FIXED POINTS FOR NON-SELF MAPPINGS ON CONVEX VECTOR METRIC SPACES

Sushanta Kumar Mohanta*
Department of Mathematics, West Bengal State University, Barasat, 24 Parganas(North), Kolkata 700126, West Bengal, India
E-mail: smwbes@yahoo.in

(Received on: 13-09-11; Accepted on: 05-10-11)
ABSTRACT
We introduce the concept of convex structure on a vector metric space and obtain some fixed point theorems for a class of non-self mappings satisfying certain contractive conditions in the setting of convex vector metric spaces.

Keywords and phrases: Convex vector metric space, non-self mapping, fixed point.
2000 Mathematics Subject Classification: 54H25, 54C60.

1. INTRODUCTION:

Deterministic fixed point theorems are generally proved for self mappings only. In1970, W. Takahashi [5] had introduced the concept of convexity in a metric space and obtained some important fixed point theorems previously proved for Banach spaces. Afterwards, Gajić [2] obtained an important fixed point theorem for a class of non-self mappings in Takahashi convex metric spaces. In this paper, our attempt is to introduce the notion of convex structure on a vector metric space with relevant definitions with their properties. Finally, we prove some fixed point theorems for a class of non-self mappings over a subset of a convex vector metric space.

Let S be the vector space of all real sequences $\alpha=\left\{a_{n}\right\}$ and θ stands for the zero vector $\{0\}$. We can define a partial ordering \leq on S by $\alpha \leq \beta$ (equivalently, $\beta \geq \alpha$) if and only if $a_{n} \leq b_{n}$ for all n, where $\alpha=\left\{a_{n}\right\}, \beta=\left\{b_{n}\right\} \in S$. We write $\alpha<\beta$ (equivalently, $\beta>\alpha$) if and only if $a_{n}<b_{n}$ for all n. An element $\alpha \in S$ is called non-negative if $\alpha \geq \theta$. An element $\alpha=\left\{a_{n}\right\} \in S$ is called positive if $a_{n}>0$ for all n. Also for any $\alpha=\left\{a_{n}\right\} \in S$ and any real number t we define $t \alpha=\left\{t a_{n}\right\}$. If $\alpha=\left\{a_{n}\right\}, \beta=\left\{b_{n}\right\} \in S$ then $\alpha+\beta=\left\{a_{n}+b_{n}\right\}$ and $\alpha=\beta$ if $a_{n}=b_{n}$ for all n.

For $\alpha^{i}=\left\{a_{n}^{i}\right\}_{n} \in S ; i=1,2, \cdots, k$, we define $\max \left\{\alpha^{i}: i=1,2, \cdots, k\right\}=\left\{\max _{1 \leq i \leq k}\left(a_{1}^{i}\right), \max _{1 \leq i \leq k}\left(a_{2}^{i}\right), \cdots, \max _{1 \leq i \leq k}\left(a_{n}^{i}\right), \cdots\right\}$. Clearly, $\max \left\{\alpha^{i}: i=1,2, \cdots, k\right\} \in S$.

2. DEFINITIONS AND BASIC FACTS:

In this section, we recall some basic definitions and important results for vector metric spaces that will be needed in the sequel.

Definition: 2.1 [4] Let X be a non empty set. Then a function $V: X \times X \rightarrow S$ is called a vector metric on X if the following conditions are satisfied:
(i) $V(x, y) \geq \theta$ for all $x, y \in X$ and $V(x, y)=\theta$ if and only if $x=y$,
(ii) $V(x, y)=V(y, x)$ for all $x, y \in X$,
(iii) $V(x, y) \leq V(x, z)+V(z, y)$ for all $x, y, z \in X$.

The pair (X, V) is called a vector metric space. We may verify that $V(x, y)$ is a continuous function of its arguments.

Theorem: 2.2[4] If $V(x, y)=\left\{d_{n}(x, y)\right\}$ be a vector metric then each $d_{n}(x, y)$ is a quasi metric function; conversely if each $d_{n}(x, y)$ is a quasi metric and the relations $d_{n}(x, y)=0$ for all n imply $x=y$, then $V(x, y)=\left\{d_{n}(x, y)\right\}$ is a vector metric.

