International Journal of Mathematical Archive-2(10), 2011, Page: 1800-1808 MA Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

FIXED POINTS FOR NON-SELF MAPPINGS ON CONVEX VECTOR METRIC SPACES

Sushanta Kumar Mohanta*

Department of Mathematics, West Bengal State University, Barasat, 24 Parganas(North), Kolkata 700126, West Bengal, India E-mail: smwbes@yahoo.in

(Received on: 13-09-11; Accepted on: 05-10-11)

ABSTRACT

We introduce the concept of convex structure on a vector metric space and obtain some fixed point theorems for a class of non-self mappings satisfying certain contractive conditions in the setting of convex vector metric spaces.

Keywords and phrases: Convex vector metric space, non-self mapping, fixed point.

2000 Mathematics Subject Classification: 54H25, 54C60.

1. INTRODUCTION:

Deterministic fixed point theorems are generally proved for self mappings only. In1970, W. Takahashi [5] had introduced the concept of convexity in a metric space and obtained some important fixed point theorems previously proved for Banach spaces. Afterwards, Gajić [2] obtained an important fixed point theorem for a class of non-self mappings in Takahashi convex metric spaces. In this paper, our attempt is to introduce the notion of convex structure on a vector metric space with relevant definitions with their properties. Finally, we prove some fixed point theorems for a class of non-self mappings over a subset of a convex vector metric space.

Let *S* be the vector space of all real sequences $\alpha = \{a_n\}$ and θ stands for the zero vector $\{0\}$. We can define a partial ordering \leq on *S* by $\alpha \leq \beta$ (equivalently, $\beta \geq \alpha$) if and only if $a_n \leq b_n$ for all *n*, where $\alpha = \{a_n\}, \beta = \{b_n\} \in S$. We write $\alpha < \beta$ (equivalently, $\beta > \alpha$) if and only if $a_n < b_n$ for all *n*. An element $\alpha \in S$ is called non-negative if $\alpha \geq \theta$. An element $\alpha = \{a_n\} \in S$ is called positive if $a_n > 0$ for all *n*. An element $\alpha = \{a_n\} \in S$ and any real number *t* we define $t\alpha = \{ta_n\}$. If $\alpha = \{a_n\}, \beta = \{b_n\} \in S$ then $\alpha + \beta = \{a_n + b_n\}$ and $\alpha = \beta$ if $a_n = b_n$ for all *n*.

For $\alpha^{i} = \{a_{n}^{i}\}_{n} \in S$; $i = 1, 2, \dots, k$, we define $\max \{\alpha^{i} : i = 1, 2, \dots, k\} = \{\max_{1 \le i \le k} (a_{1}^{i}), \max_{1 \le i \le k} (a_{2}^{i}), \dots, \max_{1 \le i \le k} (a_{n}^{i}), \dots\}$. Clearly, $\max \{\alpha^{i} : i = 1, 2, \dots, k\} \in S$.

2. DEFINITIONS AND BASIC FACTS:

In this section, we recall some basic definitions and important results for vector metric spaces that will be needed in the sequel.

Definition: 2.1 [4] Let X be a non empty set. Then a function $V: X \times X \to S$ is called a vector metric on X if the following conditions are satisfied:

(i) $V(x, y) \ge \theta$ for all $x, y \in X$ and $V(x, y) = \theta$ if and only if x = y, (ii) V(x, y) = V(y, x) for all $x, y \in X$, (iii) $V(x, y) \le V(x, z) + V(z, y)$ for all $x, y, z \in X$.

Corresponding author: Sushanta Kumar Mohanta,*E-mail: smwbes@yahoo.in

The pair (X, V) is called a vector metric space. We may verify that V(x, y) is a continuous function of its arguments.

Theorem: 2.2[4] If $V(x, y) = \{d_n(x, y)\}$ be a vector metric then each $d_n(x, y)$ is a quasi metric function; conversely if each $d_n(x, y)$ is a quasi metric and the relations $d_n(x, y) = 0$ for all n imply x = y, then $V(x, y) = \{d_n(x, y)\}$ is a vector metric.

Remark: 2.3 If (X, d) is a metric space and if $V(x, y) = \{d(x, y), d(x, y), \dots\}$, then (X, V) is a vector metric space. So any metric space is a vector metric space and for the converse we can say from Theorem 2.2 that a vector metric space is a quasi metric space.

