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ABSTRACT

We introduce the concept of convex structure on a vector metric space and obtain some fixed point theorems for a
class of non-self mappings satisfying certain contractive conditions in the setting of convex vector metric spaces.
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1. INTRODUCTION:

Deterministic fixed point theorems are generally proved for self mappings only. In1970, W. Takahashi [5] had
introduced the concept of convexity in a metric space and obtained some important fixed point theorems previously
proved for Banach spaces. Afterwards, Gaji¢ [2] obtained an important fixed point theorem for a class of non-self
mappings in Takahashi convex metric spaces. In this paper, our attempt is to introduce the notion of convex structure
on a vector metric space with relevant definitions with their properties. Finally, we prove some fixed point theorems for
a class of non-self mappings over a subset of a convex vector metric space.

Let S be the vector space of all real sequences ¢ = {an} and @ stands for the zero vector {0} We can define a
partial ordering < on S by a<f (equivalently, f > ) if and only if a, <b, for all n, where
a=1a,}, B=1b,}e S. We write @ < B (equivalently, B> ) if and onlyif a, <b, forall n. An
element & € § is called non-negative if & = @. An element & = {an }e S is called positive if a, >0 foralln.
Also for any & = {an }€ S and any real number ¢ we define tr = {tan brra= {an L B= {bn }e S then

a+pB={a,+b Yand a=Bif a, =b, foralln.

For &' Z{a } es; l 2, -+, k, we define

max {a'i =1, imax (a}), max (az) -+, max (a'), j
<i<k 1<i<k

Clearly, max {ai =12, k}e S.

2. DEFINITIONS AND BASIC FACTS:

In this section, we recall some basic definitions and important results for vector metric spaces that will be needed in the
sequel.

Definition: 2.1 [4] Let X be a non empty set. Then a function V : X X X — § is called a vector metric on X if
the following conditions are satisfied:

i) V(x,y)=8 for all x,ye X and V(x,y)=86if and only if x=1y,
i) V(x,y)=V(y,x) for all x,ye X,
i) V(x,y) <V(x,2)+V(z,y) for all x,y,z€e X .
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The pair (X,V)is called a vector metric space. We may verify that V' (x,y)is a continuous function of its
arguments.

Theorem: 2.2[4] If V(x,y)= {dn (x, y)} be a vector metric then each d, (x,y) is a quasi metric function;
conversely if each d, (x,y) is a quasi metric and the relations d, (x,y)=0 for all n imply x =y, then

Vix,y)= {dn (x, y)} is a vector metric.

Remark: 2.3 If (X ,d) is a metric space and if V (x,y) = {d(x, y), d(x,y), «- }, then (X,V)is a vector metric
space. So any metric space is a vector metric space and for the converse we can say from Theorem 2.2 that a vector

metric space is a quasi metric space.
Example: 2.4 Let X = R" . If we define V on X X X by
V(x’y):{|x1_y1 x2_y2|’ sl =y 0 }

where x = (X, X5, =+, X,), Yy =(¥;5 ¥55*» ¥, )€ X ,then(X,V) is a vector metric space.

B

Example: 2.5[3] Let X =[0,1]. If we define V on X X X by

¥ =]
1+|x—y

2fx -]
1+2|x—y

Vix,y) = |x—y, 0, , 0, 2|x—y|, 0, , 0, ---¢, then (X,V)is a vector metric

space.

Definition: 2.6[4] Let (X,V) be a vector metric space. A sequence {xk} in X is said to converge to an element

xe X ie. li%n x, =x if V(x,,x) = 8 as k — oo which is interpreted as
d, (x,,x) =>0as k— o for all n where V(x,,x) = {dn (xk,x)}.

Definition: 2.7[3] A sequence {x i } in (X,V) s said to be a vector Cauchy sequence if V(x,,x,,,) > ask —>oo

foreach p, ie.d, (x.,x,,,) > 0ask — oo foreach p and for eachn.

In other words, a sequence {xk } in (X,V) is said to be a vector Cauchy sequence if V (x,, xj) —08ask, j—o> oo,

ie.d, (x,,x;) >0ask, j—e and foreachn.

