition 1.1: Let 𝑎𝑖 ∈ 𝑅+ − (0, 1] and 𝑎𝑖𝑐 = 𝑎𝑖

𝑎𝑖−1
 is conjugate of 𝑎𝑖, then    

(i) (𝑎𝑖𝑐)𝑐 = 𝑎𝑖 
(ii)  𝑎𝑖 + 𝑎𝑖𝑐 = 𝑎. 𝑎𝑖𝑐 
(iii) i𝑓  𝑎𝑖𝜖(1,∞) then 𝑎𝑖𝑐  𝜖 (1,∞) 

 
Proposition 1.2: Let 𝑎𝑖 ∈ (1, 2] and the conjugate of  𝑎𝑖𝑐 = a

𝑎𝑖−1
 ,  then  

(i) 𝑎𝑖 > 𝑎𝑖𝑐   if     𝑎𝑖 > 2 
(ii) 𝑎𝑖 < 𝑎𝑖𝑐    if   a< 𝑎𝑖 < 2 
(iii) 𝑎𝑖 = 𝑎𝑖𝑐 if 𝑎𝑖 = 2 

 
2. MAIN RESULTS 
 
In this section, the inequalities for Harmonic Mean and Heron Mean for the two arguments in  𝑎, 𝑏 ∈ (1,3/2]�,       
𝑎′, 𝑏′ ∈ (3/2, �2] � and 𝑎𝑐 , 𝑏𝑐 ∈  (3,∞) are established. 
 
Theorem 2.1: The Harmonic mean for the arguments in 𝑎, 𝑏 ∈ (1, �3/2]�, 𝑎′, 𝑏′ ∈ (3/2, �2]� and  𝑎𝑐 , 𝑏𝑐 ∈  (3,∞) are 
respectively denoted by 𝐻 ≤ 𝐻′ ≤ 𝐻𝑐  holds. 
 
Proof: Let the Harmonic mean for two arguments 

𝐻 = 2𝑎𝑏
𝑎+𝑏

  for 𝑎, 𝑏 ∈ (1,3/2�] 

𝐻′ = 2𝑎′𝑏′
𝑎′+𝑏′

  for 𝑎′, 𝑏′ ∈ (3/2, �2]�,   𝑎′ = 3 − 𝑎, 𝑏′ = 3 − 𝑏, then 

𝐻′ =
2(3 − 𝑎)(3 − 𝑏)

3 − a + 3 − 𝑏
 

and  
𝐻𝑐 = 2𝑎𝑐𝑏𝑐

𝑎𝑐+𝑏𝑐
   for  𝑎𝑐 , 𝑏𝑐 ∈  (3,∞),   𝑎 = 𝑎

a−1
,   b= 𝑏

b−1
 

𝐻𝑐 =
2 𝑎

a − 1
𝑏

b − 1
𝑎

a − 1 + 𝑏
b − 1

=
2𝑎𝑏

2𝑎𝑏 − 𝑎 − 𝑏
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Now consider 𝐻 −𝐻′ = 2𝑎𝑏

𝑎+𝑏
− 2(3−𝑎)(3−𝑏)

3−a+3−𝑏
 

𝐻 −𝐻′ = 2
(𝑎+𝑏)(6−𝑎−𝑏)

[𝑎𝑏(6 − 𝑎 − 𝑏) − (3 − 𝑎)(3 − 𝑏)(𝑎 + 𝑏)]                                                               (2.1) 
  

Let  𝛿 = 𝑎𝑏(6 − 𝑎 − 𝑏) − (3 − 𝑎)(3 − 𝑏)(𝑎 + 𝑏) which simplifies as follows 
𝛿 = 6𝑎𝑏 − 𝑎2𝑏 − 𝑎𝑏2 − 9𝑎 − 9𝑏 + 3𝑎𝑏 + 3𝑏2 + 3𝑎2 + 3𝑎𝑏 − 𝑎2𝑏 − 𝑎𝑏2 
 
𝛿 = 3𝑎2 + 3𝑏2 + 12𝑎𝑏 − 9𝑎 − 9𝑏 − 2𝑎2𝑏 − 2𝑎𝑏2 
 
𝛿 = 3(𝑎 + 𝑏)2 + 6𝑎𝑏 − 9(𝑎 + 𝑏) − 2𝑎𝑏(𝑎 + 𝑏) 
 