Example: 2.4 Let $X = R^n$. If we define V on $X \times X$ by $V(x, y) = \{ |x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n|, 0, \dots \}$

where $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in X$, then (X, V) is a vector metric space.

Example: 2.5[3] Let X = [0,1]. If we define V on $X \times X$ by

$$V(x, y) = \left\{ |x - y|, 0, \frac{|x - y|}{1 + |x - y|}, 0, 2|x - y|, 0, \frac{2|x - y|}{1 + 2|x - y|}, 0, \cdots \right\}, \text{ then } (X, V) \text{ is a vector metric}$$

space.

Definition: 2.6[4] Let (X, V) be a vector metric space. A sequence $\{x_k\}$ in X is said to converge to an element $x \in X$ i.e. $\lim_{k \to \infty} x_k = x$ if $V(x_k, x) \to \theta$ as $k \to \infty$ which is interpreted as

 $d_n(x_k, x) \to 0 \text{ as } k \to \infty \text{ for all } n \text{ where } V(x_k, x) = \{d_n(x_k, x)\}.$

Definition: 2.7[3] A sequence $\{x_k\}$ in (X, V) is said to be a vector Cauchy sequence if $V(x_k, x_{k+p}) \rightarrow \theta$ as $k \rightarrow \infty$ for each p, *i.e.* $d_n(x_k, x_{k+p}) \rightarrow 0$ as $k \rightarrow \infty$ for each p and for each n.

In other words, a sequence $\{x_k\}$ in (X, V) is said to be a vector Cauchy sequence if $V(x_k, x_j) \rightarrow \theta$ as $k, j \rightarrow \infty$, *i.e.* $d_n(x_k, x_j) \rightarrow 0$ as $k, j \rightarrow \infty$ and for each n.

Definition: 2.8[3] A vector metric space (X, V) is said to be complete if every vector Cauchy sequence in X converges to an element in X. Otherwise X is called incomplete.

It is to be noted that every complete metric space may be considered as a complete vector metric space.

Definition: 2.9 Let (X, V) be a vector metric space and $A \subset X$. Then A is called closed if and only if every sequence $\{x_n\}$ in A with $\lim_{n \to \infty} x_n = x$ implies that $x \in A$.

It is easy to verify that every closed subset of a complete vector metric space is complete.

Definition: 2.10 Let (X, V) be a vector metric space, $x_0 \in X$ and r be a positive member of S. Then the set denoted by $B(x_0, r) = \{x \in X : V(x_0, x) < r\}$ is called an open ball centered at x_0 and radius r in X.

Definition 2.11 Let (X, V) be a vector metric space and $A \subset X$. A point $x \in X$ is called a boundary point of A if every open ball centered at x intersects both A and X - A. The set of all boundary points of A, denoted by ∂A , is called the boundary of A.

Definition: 2.12 A subset A of a vector metric space (X, V) is called bounded if there exists a positive member K in S such that $V(x, y) \le K$ for all $x, y \in A$.

Definition: 2.13 Diameter of a bounded set A in a vector metric space (X, V), denoted by Diam(A) or $\delta(A)$, is defined as

$$Diam(A) = \sup_{x,y \in A} V(x, y) = \left\{ \sup_{x,y \in A} a_1(x, y), \sup_{x,y \in A} a_2(x, y), \cdots, \sup_{x,y \in A} a_n(x, y), \cdots \right\}$$

where $V(x, y) = \left\{ a_i(x, y) \right\}$ and for each *i*, $\sup a_i(x, y) < +\infty$ as *A* is bounded.

 $x, y \in A$

In this case we write $\delta(A) < +\infty$.

3. MAIN RESULTS:

Let (X, V) be a vector metric space, and I denote the closed unit interval [0,1] of reals.

Definition: 3.1 A mapping $W: X \times X \times I \to X$ is said to be a convex structure on X if for all $x, y, u \in X, \lambda \in I$;

$$V(u, W(x, y, \lambda)) \le \lambda V(u, x) + (1 - \lambda) V(u, y).$$

Then X together with a convex structure W is called a convex vector metric space.

Remark: 3.2 It is observed that W(x, y, 1) = x and W(x, y, 0) = y.

Remark: 3.3 Any convex subset of a normed linear space is a convex vector metric space with convex structure $W(x, y, \lambda) = \lambda x + (1 - \lambda) y$.