Remark: 2.3 If (X, d) is a metric space and if $V(x, y)=\{d(x, y), d(x, y), \cdots\}$, then (X, V) is a vector metric space. So any metric space is a vector metric space and for the converse we can say from Theorem 2.2 that a vector metric space is a quasi metric space.

Example: 2.4 Let $X=R^{n}$. If we define V on $X \times X$ by

$$
V(x, y)=\left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|, \cdots,\left|x_{n}-y_{n}\right|, 0, \cdots\right\}
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), y=\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in X$, then (X, V) is a vector metric space.
Example: 2.5[3] Let $X=[0,1]$. If we define V on $X \times X$ by

$$
V(x, y)=\left\{|x-y|, 0, \frac{|x-y|}{1+|x-y|}, 0,2|x-y|, 0, \frac{2|x-y|}{1+2|x-y|}, 0, \cdots\right\} \text {, then }(X, V) \text { is a vector metric }
$$ space.

Definition: 2.6[4] Let (X, V) be a vector metric space. A sequence $\left\{x_{k}\right\}$ in X is said to converge to an element $x \in X$ i.e. $\lim _{k} x_{k}=x$ if $V\left(x_{k}, x\right) \rightarrow \theta$ as $k \rightarrow \infty$ which is interpreted as $d_{n}\left(x_{k}, x\right) \rightarrow 0$ as $k \rightarrow \infty$ for all n where $V\left(x_{k}, x\right)=\left\{d_{n}\left(x_{k}, x\right)\right\}$.

Definition: 2.7[3] A sequence $\left\{x_{k}\right\}$ in (X, V) is said to be a vector Cauchy sequence if $V\left(x_{k}, x_{k+p}\right) \rightarrow \theta$ as $k \rightarrow \infty$ for each p, i.e. $d_{n}\left(x_{k}, x_{k+p}\right) \rightarrow 0$ as $k \rightarrow \infty$ for each p and for each n.

In other words, a sequence $\left\{x_{k}\right\}$ in (X, V) is said to be a vector Cauchy sequence if $V\left(x_{k}, x_{j}\right) \rightarrow \theta$ as $k, j \rightarrow \infty$, i.e. $d_{n}\left(x_{k}, x_{j}\right) \rightarrow 0$ as $k, j \rightarrow \infty$ and for each n.

Definition: 2.8[3] A vector metric space (X, V) is said to be complete if every vector Cauchy sequence in X converges to an element in X. Otherwise X is called incomplete.

It is to be noted that every complete metric space may be considered as a complete vector metric space.
Definition: 2.9 Let (X, V) be a vector metric space and $A \subset X$. Then A is called closed if and only if every sequence $\left\{x_{n}\right\}$ in A with $\lim _{n \rightarrow \infty} x_{n}=x$ implies that $x \in A$.

It is easy to verify that every closed subset of a complete vector metric space is complete.
Definition: 2.10 Let (X, V) be a vector metric space, $x_{0} \in X$ and r be a positive member of S. Then the set denoted by $B\left(x_{0}, r\right)=\left\{x \in X: V\left(x_{0}, x\right)<r\right\}$ is called an open ball centered at x_{0} and radius r in X.

Definition 2.11 Let (X, V) be a vector metric space and $A \subset X$. A point $x \in X$ is called a boundary point of A if every open ball centered at x intersects both A and $X-A$. The set of all boundary points of A, denoted by ∂A, is called the boundary of A.

Definition: 2.12 A subset A of a vector metric space (X, V) is called bounded if there exists a positive member K in S such that $V(x, y) \leq K$ for all $x, y \in A$.

Definition: 2.13 Diameter of a bounded set A in a vector metric space (X, V), denoted by $\operatorname{Diam}(A)$ or $\delta(A)$, is defined as

$$
\operatorname{Diam}(A)=\sup _{x, y \in A} V(x, y)=\left\{\sup _{x, y \in A} a_{1}(x, y), \sup _{x, y \in A} a_{2}(x, y), \cdots, \sup _{x, y \in A} a_{n}(x, y), \cdots\right\}
$$

where $V(x, y)=\left\{a_{i}(x, y)\right\}$ and for each $i, \sup _{x, y \in A} a_{i}(x, y)<+\infty$ as A is bounded.

In this case we write $\delta(A)<+\infty$.

3. MAIN RESULTS:

Let (X, V) be a vector metric space, and I denote the closed unit interval $[0,1]$ of reals.