𝛿 = 12𝐴2 + 6𝐺2 − 18𝐴 − 4𝐴𝐺2 
 
𝛿 = 2(6𝐴2 + 3𝐺2 − 9𝐴 − 2𝐴𝐺2) , since = 𝑎+𝑏

2
 ,  𝐺 = √𝑎𝑏 , 𝐺2 = 𝐴𝐻 

 
𝛿 = 2(6𝐴2 + 3𝐴𝐻 − 9𝐴 − 2𝐴2𝐻) 
 
𝛿 = 2[2𝐴2(3 − 𝐻) + 3𝐴(𝐻 − 3)] 
 
𝛿 = 2(3 − 𝐻)𝐴(2𝐴2 − 3A) 
 
𝛿 = 2(3 − 𝐻)𝐴(2𝐴 − 3) 

 
Therefore, from eqn (2.1)  𝐻 − 𝐻′ = 4(3−𝐻)𝐴(2𝐴−3)

(𝑎+𝑏)(6−𝑎−𝑏)
   

 
Thus    𝐻 −𝐻′ = 4(3−𝐻)𝐴(2𝐴−3)

(𝑎+𝑏)(6−𝑎−𝑏)
 ≤ 0, since (2𝐴 − 3) ≤ 0. 

 
This proves that 𝐻 − 𝐻′ ≤ 0. 
 
 
Again consider 𝐻′ − 𝐻𝑐 =  2(3−𝑎)(3−𝑏)

3−a+3−𝑏
− 2𝑎𝑏

2𝑎𝑏−𝑎−𝑏
  on simplify leads to                  

𝐻′ − 𝐻𝑐 = 2 �(3−𝑎)(3−𝑏)(2𝑎𝑏−𝑎−𝑏)−𝑎𝑏(6−𝑎−𝑏)
(6−𝑎−𝑏)(2𝑎𝑏−𝑎−𝑏)

�                                                                                                 (2.2) 
 
Let 𝜏 = (3 − 𝑎)(3 − 𝑏)(2𝑎𝑏 − 𝑎 − 𝑏) − 𝑎𝑏(6 − 𝑎 − 𝑏)  which simplifies as follows; 

𝜏 = 18𝑎𝑏 − 9𝑎 − 9𝑏 − 6𝑎𝑏2 + 3𝑎𝑏 + 3𝑏2 − 6𝑎2𝑏 + 3𝑎2 + 3𝑎𝑏 + 
          2𝑎2𝑏2 − 𝑎2𝑏 − 𝑎𝑏2 −   6𝑎𝑏 + 𝑎2𝑏 + 𝑎𝑏2                        
 

𝜏 = 18𝑎𝑏 − 9(𝑎 + 𝑏) − 6𝑎𝑏(𝑎 + 𝑏) + 3(𝑎2 + 𝑏2) + 2𝑎2𝑏2 
 
𝜏 = 12𝑎𝑏 − 9(𝑎 + 𝑏) − 6𝑎𝑏(𝑎 + 𝑏) + 3(𝑎2 + 𝑏2 + 2𝑎𝑏) + 2𝑎2𝑏2 
 
𝜏 = 12𝐺2 − 18𝐴 − 6.𝐺2. 2𝐴 + 3(𝑎 + 𝑏)2 + 2𝐺4 
 
𝜏 = 2𝐴(6𝐻 − 9 − 6𝐴𝐻 + 6𝐴 + 𝐴𝐻2) 
 
𝜏 = 2𝐴[2𝐻(3 − 2𝐴) + 𝐴𝐻(𝐻 − 2) + 3(2𝐴 − 3)] 
 
𝜏 = 2𝐴[4𝐻(3/2 − 𝐴) + 𝐴𝐻(𝐻 − 2) + 6(𝐴 − 3/2)] 
 
𝜏 = 2𝐴[(3/2 − 𝐴)(4𝐻 − 6) + 𝐴𝐻(𝐻 − 2)],    since (2𝐻 − 3) ≤ 0   and (𝐻 − 2) ≤ 0 
 
𝜏 = 2𝐴[(3/2 − 𝐴)(4𝐻 − 6) + 𝐴𝐻(𝐻 − 2)] < 0. 