Definition: 3.4 Let (X, V) be a convex vector metric space with a convex structure W. For $x, y \in X$, we define $Seg[x, y] = \{W(x, y, \lambda) : \lambda \in [0, 1]\}.$

Clearly $x, y \in Seg[x, y]$, since x = W(x, y, 1), y = W(x, y, 0).

Proposition: 3.5 If (X, V) is a convex vector metric space with convex structure W, then for every $x, y \in X$ and every $\lambda \in [0,1]$,

$$V(x, y) = V(x, W(x, y, \lambda)) + V(W(x, y, \lambda), y).$$

Proof: For every $x, y \in X$ and every $\lambda \in [0,1]$, we have

$$V(x, y) \le V(x, W(x, y, \lambda)) + V(W(x, y, \lambda), y)$$

$$\le \lambda V(x, x) + (1 - \lambda) V(x, y) + \lambda V(y, x) + (1 - \lambda) V(y, y)$$

$$= V(x, y)$$

This implies that $V(x, y) = V(x, W(x, y, \lambda)) + V(W(x, y, \lambda), y)$.

Proposition: 3.6 Let K be a non-empty closed subset of the convex vector metric space (X, V) with convex structure W continuous on third variable. Let $x \in K$ and $y \notin K$. Then there exists a $\lambda^* \in [0, 1]$ such that

$$W(x, y, \lambda^*) \in Seg[x, y] \cap \partial K$$

where ∂K is the boundary of K.

Proof: Let us consider the set $A = \{q : q \ge 0, W(x, y, \eta) \in K \text{ for all } q \le \eta \le 1\}$. Then A is non-empty, since $W(x, y, 1) = x \in K$. We put $\lambda = \inf_{q \in A} q$ and let $\{q_n\}_{n \in N} \subset A$ be a sequence satisfying $\lim_{n \to \infty} q_n = \lambda$. Then, for $n \in N, W(x, y, q_n) \in K$. By using the continuity of W on the third variable and since K is closed, we have $W(x, y, \lambda) = \lim W(x, y, q_n) \in K$.

Clearly $\lambda > 0$ since $W(x, y, 0) = y \notin K$.

Now we prove that $W(x, y, \lambda) \in \partial K$. For any positive member $\mathcal{E} \in S$, $B(W(x, y, \lambda), \mathcal{E}) \cap K \neq \Phi$. So we have to show that for any positive member $\mathcal{E} \in S$, $B(W(x, y, \lambda), \mathcal{E}) \cap (X - K) \neq \Phi$.

Since $\lambda > 0$, we can find $\lambda_1 \in (0, 1)$ such that $\lambda_1 < \lambda$ and by definition of $\lambda, W(x, y, \lambda_1) \notin K$. Using continuity of W on third variable, we obtain

$$V(W(x, y, \lambda_1), W(x, y, \lambda)) < \varepsilon$$

Thus $W(x, y, \lambda_1) \in B(W(x, y, \lambda), \varepsilon) \cap (X - K).$

This completes the proof.

Theorem: 3.7 Let (X,V) be a complete convex vector metric space with convex structure W which is continuous on third variable, C be a non-empty closed subset of X and $T: C \to X$ be a non-self mapping satisfying the contractive type condition

 $V(T(x), T(y)) \le q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\}$

for all $x, y \in C$ and 0 < q < 1. If T has the additional property $T(\partial C) \subset C$ where ∂C is the boundary of C, then T has a unique fixed point in C.

Proof: For $x \in \partial C$, we put $x_0 = x$. Then $T(\partial C) \subset C$ implies that $T(x_0) \in C$. Let us put $x_1 = T(x_0)$. We define $y_2 = T(x_1)$. If $y_2 \in C$, let us take $x_2 = y_2$. If $y_2 \notin C$, then by Proposition 3.6, there exists $x_2 \in \partial C \cap Seg[x_1, y_2]$.

Continuing in this way we can obtain a sequence $\{x_n\}$ such that

$$\begin{aligned} x_n &= T(x_{n-1}), \ if \ T(x_{n-1}) \in C, \\ x_n &\in \partial C \cap Seg \ [x_{n-1}, \ y_n], \ if \ \ y_n = T(x_{n-1}) \notin C. \end{aligned}$$

We show that the sequences $\{x_n\}$ and $\{T(x_n)\}$ are bounded.