Definition: 3.1 A mapping $W: X \times X \times I \rightarrow X$ is said to be a convex structure on X if for all $x, y, u \in X, \lambda \in I$;

$$
V(u, W(x, y, \lambda)) \leq \lambda V(u, x)+(1-\lambda) V(u, y)
$$

Then X together with a convex structure W is called a convex vector metric space.

Remark: 3.2 It is observed that $W(x, y, 1)=x$ and $W(x, y, 0)=y$.
Remark: 3.3 Any convex subset of a normed linear space is a convex vector metric space with convex structure $W(x, y, \lambda)=\lambda x+(1-\lambda) y$.

Definition: 3.4 Let (X, V) be a convex vector metric space with a convex structure W. For $x, y \in X$, we define $\operatorname{Seg}[x, y]=\{W(x, y, \lambda): \lambda \in[0,1]\}$.

Clearly $x, y \in \operatorname{Seg}[x, y]$, since $\quad x=W(x, y, 1), y=W(x, y, 0)$.

Proposition: 3.5 If (X, V) is a convex vector metric space with convex structure W, then for every $x, y \in X$ and every $\lambda \in[0,1]$,

$$
V(x, y)=V(x, W(x, y, \lambda))+V(W(x, y, \lambda), y)
$$

Proof: For every $x, y \in X$ and every $\lambda \in[0,1]$, we have

$$
\begin{aligned}
V(x, y) & \leq V(x, W(x, y, \lambda))+V(W(x, y, \lambda), y) \\
& \leq \lambda V(x, x)+(1-\lambda) V(x, y)+\lambda V(y, x)+(1-\lambda) V(y, y) \\
& =V(x, y)
\end{aligned}
$$

This implies that $V(x, y)=V(x, W(x, y, \lambda))+V(W(x, y, \lambda), y)$.
Proposition: 3.6 Let K be a non-empty closed subset of the convex vector metric space (X, V) with convex structure W continuous on third variable. Let $x \in K$ and $y \notin K$. Then there exists a $\lambda^{*} \in[0,1]$ such that

$$
W\left(x, y, \lambda^{*}\right) \in \operatorname{Seg}[x, y] \cap \partial K
$$

where ∂K is the boundary of K.

Proof: Let us consider the set $A=\{q: q \geq 0, W(x, y, \eta) \in K$ for all $q \leq \eta \leq 1\}$. Then A is non-empty, since $W(x, y, 1)=x \in K$. We put $\lambda=\inf _{q \in A} q$ and let $\left\{q_{n}\right\}_{n \in N} \subset A$ be a sequence satisfying $\lim _{n \rightarrow \infty} q_{n}=\lambda$. Then, for $n \in N, W\left(x, y, q_{n}\right) \in K$. By using the continuity of W on the third variable and since K is closed, we have

$$
W(x, y, \lambda)=\lim _{n \rightarrow \infty} W\left(x, y, q_{n}\right) \in K
$$

Clearly $\lambda>0$ since $W(x, y, 0)=y \notin K$.

Now we prove that $W(x, y, \lambda) \in \partial K$. For any positive member $\varepsilon \in S, B(W(x, y, \lambda), \varepsilon) \cap K \neq \Phi$. So we have to show that for any positive member $\varepsilon \in S, B(W(x, y, \lambda), \varepsilon) \cap(X-K) \neq \Phi$.

Since $\lambda>0$, we can find $\lambda_{1} \in(0,1)$ such that $\lambda_{1}<\lambda$ and by definition of $\lambda, W\left(x, y, \lambda_{1}\right) \notin K$.
Using continuity of W on third variable, we obtain

$$
V\left(W\left(x, y, \lambda_{1}\right), W(x, y, \lambda)\right)<\varepsilon .
$$

Thus $W\left(x, y, \lambda_{1}\right) \in B(W(x, y, \lambda), \varepsilon) \cap(X-K)$.
This completes the proof.
Theorem: 3.7 Let (X, V) be a complete convex vector metric space with convex structure W which is continuous on third variable, C be a non-empty closed subset of X and $T: C \rightarrow X$ be a non-self mapping satisfying the contractive type condition

$$
V(T(x), T(y)) \leq q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\}
$$

for all $x, y \in C$ and $0<q<1$. If T has the additional property $T(\partial C) \subset C$ where ∂C is the boundary of C, then T has a unique fixed point in C.