Definition: 2.8[3] A vector metric space (X,V)is said to be complete if every vector Cauchy sequence in X

converges to an element in X . Otherwise X is called incomplete.
It is to be noted that every complete metric space may be considered as a complete vector metric space.
Definition: 2.9 Let(X,V) be a vector metric space and A € X . Then A is called closed if and only if every
sequence {x, } in A with lim x, = x implies that xe A .
n—oo
It is easy to verify that every closed subset of a complete vector metric space is complete.

Definition: 2.10 Let(X,V) be a vector metric space, X, € X and r be a positive member of S . Then the set

denoted by B(x,,7) = {x € X:V(x,,x)< r} is called an open ball centered at X, and radius 7in X .

Definition 2.11 Let (X, V') be a vector metric space and A © X . A point x€ X is called a boundary point of A if
every open ball centered at X intersects both A and X — A . The set of all boundary points of A , denoted by 0A , is
called the boundary of A .
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Definition: 2.12 A subset A of a vector metric space (X ,V)is called bounded if there exists a positive member K

in § suchthat V(x,y) <K forall x,ye A.

Definition: 2.13 Diameter of a bounded set A in a vector metric space (X,V), denoted by Diam(A) or 8(A), is
defined as

Dlam(A) = Sup V(an’) = {Sup al(xa )’)7 Sup az(xa )’)7 Y Sup an(xa )’), }
x,yeA x,yeA x,yeA x,yeA
where V(x,y) = {ai (x,y)}and for each i, sup a;,(x,y) <+eoas Ais bounded .
X, yeA
In this case we write O(A) < +oo.

3. MAIN RESULTS:

Let(X,V) be a vector metric space, and I denote the closed unit interval [0,1] of reals.

Definition: 3.1 A mapping W : XXX XI — X is said to be a convex structure on X if for all
x,y,ue X,Ael;
Vi, W(x, y, D)) SAV(u,x) + (A=) V(u,y).

Then X together with a convex structure W' is called a convex vector metric space.
Remark: 3.2 It is observed that W (x, y,1) = x and W(x,y,0)=y.

Remark: 3.3 Any convex subset of a normed linear space is a convex vector metric space with convex structure

W(x,y,A)=Ax+(1-A)y.

Definition: 3.4 Let (X,V) be a convex vector metric space with a convex structure W . For x,ye€ X, we define
Seg [x.y]={W(x.y.2): A€ [0.11}.

Clearly x,ye€ Seg [x, y], since x =W(x,y,1), y=W(x,y,0).

Proposition: 3.5 If (X,V) is a convex vector metric space with convex structure W , then for every

x,y€ X and every A€ [0,1],
Vix,y)=V(x,W(x,y,))+VW(x,y,4),y).
Proof: For every x,ye€ X and every A € [0,1], we have

V(x,y) <Vx,W(x,y,))+VW(x,y,4),y)
SAVLX)+A=-D Vi, y)+AV(y,x)+A=-D)V(y,y)

=V(x,y)
This implies that V (x, y) =V (x,W(x, y,A)) + V(W (x, y, 1), y).

Proposition: 3.6 Let K be a non-empty closed subset of the convex vector metric space (X,V) with convex

structure W' continuous on third variable. Let x€ K and y & K . Then there exists a A € [0, 1] such that
W(x,y,A)e Seg [x,y]noK

where 0K is the boundary of K .

© 2011, IJMA. All Rights Reserved 1802



Sushanta Kumar Mohanta*/ Fixed Points for Non-Self Mappings on Convex Vector Metric Spaces / IJMA- 2(10), Oct.-2011,
Page: 1800-1808

Proof: Let us consider the set A = {q :q20, W(x,y,me K forallg<n< 1}. Then A is non-empty, since
W(x,yl)=xe€ K.Weput A= in£ q and let {qn}
qe

v © A be a sequence satisfying ’111_>n°} g, = A . Then, for

ne N,W(x,y,q,)€ K .By using the continuity of W on the third variable and since K is closed, we have
W(x,y,A)=limW(x,y,q9,)e K.
Clearly A >0 since W(x,y,00=y¢ K.