For $n \in N$, we define

$$A_n = \{x_i\}_{i=0}^{n-1} \cup \{T(x_i)\}_{i=0}^{n-1} and \quad \alpha_n = diam A_n.$$

We shall show that $\alpha_n = \max \{ V(x_0, T(x_i)) : 0 \le i \le n-1 \}.$

We now discuss the following possible cases.

Case I: Suppose $\alpha_n = \max\{V(x_i, T(x_j)): 0 \le i, j \le n-1\}$. The case i = 0 is trivial. So we suppose that $i \ge 1$. (1) If $x_i = T(x_{i-1}) \in C$, then

$$V(T(x_{i-1}), T(x_j)) \leq q \max \begin{cases} V(x_{i-1}, x_j), V(x_{i-1}, T(x_{i-1})), V(x_j, T(x_j)), \\ V(x_{i-1}, T(x_j)), V(x_j, T(x_{i-1})) \end{cases} \end{cases}$$

© 2011, IJMA. All Rights Reserved

$$< a \alpha$$

So, $\alpha_n = \max\{V(x_i, T(x_j)): 0 \le i, j \le n-1 \text{ and } i \ge 1\} \le q\alpha_n < \alpha_n, a \text{ contradiction}.$

(2) If
$$x_i \neq T(x_{i-1})$$
 i.e., $T(x_{i-1}) \notin C$, then
 $x_i \in \partial C \cap Seg[x_{i-1}, T(x_{i-1})].$

So
$$x_i = W(x_{i-1}, T(x_{i-1}), \lambda)$$
 for some $\lambda \in [0, 1]$ and $x_{i-1} = T(x_{i-2})$.

Now

$$\begin{split} V(x_i, T(x_j)) &= V(W(x_{i-1}, T(x_{i-1}), \lambda), T(x_j)) \\ &\leq \lambda V(x_{i-1}, T(x_j)) + (1 - \lambda) V(T(x_{i-1}), T(x_j)) \\ &\leq \lambda V(T(x_{i-2}), T(x_j)) + (1 - \lambda) V(T(x_{i-1}), T(x_j)) \\ &\leq \lambda q \, \alpha_n + (1 - \lambda) q \, \alpha_n \\ &= q \, \alpha_n. \end{split}$$

So, $\alpha_n = \max \{ V(x_i, T(x_j)) : 0 \le i, j \le n-1 \text{ and } i \ge 1 \} \le q \alpha_n < \alpha_n, a \text{ contradiction}.$

Case II: Suppose $\alpha_n = \max \{ V(x_i, x_j) : 0 \le i, j \le n-1 \}$. If $x_j = T(x_{j-1})$, we have Case I again. If $x_j \ne T(x_{j-1})$, then $x_j \in \partial C \cap Seg[x_{j-1}, T(x_{j-1})], j \ge 2$ and $x_{j-1} = T(x_{j-2})$, so this is similar to Case I(2).

By an argument similar to that used above, the case

$$\alpha_n = \max \{ V(T(x_i), T(x_j)) : 0 \le i, j \le n-1 \}$$

is also impossible. Thus, it must be the case that

$$\alpha_n = \max \{ V(x_0, T(x_i)) : 0 \le i \le n - 1 \}.$$

If $\alpha_n = \theta$, then x_0 is the fixed point of T, so we can suppose that $\alpha_n \neq \theta$ for any $n \in N$. Further, for $0 \le i \le n-1$,

$$V(x_0, T(x_i)) \le V(x_0, T(x_0)) + V(T(x_0), T(x_i))$$

$$\le V(x_0, T(x_0)) + q \, \alpha_n.$$

So, $\alpha_n = \max \{ V(x_0, T(x_i)) : 0 \le i \le n - 1 \} \le V(x_0, T(x_0)) + q \alpha_n$

i.e.,
$$\alpha_n \leq \frac{1}{1-q} V(x_0, T(x_0))$$
 (3.1)
If $\alpha_n = \{\alpha_n^k\}_k$ and $V(x_0, T(x_0)) = \{d_k(x_0, T(x_0))\}_k$, then it follows from (3.1) that

$$\alpha_n^k \leq \frac{1}{1-q} d_k(x_0, T(x_0)) \text{ for all } k.$$

For fixed k, $\{\alpha_n^k\}_n$ is non-decreasing, so there exists $c_k \in R$ such that

$$c_k = \lim_n \alpha_n^k \text{ and } c_k \leq \frac{1}{1-q} d_k(x_0, T(x_0)).$$