Proof: For $x \in \partial C$, we put $x_{0}=x$. Then $T(\partial C) \subset C$ implies that $T\left(x_{0}\right) \in C$. Let us put $x_{1}=T\left(x_{0}\right)$. We define $y_{2}=T\left(x_{1}\right)$. If $y_{2} \in C$, let us take $x_{2}=y_{2}$. If $y_{2} \notin C$, then by Proposition 3.6, there exists $x_{2} \in \partial C \cap \operatorname{Seg}\left[x_{1}, y_{2}\right]$.

Continuing in this way we can obtain a sequence $\left\{x_{n}\right\}$ such that

$$
\begin{aligned}
& x_{n}=T\left(x_{n-1}\right), \text { if } T\left(x_{n-1}\right) \in C \\
& x_{n} \in \partial C \cap \operatorname{Seg}\left[x_{n-1}, y_{n}\right], \text { if } y_{n}=T\left(x_{n-1}\right) \notin C .
\end{aligned}
$$

We show that the sequences $\left\{x_{n}\right\}$ and $\left\{T\left(x_{n}\right)\right\}$ are bounded.
For $n \in N$, we define

$$
A_{n}=\left\{x_{i}\right\}_{i=0}^{n-1} \cup\left\{T\left(x_{i}\right)\right\}_{i=0}^{n-1} \text { and } \quad \alpha_{n}=\operatorname{diam} A_{n}
$$

We shall show that $\alpha_{n}=\max \left\{V\left(x_{0}, T\left(x_{i}\right)\right): 0 \leq i \leq n-1\right\}$.
We now discuss the following possible cases.
Case I: Suppose $\alpha_{n}=\max \left\{V\left(x_{i}, T\left(x_{j}\right)\right): 0 \leq i, j \leq n-1\right\}$. The case $i=0$ is trivial. So we suppose that $i \geq 1$.
(1) If $x_{i}=T\left(x_{i-1}\right) \in C$, then

$$
V\left(T\left(x_{i-1}\right), T\left(x_{j}\right)\right) \leq q \max \left\{\begin{array}{l}
V\left(x_{i-1}, x_{j}\right), V\left(x_{i-1}, T\left(x_{i-1}\right)\right), V\left(x_{j}, T\left(x_{j}\right)\right) \\
V\left(x_{i-1}, T\left(x_{j}\right)\right), V\left(x_{j}, T\left(x_{i-1}\right)\right)
\end{array}\right\}
$$

$\leq q \alpha_{n}$
So, $\alpha_{n}=\max \left\{V\left(x_{i}, T\left(x_{j}\right)\right): 0 \leq i, j \leq n-1\right.$ and $\left.i \geq 1\right\} \leq q \alpha_{n}<\alpha_{n}, \quad$ a contradiction.
(2) If $x_{i} \neq T\left(x_{i-1}\right)$ i.e., $T\left(x_{i-1}\right) \notin C$, then

$$
x_{i} \in \partial C \cap \operatorname{Seg}\left[x_{i-1}, T\left(x_{i-1}\right)\right] .
$$

So $x_{i}=W\left(x_{i-1}, T\left(x_{i-1}\right), \lambda\right)$ for some $\lambda \in[0,1]$ and $x_{i-1}=T\left(x_{i-2}\right)$.
Now

$$
\begin{aligned}
V\left(x_{i}, T\left(x_{j}\right)\right) & =V\left(W\left(x_{i-1}, T\left(x_{i-1}\right), \lambda\right), T\left(x_{j}\right)\right) \\
& \leq \lambda V\left(x_{i-1}, T\left(x_{j}\right)\right)+(1-\lambda) V\left(T\left(x_{i-1}\right), T\left(x_{j}\right)\right) \\
& \leq \lambda V\left(T\left(x_{i-2}\right), T\left(x_{j}\right)\right)+(1-\lambda) V\left(T\left(x_{i-1}\right), T\left(x_{j}\right)\right) \\
& \leq \lambda q \alpha_{n}+(1-\lambda) q \alpha_{n} \\
& =q \alpha_{n} .
\end{aligned}
$$