Now we prove that W (x, y, A) € 0K . For any positive member £€ S, B(W(x, v, A), 8) N K # ® . So we have
to show that for any positive member £€ §, B(W(x, v, A), 8) N (X — K) =P,

Since 4 >0, we can find 4, € (0, 1) such that 4, < A and by definition of A, W(x,y,4,)& K.

Using continuity of W on third variable, we obtain
VW (x,y,4), W(x,y,A))<E&.

Thus W (x, y,4,) € BW(x,y,2), )N (X - K).
This completes the proof.

Theorem: 3.7 Let (X,V) be a complete convex vector metric space with convex structure W which is continuous

on third variable, C be a non-empty closed subset of X and 7 :C — X be a non-self mapping satisfying the
contractive type condition

V(T (x), T(y)) < g max {V(x,y), V(x,T(x)), V(3. T(y), V(x, T(»), V(y,T(x))}

forall x,y€ C and 0< g <1.If T has the additional property T(dC) < C where dC is the boundary of C,
then T has a unique fixed pointin C .

Proof: For x€ 0C, we put x, = x. Then T(dC) < C implies that T (x,) € C . Letus put x, =T (x,). We
define y, =T(x,).If y, € C,letustake x, = y,.If y, & C, then by Proposition 3.6, there exists
x, € 0C N Seg [x,,y,].

Continuing in this way we can obtain a sequence {xn} such that
x,=T(x,,),if T(x,,)eC,
x,€dCnNSeglx, ,,y,1if v,=T(x,,)e C.

We show that the sequences {xn }and {T(xn )} are bounded.

For ne N, we define

A, =1 ulT(x )Y, and - @, = diam A,
We shall show that &/, = max {V(xO,T(xi)) :0<i<n- 1}.
We now discuss the following possible cases.

Case I: Suppose @, = max{ V(x,,T(x,)):0<i, j <n—1}. The case i = 0 is trivial. So we suppose thati > 1.
M If x;, =T(x,,)e C,then

V(i ,x;), V(x , T(x, ), V(x;, T(x,)),

V(xl._l,T(xj ), V(xj T(x,)))
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<qga,
So, a, = max{V(xl.,T(xj ):0<i,j<n-landi= I}S qa, <a,, acontradiction.

Q) If x, #T(x,_,)ie,T(x,_)¢& C,then
x, € 0C N Seg [x,,, T(x,_)].

So x; =W(x,,,T(x,,),A) for some A€ [0,1]and x, , =T(x,,).

o Vi(x,,T(x;)) =VIW(x_,T(x_),A),T(x,))
<SAV(x,, T (x;))+(1- A) V(T (x),T(x;))
SAV(T(x,,), T(x;)+1- V(T (x,, ), T(x;))
<Adga,+(1-1)qa,
=qQ,.

So,a, = max{V(xi,T(xj ):0<i,j<n—-landi= I}S qa, < a,, a contradiction.

Case II: Suppose &, = max {V(xi,xj) :0<i,j<n —1}.
If x; =T(x,,), we have Case I again.
If x; #T(x,,), then x; € dC N Seg [x

=

By an argument similar to that used above, the case

a, =max {V(T(x,),T(x;)):0<i, j<n-1}
is also impossible. Thus, it must be the case that

a, =max {V(x,,T(x,):0<i<n—1}.
Ifor, = @, then X, is the fixed point of 7", so we can suppose that &, # 6 for any ne N .
Further, for 0<i<n-1,
V(x0,T(x;)) SV (x,T(x0)) + V(T (x,),T(x;))
<V(x,,T(x,)+q «,.
So, o, = max {V(x,,T(x,)):0<i<n—1}< V(x,,T(x,))+q ,
ie., a, < L V(x,,T(x,))
l-¢
If a, = {Otf }k and V(x,,T(x,)) = {dk (xO,T(xO))}k ,then it follows from (3.1) that

al SlL d,(x,,T(x,)) forall k.
-q

For fixed k, {0!: }n is non-decreasing, so there exists ¢, € R such that

n

. 1
¢, =lim Oé,f and c, Sl—dk(xO,T(xo)).
—-q
So there exists ¢ = (¢;, C,,***, ¢, - )€ S such that

c< L Vi(x,,T(x,)).
l-¢
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We define