So there exists $c = (c_1, c_2, \dots, c_k, \dots) \in S$ such that

$$c \le \frac{1}{1-q} V(x_0, T(x_0)).$$

We define

 $B_n = \{x_i\}_{i \ge n} \cup \{T(x_i)\}_{i \ge n}, and \beta_n = diam B_n \text{ for integer } n \ge 2. \text{ Then by the same technique as given above, one can show that}$ $\beta_n = \sup\{V(x_n, T(x_j)): j \ge n\} \text{ and that if } \beta_n = \{\beta_n^k\}_k, \text{ then for fixed } k, \{\beta_n^k\}_n \text{ is non-increasing and bounded. So there exists a limit and it must be zero(see [2]). Therefore, <math>\lim_n \beta_n = \theta$. So $\{x_n\}$ and $\{T(x_n)\}$ are vector Cauchy sequences. Since (X, V) is a complete vector metric space and C is closed, there exists $z \in C$ such that $z = \lim_{n \to \infty} x_n$.

Again, $V(x_n, T(x_n)) \le \beta_n, \beta_n \to \theta, n \to \infty$ implies that

$$V(x_n, T(x_n)) \rightarrow \theta \text{ as } n \rightarrow \infty.$$

Now

$$V(T(x_n), z) \le V(T(x_n), x_n) + V(x_n, z) \to \theta \text{ as } n \to \infty,$$

gives that $\lim_{n \to \infty} T(x_n) = z$.

Assume that $z \neq T(z)$. Then

$$V(T(x_n), T(z)) \le q \max \{ V(x_n, z), V(x_n, T(x_n)), V(z, T(z)), V(x_n, T(z)), V(z, T(x_n)) \}.$$

For $n \to \infty$, we have

$$V(z,T(z)) \le q V(z,T(z)) < V(z,T(z)),$$

which is a contradiction. Therefore z = T(z). The uniqueness follows from contractive condition.

The following example shows that the contractive type condition in Theorem 3.7 can not be relaxed in order that Theorem 3.7 is true.

Example: 3.8 Let $X = [0, \infty)$ with usual metric d. Then (X, d) is a complete metric space. So (X, V) is a complete vector metric space where $V(x, y) = \{ d(x, y), d(x, y), \cdots \}$. We define $W : X \times X \times I \to X$ by

$$W(x, y, \lambda) = \lambda x + (1 - \lambda)y$$

for all $x, y \in X$ and $\lambda \in I = [0,1]$.

For
$$x, y, u \in X$$
 and $\lambda \in I$, it is easy to check that
 $V(u, W(x, y, \lambda)) \leq \lambda V(u, x) + (1 - \lambda) V(u, y)$.

Thus (X, V) is a complete convex vector metric space with convex structure W which is continuous on the third variable.

Let C = [0,1] be the closed unit interval of reals. Then $C \subset X$ and let $T : C \to X$ be a non-self mapping defined by

$$T(x) = \frac{1}{2} \text{ for } 0 \le x \le 1 \text{ except } x = \frac{1}{70}, \frac{1}{2^{i}} (i = 1, 2, 3, \cdots)$$
$$= 0 \text{ for } x = \frac{1}{70},$$
$$T\left(\frac{1}{2^{i}}\right) = 2^{i+1} \text{ for } i \ge 1.$$

Then $T(\partial C) \subset C$, but T has no fixed point in C.

We now verify that for $x = \frac{1}{3}$, $y = \frac{1}{70}$, T does not satisfy the contractive condition $V(T(x), T(y)) \le q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\}$ for 0 < q < 1.

and

Sushanta Kumar Mohanta*/ Fixed Points for Non-Self Mappings on Convex Vector Metric Spaces / IJMA- 2(10), Oct.-2011, Page: 1800-1808

Now, $V(T(x), T(y)) = \{ d(T(x), T(y)), d(T(x), T(y)), \cdots \} = \{ d(\frac{1}{2}, 0), d(\frac{1}{2}, 0), \cdots \}$ = $\{ \frac{1}{2}, \frac{1}{2}, \cdots \}$.