So, $\alpha_{n}=\max \left\{V\left(x_{i}, T\left(x_{j}\right)\right): 0 \leq i, j \leq n-1\right.$ and $\left.i \geq 1\right\} \leq q \alpha_{n}<\alpha_{n}$, a contradiction.
Case II: Suppose $\alpha_{n}=\max \left\{V\left(x_{i}, x_{j}\right): 0 \leq i, j \leq n-1\right\}$.
If $x_{j}=T\left(x_{j-1}\right)$, we have Case I again.
If $x_{j} \neq T\left(x_{j-1}\right)$, then $x_{j} \in \partial C \cap \operatorname{Seg}\left[x_{j-1}, T\left(x_{j-1}\right)\right], j \geq 2$ and $x_{j-1}=T\left(x_{j-2}\right)$, so this is similar to Case $\mathrm{I}(2)$.
By an argument similar to that used above, the case

$$
\alpha_{n}=\max \left\{V\left(T\left(x_{i}\right), T\left(x_{j}\right)\right): 0 \leq i, j \leq n-1\right\}
$$

is also impossible. Thus, it must be the case that

$$
\alpha_{n}=\max \left\{V\left(x_{0}, T\left(x_{i}\right)\right): 0 \leq i \leq n-1\right\} .
$$

If $\alpha_{n}=\theta$, then x_{0} is the fixed point of T, so we can suppose that $\alpha_{n} \neq \theta$ for any $n \in N$.
Further, for $0 \leq i \leq n-1$,

$$
\begin{aligned}
V\left(x_{0}, T\left(x_{i}\right)\right) & \leq V\left(x_{0}, T\left(x_{0}\right)\right)+V\left(T\left(x_{0}\right), T\left(x_{i}\right)\right) \\
& \leq V\left(x_{0}, T\left(x_{0}\right)\right)+q \alpha_{n} .
\end{aligned}
$$

So, $\alpha_{n}=\max \left\{V\left(x_{0}, T\left(x_{i}\right)\right): 0 \leq i \leq n-1\right\} \leq V\left(x_{0}, T\left(x_{0}\right)\right)+q \alpha_{n}$

$$
\begin{equation*}
\text { i.e., } \quad \alpha_{n} \leq \frac{1}{1-q} V\left(x_{0}, T\left(x_{0}\right)\right) \tag{3.1}
\end{equation*}
$$

If $\alpha_{n}=\left\{\alpha_{n}^{k}\right\}_{k}$ and $V\left(x_{0}, T\left(x_{0}\right)\right)=\left\{d_{k}\left(x_{0}, T\left(x_{0}\right)\right)\right\}_{k}$, then it follows from (3.1) that

$$
\alpha_{n}^{k} \leq \frac{1}{1-q} d_{k}\left(x_{0}, T\left(x_{0}\right)\right) \text { for all } k
$$

For fixed $k,\left\{\alpha_{n}^{k}\right\}_{n}$ is non-decreasing, so there exists $c_{k} \in R$ such that

$$
c_{k}=\lim _{n} \alpha_{n}^{k} \text { and } c_{k} \leq \frac{1}{1-q} d_{k}\left(x_{0}, T\left(x_{0}\right)\right)
$$

So there exists $c=\left(c_{1}, c_{2}, \cdots, c_{k}, \cdots\right) \in S$ such that

$$
c \leq \frac{1}{1-q} V\left(x_{0}, T\left(x_{0}\right)\right)
$$

We define
$B_{n}=\left\{x_{i}\right\}_{i \geq n} \cup\left\{T\left(x_{i}\right)\right\}_{i \geq n}$, and $\beta_{n}=\operatorname{diam} B_{n}$ for integer $n \geq 2$. Then by the same technique as given above, one can show that $\beta_{n}=\sup \left\{V\left(x_{n}, T\left(x_{j}\right)\right): j \geq n\right\}$ and that if $\beta_{n}=\left\{\beta_{n}^{k}\right\}_{k}$, then for fixed $k,\left\{\beta_{n}^{k}\right\}_{n}$ is non-increasing and bounded. So there exists a limit and it must be zero(see [2]). Therefore, $\lim _{n} \beta_{n}=\theta$. So $\left\{x_{n}\right\}$ and $\left\{T\left(x_{n}\right)\right\}$ are vector Cauchy sequences. Since (X, V) is a complete vector metric space and C is closed, there exists $z \in C$ such that $z=\lim _{n \rightarrow \infty} x_{n}$.