B, = {xi }izn U{T(xi )}izw and B, =diam B, for integer n>2. Then by the same technique as

given above, one can show that
_ . . _ Ik ! Kl . .
B, = Sup{V(xn,T(xj N:j= n} and that if S, = {ﬂn} , then for fixed k, {ﬂn }n is non-increasing and
bounded. So there exists a limit and it must be zero(see [2] ). Therefore, lim B, = 8. So {xn}and {T(xn )} are
n
vector Cauchy sequences. Since (X,V) is a complete vector metric space and C is closed, there exists € C such
that z =1lim x, .
n—o0
Again, V(x,,T(x,)) < B,, B, = 0, n — oo implies that
V(x,,T(x,)) = 60 asn— oo

Now

V(T (x,),2)<V(T(x,),x,)+V(x,,2) >0 asn—> oo,

gives that lim 7' (x,) = z.
n—00

Assume that Z # T(z). Then
V(T(x,),T(2)) < g max {V(x,,2), V(x,,T(x,),V(z,T(2), V(x,,T(2)),V(z,T(x,))}.

For n — oo, we have

V(z,T(2)) £ qV(z,T(2)) <V (z,T(2)),

which is a contradiction. Therefore 7 =7 (z) . The uniqueness follows from contractive condition.

The following example shows that the contractive type condition in Theorem 3.7 can not be relaxed in order that
Theorem 3.7 is true.

Example: 3.8 Let X = [0, o) with usual metricd . Then (X, d) is a complete metric space. So (X ,V') is a complete

vector metric space where V (x,y) = { d(x,y), d(x,y), } We define W : X X X XI — X by
W(x,y,A)=Ax+(1-A)y

forall x,ye X and Ae I =[0,1].

For x,y,u€ X and A€ I, it is easy to check that
Vu, W, y,AN<AVwu,x)+ 1= V(u,y).

Thus (X,V)is a complete convex vector metric space with convex structure W which is continuous on the third
variable.

Let C =[0,1] be the closed unit interval of reals. ThenC < X and let T : C — X be a non-self mapping defined
by

1 1 1
T(x)=— for 0<x<1 tx=—,—\(i=123,---
(%) 5 or excep =0 21( )
=0forx=i,
70

1 ; .
and T[—J =2"" fori>1.
21
Then T(dC) < C, but T has no fixed pointin C .
1
We now verify that for x = 5 , y=—, T does not satisfy the contractive condition

70
V(T(x), T(y)) < g max {V(x, ), V(x,T(x)), V(y,T(»), V(x,T(y), V(y,T(x))} for0<g<l.
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Now, V(T(0).T() = {d(T(0).T(3), dT(x).T(y), -} = {d(%OJ dG,O} }
_{l 1 }
27 2’ '

Similarly,
V(x,T(x)) = { ,

.

V(T() ={ L1 }

QN | =
AN =

o
67 67
V<x,y>:{ﬁ, = }
1 1
V(x,T(y)):{g, = }
17 17
V(y,T(x))={£, = }

Therefore, g max {V (x, ), V(x,T(x)), V(y,T(3), V(x,T(), V(3 T(x)}

_ 7
135" 35°

17 17
<9—, —, -

{35 35 }
_{1 34 1 34 }

2°35°2° 35’

1 1
<=, =, -

{2 2 }
=V(T(x),T(y)), for 0<g<1.

Theorem: 3.9 Let (X,V) be a complete convex vector metric space with convex structure W which is continuous

on third variable, C be a non- empty closed subset of X and 7, : C — X be a non-self mapping satisfying the

condition

V(T,(x), T, () £ g max {V (x, ), V(x,T,(x)), V(3,T,(0), V(& T,(»), V(3. T,(x)}

for all x,y€ C and 0< g <1with the additional property 7,(dC) C C. If u, is the fixed point of 7, for
i=1,2,3,---and T(x) =1im T,(x) for all xe C withT(dC)  C, then T has a unique fixed point u in
1—00

Ciff u=limu,.

[—o0
Proof: We have T (x) =1im7;(x) for xe C .For x,y€ C, we have
i—>o0

V(T,(x), T, () £ g max {V (x, ), V(x,T,(x)), V(3. T,(3)), V(x,T,(»), V(3,T,(x))} where 0< g <1.