 
Therefore from eqn (2.2)  𝐻′ − 𝐻𝑐 = 2 �(3−𝑎)(3−𝑏)(2𝑎𝑏−𝑎−𝑏)−𝑎𝑏(6−𝑎−𝑏)

(6−𝑎−𝑏)(2𝑎𝑏−𝑎−𝑏)
� ≤ 0 

 
This proves that  𝐻′ − 𝐻𝑐 ≤ 0 
 
Hence the proof of the inequality 𝐻 ≤ 𝐻′ ≤ 𝐻𝑐  of theorem 2.1 completes. 
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Theorem 2.2: The Heron mean for the arguments in a, 𝑏 ∈ (1, �3/2] �,  𝑎′, 𝑏′ ∈ (3/2, �2] � and 𝑎𝑐 , 𝑏𝑐 ∈  (3,∞) are 
respectively denoted by 𝐻𝑒 ,𝐻′𝑒 , 𝐻𝑒𝑐, then the  inequality, then    𝐻𝑒 ≤  𝐻′𝑒 ≤   𝐻𝑒𝑐   holds. 
 
Proof: Let the Heron mean for two arguments            

𝐻𝑒 = 𝑎+√𝑎𝑏+𝑏
3

   for 𝑎, 𝑏 ∈ �1, �3
2
�� 

 

𝐻′𝑒 = 𝑎′+�𝑎′𝑏′+𝑏′
3

    for  𝑎′, 𝑏′ ∈ �3
2

, �2]� ,   𝑎′ = 3 − 𝑎,   𝑏′ = 3 − 𝑏 
and 

𝐻𝑒𝑐 = 𝑎𝑐+√𝑎𝑐𝑏𝑐+𝑏𝑐

3
    for 𝑎𝑐 , 𝑏𝑐 ∈  (3,∞),   𝑎𝑐 = 𝑎

𝑎−1
 ,  𝑏𝑐 = 𝑏

𝑏−1
 

             

Now consider 𝐻𝑒 − 𝐻′
𝑒 = 𝑎+√𝑎𝑏+𝑏

3
−  𝑎

′+�𝑎′𝑏′+𝑏′

3
  

=
𝑎 + √𝑎𝑏 + 𝑏

3
−

(3 − 𝑎) + �(3 − 𝑎)(3 − 𝑏) + 3 − 𝑏
3

 
 

=
𝑎 + √𝑎𝑏 + 𝑏

3
−

(6 − 𝑎 − 𝑏) + �(3 − 𝑎)(3 − 𝑏)
3

 
 

=
1
3
�𝑎 + √𝑎𝑏 + 𝑏 − 6 + 𝑎 + 𝑏 − √9 − 3𝑏 − 3𝑎 + 𝑎𝑏    � 

 
= 1

3
�4𝐴 + 𝐺 − 6 − √9 − 6𝐴 + 𝐺2 �                                                                                      (2.3) 