Similarly,

$$V(x,T(x)) = \left\{ \frac{1}{6}, \frac{1}{6}, \cdots \right\};$$

$$V(y,T(y)) = \left\{ \frac{1}{70}, \frac{1}{70}, \cdots \right\};$$

$$V(x,y) = \left\{ \frac{67}{210}, \frac{67}{210}, \cdots \right\};$$

$$V(x,T(y)) = \left\{ \frac{1}{3}, \frac{1}{3}, \cdots \right\};$$

$$V(y,T(x)) = \left\{ \frac{17}{35}, \frac{17}{35}, \cdots \right\}.$$

Therefore, $q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\}$

$$= q \left\{ \frac{17}{35}, \frac{17}{35}, \cdots \right\}$$

$$< \left\{ \frac{17}{35}, \frac{17}{35}, \cdots \right\}$$

$$= \left\{ \frac{1}{2} \cdot \frac{34}{35}, \frac{1}{2} \cdot \frac{34}{35}, \cdots \right\}$$

$$< \left\{ \frac{1}{2}, \frac{1}{2}, \cdots \right\}$$

$$= V(T(x), T(y)), \text{ for } 0 < q < 1.$$

Theorem: 3.9 Let (X,V) be a complete convex vector metric space with convex structure W which is continuous on third variable, C be a non- empty closed subset of X and $T_i: C \to X$ be a non-self mapping satisfying the condition

$$V(T_{i}(x), T_{i}(y)) \leq q \max \{V(x, y), V(x, T_{i}(x)), V(y, T_{i}(y)), V(x, T_{i}(y)), V(y, T_{i}(x))\}$$

for all $x, y \in C$ and 0 < q < 1 with the additional property $T_i(\partial C) \subset C$. If u_i is the fixed point of T_i for $i = 1, 2, 3, \dots$ and $T(x) = \lim_{i \to \infty} T_i(x)$ for all $x \in C$ with $T(\partial C) \subset C$, then T has a unique fixed point u in C iff $u = \lim_{i \to \infty} u_i$.

Proof: We have $T(x) = \lim_{i \to \infty} T_i(x)$ for $x \in C$. For $x, y \in C$, we have $V(T_i(x), T_i(y)) \le q \max \{V(x, y), V(x, T_i(x)), V(y, T_i(y)), V(x, T_i(y)), V(y, T_i(x))\}$ where 0 < q < 1. As $i \to \infty$, $V(T(x), T(y)) \le q \max \{V(x, y), V(x, T(x)), V(y, T(y)), V(x, T(y)), V(y, T(x))\}$ where 0 < q < 1.

Hence by Theorem 3.7, T has a unique fixed point, say $u \in C$. By hypothesis $u_i = T_i(u_i)$ for $i = 1, 2, 3, \cdots$.

Now for 0 < q < 1, we have

$$\begin{split} V(u,u_{i}) &= V(T(u),T_{i}(u_{i})) \\ &\leq V(T(u),T_{i}(u)) + V(T_{i}(u),T_{i}(u_{i})) \\ &\leq V(T(u),T_{i}(u)) + q \max \begin{cases} V(u,u_{i}),V(u,T_{i}(u)),V(u_{i},T_{i}(u_{i})), \\ V(u,T_{i}(u_{i})),V(u_{i},T_{i}(u)) \end{cases} \\ &\leq V(T(u),T_{i}(u)) + q \max \{V(u,u_{i}),V(u,T_{i}(u)),V(u,u_{i}) + V(u,T_{i}(u))\} \\ &\leq V(T(u),T_{i}(u)) + q \{V(u,u_{i}) + V(T(u),T_{i}(u))\}, \end{split}$$

which implies that,

$$V(u, u_i) \le \left(\frac{1+q}{1-q}\right) V(T(u), T_i(u)) \to 0 \text{ as } i \to \infty$$

Therefore, $u = \lim_{i \to \infty} u_i$.

Conversely, let $u = \lim_{i \to \infty} u_i$, then

$$V(T_{i}(u), T_{i}(u_{i})) \leq q \max \begin{cases} V(u, u_{i}), V(u, T_{i}(u)), V(u_{i}, T_{i}(u_{i})), \\ V(u, T_{i}(u_{i})), V(u_{i}, T_{i}(u)) \end{cases}$$

which implies that,

$$V(T_{i}(u), u_{i}) \leq q \max\{V(u, u_{i}), V(u, T_{i}(u)), V(u_{i}, T_{i}(u))\}$$

Taking limit as $i \rightarrow \infty$, we have

$$V(T(u), u) \le q V(u, T(u))$$

So, $(1-q)V(u,T(u)) \le \theta$ which gives that T(u) = u.