Asi —> oo,
V(T'(x), T(y)) < g max {V(x, y), V(x, T(x)), V(y,T(»), V(x,T(»)), V(y,T(x))} where 0<g<1.

Hence by Theorem 3.7, T has a unique fixed point, say u € C . By hypothesis u, =7, (u,) for i =1,2,3,--.
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Now for 0 < g <1, we have

V(u,u,) = V(T (w),T,(u,))
<SV(T (). T, () +V (T, ). T,(u,))
V),V (T, ),V (. T, (1),
V(u,T,(u,)),V(u,;,T,(u)) }
SV(T (W), T, () + g max{V (u,u,),V @, T,)),V (uu,) +V (u, T, (u))}
SV(T @), T, ) + gV (,u) + V(T @), T, )},

SV(Tw),T,(u)+q max{

which implies that,

V(uu,) < (Tr—qj V(T ()T, (1)) = 0as i — o

Therefore,u =limu, .

i—o0

Conversely, let # =limu,, then

i—oo

Vu,u,),Vu,T,)),Vu,.T, (u,-)),}

VAT, (), T, (u;)) < g max {V(u,Ti(ui WV (@ T ()

which implies that,

V(T,(u),u,) < g max{V (u,u,),V(u,T,()),V(u,,T,(u))}.

Taking limit as { — oo, we have

V(T (w),u)<qVw,Tu)).
So, 1=q)V(u,T(u)) <6 which gives that T (u) = u.
We now prove a fixed point theorem for multivalued mappings. For this purpose we need the following notations.

Notations: Let (X,V) be a vector metric space and let A, B be any two subsets of X . We denote

D(A’ B) = xelf{‘,l)tf‘eB V(x9 )’) = (xelf{‘,l)t"eB a (X, )7)’ xelf{‘,l)t"EB a2(x9 )7)’ T xelzf,l)i:‘EB a, (-x’ }’), o 'j s

pP(A,B)= sup V(x,y):( sup a,(x,y), sup a,(x,y),---, sup an(x,y),mj

xeA,yeB xeA,yeB xeA,yeB xeA,yeB
where V (x,y) =1{a,(x,)} .
BN(X)={A:® # Ac X and 5(A) < +oo}.

Theorem: 3.10 Let (X,V) be a complete convex vector metric space with convex structure W which is continuous
on third variable, C be a non-empty closed subset of X and F : C — BN(X) be a multivalued mapping satisfying
the condition

P(F(x),F() < g max{V (x, y), p(x, F (x)), p(y, F (), D(x, F ()), D(y, F (x))} 3.2)
for all x,yeC and O<g<l. If F has the additional property F(JC)cC  where

F(C)= U{F(x) 1XE aC} ,then F' has a unique fixed point # in C and F(u)= {u} .

Proof: Take 0 < a <1 and define a single valued mapping 7 : C — X as follows: For each x€ C,let T(x) be a

point of F'(x), which satisfies the condition
V(x,T(x)2q" p(x,F(x)).
© 2011, IJMA. All Rights Reserved 1807
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Then T has the property T(dC) < C since F(dC)c C.
Now for every x, y€ C, we have

V(T (x),T(y)) < p(F(x),F(y))
< g max{V (x, y), p(x, F(x)), p(y, F (), D(x, F(¥)), D(y, F (x))}
L {q“ V(x,y), q“ p(x. F(x)), q"p(y,F(y)),}
=¢ q " max
q“D(x,F(y)), g D(y, F(x))
< g {V(x, y),V(x,T<x)),V<y,T<y)>,}
<¢g " max

V(xT(y),V(y,T(x)
for 0<g<l.

Hence by Theorem 3.7, T has a unique fixed pointin C . Let # € C be such that u =T (u).

Clearly u =T (1) implies u € F'(u) . Since F satisfies (3.2), u € F (i) implies
PF ), F(u)) < q p(u,F(u)).

This may happen only if F(u) = {u} . Therefore, u € C is a fixed point of T iff u is a fixed point of F . Thus F'
has a unique fixed point # in C and F(u)= {u} )
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