Again, $V\left(x_{n}, T\left(x_{n}\right)\right) \leq \beta_{n}, \beta_{n} \rightarrow \theta, n \rightarrow \infty$ implies that

$$
V\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow \theta \text { as } n \rightarrow \infty .
$$

Now

$$
V\left(T\left(x_{n}\right), z\right) \leq V\left(T\left(x_{n}\right), x_{n}\right)+V\left(x_{n}, z\right) \rightarrow \theta \text { as } n \rightarrow \infty
$$

gives that $\lim _{n \rightarrow \infty} T\left(x_{n}\right)=z$.
Assume that $z \neq T(z)$. Then

$$
V\left(T\left(x_{n}\right), T(z)\right) \leq q \max \left\{V\left(x_{n}, z\right), V\left(x_{n}, T\left(x_{n}\right)\right), V(z, T(z)), V\left(x_{n}, T(z)\right), V\left(z, T\left(x_{n}\right)\right)\right\} .
$$

For $n \rightarrow \infty$, we have

$$
V(z, T(z)) \leq q V(z, T(z))<V(z, T(z)),
$$

which is a contradiction. Therefore $z=T(z)$. The uniqueness follows from contractive condition.
The following example shows that the contractive type condition in Theorem 3.7 can not be relaxed in order that Theorem 3.7 is true.

Example: $\mathbf{3 . 8}$ Let $X=[0, \infty)$ with usual metric d. Then (X, d) is a complete metric space. So (X, V) is a complete vector metric space where $V(x, y)=\{d(x, y), d(x, y), \cdots\}$. We define $W: X \times X \times I \rightarrow X$ by

$$
W(x, y, \lambda)=\lambda x+(1-\lambda) y
$$

for all $x, y \in X$ and $\lambda \in I=[0,1]$.
For $x, y, u \in X$ and $\lambda \in I$, it is easy to check that

$$
V(u, W(x, y, \lambda)) \leq \lambda V(u, x)+(1-\lambda) V(u, y) .
$$

Thus (X, V) is a complete convex vector metric space with convex structure W which is continuous on the third variable.

Let $C=[0,1]$ be the closed unit interval of reals. Then $C \subset X$ and let $T: C \rightarrow X$ be a non-self mapping defined by

$$
\begin{aligned}
T(x) & =\frac{1}{2} \text { for } 0 \leq x \leq 1 \text { except } x=\frac{1}{70}, \frac{1}{2^{i}}(i=1,2,3, \cdots) \\
& =0 \text { for } x=\frac{1}{70},
\end{aligned}
$$

and $\quad T\left(\frac{1}{2^{i}}\right)=2^{i+1} \quad$ for $i \geq 1$.
Then $T(\partial C) \subset C$, but T has no fixed point in C.
We now verify that for $x=\frac{1}{3}, y=\frac{1}{70}, T$ does not satisfy the contractive condition

$$
V(T(x), T(y)) \leq q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\} \text { for } 0<q<1
$$

Now, $V(T(x), T(y))=\{d(T(x), T(y)), d(T(x), T(y)), \cdots\}=\left\{d\left(\frac{1}{2}, 0\right), d\left(\frac{1}{2}, 0\right), \cdots\right\}$

$$
=\left\{\frac{1}{2}, \frac{1}{2}, \cdots\right\}
$$

Similarly,

$$
\begin{aligned}
& V(x, T(x))=\left\{\frac{1}{6}, \frac{1}{6}, \cdots\right\} ; \\
& V(y, T(y))=\left\{\frac{1}{70}, \frac{1}{70}, \cdots\right\} ; \\
& V(x, y)=\left\{\frac{67}{210}, \frac{67}{210}, \cdots\right\} ; \\
& V(x, T(y))=\left\{\frac{1}{3}, \frac{1}{3}, \cdots\right\} ; \\
& V(y, T(x))=\left\{\frac{17}{35}, \frac{17}{35}, \cdots\right\} .
\end{aligned}
$$

Therefore, $\quad q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\}$

$$
\begin{aligned}
= & q\left\{\frac{17}{35}, \frac{17}{35}, \cdots\right\} \\
& <\left\{\frac{17}{35}, \frac{17}{35}, \cdots\right\} \\
& =\left\{\frac{1}{2} \cdot \frac{34}{35}, \frac{1}{2} \cdot \frac{34}{35}, \cdots\right\} \\
& <\left\{\frac{1}{2}, \frac{1}{2}, \cdots\right\} \\
& =V(T(x), T(y)), \text { for } 0<q<1 .
\end{aligned}
$$