 
Let    4𝐴 + 𝐺 − 6 < √9 − 6𝐴 + 𝐺2     squaring on both sides gives 
 
(4𝐴 + 𝐺 − 6)2 <  9 − 6𝐴 + 𝐺2       which is equivalent to 
 
16𝐴2 + 𝐺2 + 8𝐴𝐺 + 36 − 48𝐴 − 12𝐺 < 9 − 6𝐴 + 𝐺2 on simplifying further gives 
 
16𝐴2 − 48𝐴 + 27 + 4𝐺(2𝐴 − 3) + 6𝐴 < 0 or 
 
16𝐴2 − 42𝐴 + 27 + 4𝐺(2𝐴 − 3) < 0 
 
Since  16𝐴2 − 42𝐴 + 27 = (𝐴 − 3/2)(𝐴 − 9/8) < 0,   2𝐴 − 3 < 0 
               
Therefore from eqn (2.3)    𝐻𝑒 − 𝐻′

𝑒 = 1
3
�4𝐴 + 𝐺 − 6 − √9 − 6𝐴 + 𝐺2 �  < 0 

 
Thus   𝐻𝑒 − 𝐻′

𝑒 < 0 
 

Again consider   𝐻′
𝑒 − 𝐻𝑒𝑐 = 𝑎′+�𝑎′𝑏′+𝑏′

3
  −  𝑎

𝑐+√𝑎𝑐𝑏𝑐+𝑏𝑐

3
 

                                            = 1
3
�  6 − 𝑎 − 𝑏 + �(3 − 𝑎)(3 − 𝑏)  − 𝑎

𝑎−1
−  � 𝑎𝑏

(𝑎−1)(𝑏−1)
 − 𝑏

𝑏−1
�                                  (2.4) 

 
Let us assume  6 − 𝑎 − 𝑏 − 𝑎

𝑎−1
− 𝑏

𝑏−1
< 0  implies 

6 − 𝑎 − 𝑏 <
𝑎

𝑎 − 1
+

𝑏
𝑏 − 1

 
 
(6 − 𝑎 − 𝑏)(𝑎 − 1)(𝑏 − 1) < 𝑎(𝑏 − 1) + 𝑏(𝑎 − 1) 
 
6𝑎𝑏 − 6𝑎 − 6𝑏 + 6 + 𝑎2 + 𝑏2 − 𝑎2𝑏 − 𝑎𝑏2 < 0 
 
6𝑎(𝑏 − 1) + 6(1 − 𝑏) + 𝑎2(1 − 𝑏) + 𝑏2(1 − 𝑎) < 0 
 
𝑏2(1 − 𝑎) + (𝑏 − 1)[6𝑎 − 6 − 𝑎2] < 0, 
 
𝑏2(1 − 𝑎) + (1 − 𝑏)[𝑎2 − 6𝑎 + 6] < 0 since 1 − 𝑎 < 0,   1 − b < 0, [𝑎2 − 6𝑎 + 6] > 0 
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Hence the assumption 6 − 𝑎 − 𝑏 − 𝑎

𝑎−1
− 𝑏

𝑏−1
< 0.  is true 

 

Similarly consider  �(3 − 𝑎)(3 − 𝑏)  −  � 𝑎𝑏
(𝑎−1)(𝑏−1)

< 0 

 
Squaring on both the sides gives (3 − 𝑎)(3 − 𝑏) <  𝑎𝑏

(𝑎−1)(𝑏−1)
 

 
(3 − 𝑎)(3 − 𝑏)(𝑎 − 1)(𝑏 − 1) < 𝑎𝑏 
 
15𝑎𝑏 − 12(𝑎 + 𝑏) + 9 − 4𝑎2𝑏 − 4𝑎𝑏2 + 3(𝑎2 + 𝑏2) + 𝑎2𝑏2 < 0 
 
9𝑎𝑏 − 12(𝑎 + 𝑏) + 9 − 4𝑎𝑏(𝑎 + 𝑏) + 3(𝑎 + 𝑏)2 + 𝑎2𝑏2 < 0 
 
9𝐺2 − 24𝐴 + 9 − 8𝐺2𝐴 + 12𝐴2 + 𝐺4 < 0 
 
9𝐴𝐻 − 24𝐴 + 9 − 8𝐴2𝐻 + 4𝐴2 + 𝐴2𝐻2 < 0 
 
9𝐴𝐻 − 12A − 12A + 9 − 4𝐴2𝐻 − 4𝐴2𝐻 + 4𝐴2 + 𝐴2𝐻2 < 0 
 
3A(3H − 4) + 3(3 − 4A) + 𝐴2𝐻(𝐻 − 4) + 4𝐴2(1 − H) < 0 

         
Since     (3𝐻 − 4) < 0, (3 − 4A) < 0,   (H − 4) < 0,   (1 − H) < 0 
           

Hence our assumption     �(3 − 𝑎)(3 − 𝑏)  −  � 𝑎𝑏
(𝑎−1)(𝑏−1)

< 0 is true  

 
Thus eqn (2.4)  𝐻′𝑒 − 𝐻𝑒𝑐 < 0 
 
Hence the proof of the inequality 𝐻𝑒 ≤ 𝐻′𝑒 ≤   𝐻𝑒𝑐   of theorem 2.2 completes. 
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