We now prove a fixed point theorem for multivalued mappings. For this purpose we need the following notations.

Notations: Let (X, V) be a vector metric space and let A, B be any two subsets of X. We denote

$$D(A,B) = \inf_{x \in A, y \in B} V(x,y) = \left(\inf_{x \in A, y \in B} a_1(x,y), \inf_{x \in A, y \in B} a_2(x,y), \cdots, \inf_{x \in A, y \in B} a_n(x,y), \cdots\right)$$
$$\rho(A,B) = \sup_{x \in A, y \in B} V(x,y) = \left(\sup_{x \in A, y \in B} a_1(x,y), \sup_{x \in A, y \in B} a_2(x,y), \cdots, \sup_{x \in A, y \in B} a_n(x,y), \cdots\right)$$
$$where V(x,y) = \left\{a_i(x,y)\right\}.$$
$$BN(X) = \left\{A : \Phi \neq A \subset X \text{ and } \delta(A) < +\infty\right\}.$$

Theorem: 3.10 Let (X, V) be a complete convex vector metric space with convex structure W which is continuous on third variable, C be a non-empty closed subset of X and $F: C \to BN(X)$ be a multivalued mapping satisfying the condition

$$\rho(F(x), F(y)) \le q \max\{V(x, y), \rho(x, F(x)), \rho(y, F(y)), D(x, F(y)), D(y, F(x))\}$$
(3.2)
for all $x, y \in C$ and $0 < q < 1$. If F has the additional property $F(\partial C) \subset C$ where $F(\partial C) = \bigcup\{F(x) : x \in \partial C\}$, then F has a unique fixed point u in C and $F(u) = \{u\}$.

Proof: Take 0 < a < 1 and define a single valued mapping $T: C \to X$ as follows: For each $x \in C$, let T(x) be a point of F(x), which satisfies the condition

$$V(x,T(x)) \ge q^a \rho(x,F(x)).$$

© 2011, IJMA. All Rights Reserved

Then T has the property $T(\partial C) \subset C$ since $F(\partial C) \subset C$. Now for every $x, y \in C$, we have

$$V(T(x), T(y)) \leq \rho(F(x), F(y))$$

$$\leq q \max\{V(x, y), \rho(x, F(x)), \rho(y, F(y)), D(x, F(y)), D(y, F(x))\}$$

$$= q q^{-a} \max\{q^{a} V(x, y), q^{a} \rho(x, F(x)), q^{a} \rho(y, F(y)), q^{a} D(x, F(y)), q^{a} D(y, F(x))\}$$

$$\leq q^{1-a} \max\{V(x, y), V(x, T(x)), V(y, T(y)), V(y, T(y)), V(y, T(x))\}$$

for 0 < q < 1.

Hence by Theorem 3.7, T has a unique fixed point in C. Let $u \in C$ be such that u = T(u).

Clearly u = T(u) implies $u \in F(u)$. Since F satisfies (3.2), $u \in F(u)$ implies $\rho(F(u), F(u)) \le q \ \rho(u, F(u))$.

This may happen only if $F(u) = \{u\}$. Therefore, $u \in C$ is a fixed point of T iff u is a fixed point of F. Thus F has a unique fixed point u in C and $F(u) = \{u\}$.

REFERENCES:

[1] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, **57** (2000), 31-37.

[2] Ljiljana Gajić, Quasi-contractive non-self mappings on Takahashi convex metric spaces, Novi Sad J. Math., **30** (2000), 41-46.

[3] B. K. Lahiri and Pratulananda Das, Banach's fixed point theorem in a vector metric space and in a generalized vector metric space, Journal of Calcutta Mathematical Society, **1** (2004), 69-74.

[4] T. K.Sreenivasan, Some properties of distance functions, Jour. Indian Math. Soc., 11(1947), 38-43.

[5] W. Takahashi, A convexity in metric space and non-expansive mappings, I, Kodai Math. Sem. Pep., **22** (1970), 142-149.