Theorem: 3.9 Let (X, V) be a complete convex vector metric space with convex structure W which is continuous on third variable, C be a non- empty closed subset of X and $T_{i}: C \rightarrow X$ be a non-self mapping satisfying the condition

$$
V\left(T_{i}(x), T_{i}(y)\right) \leq q \max \left\{V(x, y), V\left(x, T_{i}(x)\right), V\left(y, T_{i}(y)\right), V\left(x, T_{i}(y)\right), V\left(y, T_{i}(x)\right)\right\}
$$

for all $x, y \in C$ and $0<q<1$ with the additional property $T_{i}(\partial C) \subset C$. If u_{i} is the fixed point of T_{i} for $i=1,2,3, \cdots$ and $T(x)=\lim _{i \rightarrow \infty} T_{i}(x)$ for all $x \in C$ with $T(\partial C) \subset C$, then T has a unique fixed point u in C iff $u=\lim _{i \rightarrow \infty} u_{i}$.

Proof: We have $T(x)=\lim _{i \rightarrow \infty} T_{i}(x)$ for $x \in C$. For $x, y \in C$, we have
$V\left(T_{i}(x), T_{i}(y)\right) \leq q \max \left\{V(x, y), V\left(x, T_{i}(x)\right), V\left(y, T_{i}(y)\right), V\left(x, T_{i}(y)\right), V\left(y, T_{i}(x)\right)\right\}$ where $0<q<1$.
As $i \rightarrow \infty$, $V(T(x), T(y)) \leq q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\}$ where $0<q<1$.

Hence by Theorem 3.7, T has a unique fixed point, say $u \in C$. By hypothesis $u_{i}=T_{i}\left(u_{i}\right)$ for $i=1,2,3, \cdots$.

Now for $0<q<1$, we have

$$
\begin{aligned}
V\left(u, u_{i}\right) & =V\left(T(u), T_{i}\left(u_{i}\right)\right) \\
& \leq V\left(T(u), T_{i}(u)\right)+V\left(T_{i}(u), T_{i}\left(u_{i}\right)\right) \\
& \leq V\left(T(u), T_{i}(u)\right)+q \max \left\{\begin{array}{l}
V\left(u, u_{i}\right), V\left(u, T_{i}(u)\right), V\left(u_{i}, T_{i}\left(u_{i}\right)\right), \\
V\left(u, T_{i}\left(u_{i}\right)\right), V\left(u_{i}, T_{i}(u)\right)
\end{array}\right\} \\
& \leq V\left(T(u), T_{i}(u)\right)+q \max \left\{V\left(u, u_{i}\right), V\left(u, T_{i}(u)\right), V\left(u, u_{i}\right)+V\left(u, T_{i}(u)\right)\right\} \\
& \leq V\left(T(u), T_{i}(u)\right)+q\left\{V\left(u, u_{i}\right)+V\left(T(u), T_{i}(u)\right)\right\},
\end{aligned}
$$

which implies that,

$$
V\left(u, u_{i}\right) \leq\left(\frac{1+q}{1-q}\right) V\left(T(u), T_{i}(u)\right) \rightarrow 0 \text { as } i \rightarrow \infty .
$$

Therefore, $u=\lim _{i \rightarrow \infty} u_{i}$.
Conversely, let $u=\lim _{i \rightarrow \infty} u_{i}$, then

$$
V\left(T_{i}(u), T_{i}\left(u_{i}\right)\right) \leq q \max \left\{\begin{array}{l}
V\left(u, u_{i}\right), V\left(u, T_{i}(u)\right), V\left(u_{i}, T_{i}\left(u_{i}\right)\right), \\
V\left(u, T_{i}\left(u_{i}\right)\right), V\left(u_{i}, T_{i}(u)\right)
\end{array}\right\}
$$

which implies that,

$$
V\left(T_{i}(u), u_{i}\right) \leq q \max \left\{V\left(u, u_{i}\right), V\left(u, T_{i}(u)\right), V\left(u_{i}, T_{i}(u)\right)\right\} .
$$

Taking limit as $i \rightarrow \infty$, we have

$$
V(T(u), u) \leq q V(u, T(u)) .
$$

So, $(1-q) V(u, T(u)) \leq \theta$ which gives that $T(u)=u$.
We now prove a fixed point theorem for multivalued mappings. For this purpose we need the following notations.
Notations: Let (X, V) be a vector metric space and let A, B be any two subsets of X. We denote

$$
\begin{aligned}
& D(A, B)=\inf _{x \in A, y \in B} V(x, y)=\left(\inf _{x \in A, y \in B} a_{1}(x, y), \inf _{x \in A, y \in B} a_{2}(x, y), \cdots, \inf _{x \in A, y \in B} a_{n}(x, y), \cdots\right), \\
& \rho(A, B)=\sup _{x \in A, y \in B} V(x, y)=\left(\sup _{x \in A, y \in B} a_{1}(x, y), \sup _{x \in A, y \in B} a_{2}(x, y), \cdots, \sup _{x \in A, y \in B} a_{n}(x, y), \cdots\right)
\end{aligned}
$$

where $V(x, y)=\left\{a_{i}(x, y)\right\}$.

$$
B N(X)=\{A: \Phi \neq A \subset X \text { and } \delta(A)<+\infty\} .
$$

Theorem: 3.10 Let (X, V) be a complete convex vector metric space with convex structure W which is continuous on third variable, C be a non-empty closed subset of X and $F: C \rightarrow B N(X)$ be a multivalued mapping satisfying the condition
$\rho(F(x), F(y)) \leq q \max \{V(x, y), \rho(x, F(x)), \rho(y, F(y)), D(x, F(y)), D(y, F(x))\}$
for all $x, y \in C$ and $0<q<1$. If F has the additional property $F(\partial C) \subset C$ where $F(\partial C)=\cup\{F(x): x \in \partial C\}$, then F has a unique fixed point u in C and $F(u)=\{u\}$.

Proof: Take $0<a<1$ and define a single valued mapping $T: C \rightarrow X$ as follows: For each $x \in C$, let $T(x)$ be a point of $F(x)$, which satisfies the condition

$$
V(x, T(x)) \geq q^{a} \rho(x, F(x))
$$

Then T has the property $T(\partial C) \subset C$ since $F(\partial C) \subset C$.
Now for every $x, y \in C$, we have

$$
\begin{aligned}
V(T(x), T(y)) & \leq \rho(F(x), F(y)) \\
& \leq q \max \{V(x, y), \rho(x, F(x)), \rho(y, F(y)), D(x, F(y)), D(y, F(x))\} \\
& =q q^{-a} \max \left\{\begin{array}{l}
q^{a} V(x, y), q^{a} \rho(x, F(x)), q^{a} \rho(y, F(y)), \\
q^{a} D(x, F(y)), q^{a} D(y, F(x))
\end{array}\right\} \\
& \leq q^{1-a} \max \left\{\begin{array}{l}
V(x, y), V(x, T(x)), V(y, T(y)), \\
V(x, T(y)), V(y, T(x))
\end{array}\right\}
\end{aligned}
$$

for $0<q<1$.

Hence by Theorem 3.7, T has a unique fixed point in C. Let $u \in C$ be such that $u=T(u)$.
Clearly $u=T(u)$ implies $u \in F(u)$. Since F satisfies (3.2), $u \in F(u)$ implies

$$
\rho(F(u), F(u)) \leq q \rho(u, F(u))
$$

This may happen only if $F(u)=\{u\}$. Therefore, $u \in C$ is a fixed point of T iff u is a fixed point of F. Thus F has a unique fixed point u in C and $F(u)=\{u\}$.

REFERENCES:

[1] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31-37.
[2] Ljiljana Gajić, Quasi-contractive non-self mappings on Takahashi convex metric spaces, Novi Sad J. Math., 30 (2000), 41-46.
[3] B. K. Lahiri and Pratulananda Das, Banach's fixed point theorem in a vector metric space and in a generalized vector metric space, Journal of Calcutta Mathematical Society, 1 (2004), 69-74.
[4] T. K.Sreenivasan, Some properties of distance functions, Jour. Indian Math. Soc., 11(1947), 38-43.
[5] W. Takahashi, A convexity in metric space and non-expansive mappings, I, Kodai Math. Sem. Pep., 22 (1970), 142149.

