CHARACTERS OF NAGENDRAM Γ-SEMI SUB NEAR-FIELD SPACE
OF A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD

DR N V NAGENDRAM*

Professor of Mathematics,
Kakinada Institute of Technology & Science (K.I.T.S.),
Department of Humanities & Science (Mathematics),
Tirupathi (Vill.) Peddapuram (M), Divili 533 433
East Godavari District. Andhra Pradesh. INDIA.

(Received On: 21-07-19; Revised & Accepted On: 25-09-19)

ABSTRACT

In this manuscript we obtain the notion of characters of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field almost with few of their characterizations. We also present the interesting relations on orthogonality characters of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field.

Keywords: characters of Nagendram Γ-semi sub near-field space, Γ-near-field space; Γ-Semi sub near-field space of Γ-near-field space, Nagendram Γ-semi sub near-field space, Nagendram Γ-semi near-field space, closed, compact, connected Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field, orthogonality characters of Nagendram Γ-semi sub near-field space.

SECTION 1: INTRODUCTION AND PRELIMINARIES

In this paper author introduced characters of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field and discussed about orthogonality characters of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field.

Definition 1.1: Characters of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. Let N be a Nagendram Γ-semi sub near-field space K of a Γ-near-field space over near-field and ρ : N → NL(V) a complex representation. The character of the representation is defined as the function χρ = χV : N → C and χV (g) = tv (ρ(g)).

Note 1.2: If S, T are complex matrices such that tr(S T) = tr (TS) then tr (STS⁻¹) = tr (S). So tr is independent of the chosen basis. Also, if M : V → V is linear, {v₁, v₂,, vₙ} is a basis of V, v₁*, v₂*,....., vₙ* the corresponding dual basis of V*. Then tr (M) = ∑ᵢ vᵢ* (M(vᵢ)).

If V is a representation of N, then V* = Hom (V, C) is the dual representation of N. If N is compact, we may choose a N-invariant. Hermitian inner product ⟨,⟩ on V. This gives a N-equivalent complex anti-linear map V → V* v → ⟨v,·⟩. This gives an isomorphism V* ≅ V where V is the complex Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field with the same addition as V and scalar multiplication is given by λ . V = λV and λ ∈ C, v ∈ V.

SECTION 2: CHARACTERS OF NAGENDRAM GAMMA SEMI SUB NEAR-FIELD SPACES OF A GAMMA NEAR-FIELD SPACE OVER A NEAR-FIELD.

In this section, author present propositions on characters of Nagendram Gamma semi sub near-field spaces of a Gamma near-field space over near-field.
Proposition 2.1: Let N be a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. Then

(a) a character of a representation of N is a C^∞ function on N,
(b) if V and W are isomorphic representations of N, then $\chi_V = \chi_W$
(c) $\chi_V (ghg^{-1}) = \chi_V (h)$, for all $g, h \in N$,
(d) $\chi_V \otimes W = \chi_V \chi_W$,
(e) $\chi_V \odot W = \chi_V \chi_W$,
(f) $\chi_V \cdot (\rho(g)) = \chi_V (\rho(g)) = \chi_V (\rho(g^{-1}))$,
(g) $\chi_V (1) = \dim_{C}(V)$.

Proof: Given N be a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field.

(a): By definition of character of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field and $\rho : N \rightarrow NL(V)$ a complex representation. The character of the representation is defined as the function $\chi_{\rho} = \chi_{\rho} : N \rightarrow C$ and $\chi_V (g) = \text{tr} (\rho(g))$ is a complex representation on from C^∞ on N. hence it is obvious that a character of a representation of N is a C^∞ function on N. Hence Proved (a).

(b): If $\rho_1, \rho_2 : N \rightarrow NL(n, C)$ are two representations and

\[
\begin{array}{ccc}
\rho_1(g) & M & \rho_2(g) \\
\downarrow & M & \downarrow \\
C^n & \rightarrow & C^n \\
\end{array}
\]

Commutes then $\text{tr} (\rho_2(g)) = \text{tr} (\rho_1(g))$. Proved (b).

(c) $\text{Tr} (\rho(ghg^{-1})) = \text{tr} (\rho_1(g) (\rho(h)(\rho(g^{-1}))) = \text{tr} (\rho(g))$.

(d) and (e) recall from linear algebra that if $S : V \rightarrow W$ and $T : V \rightarrow V$ are linear, then $\text{tr} (\rho \otimes T) = \text{tr} (S) + \text{tr} (T)$ and $\text{tr} (S \otimes T) = \text{tr} (S) \cdot \text{tr} (T)$.

(f) If $\rho : N \rightarrow NL(V)$ is a representation, (v_1, v_2, \ldots, v_n) is a basis for V and $v_1^*, v_2^*, \ldots, v_n^*$ is the associated dual basis, then

$\chi_{\rho} (g) = \text{tr} (\rho^* (g) v_i^*) = \sum_i v_i^* (\rho(g^{-1}) v_i^*) = \chi_{\rho} (g^{-1})$.

If $(,)$ is an invariant Hermitian inner product, and \{ v_i \} is an orthogonal basis, then

$\text{tr} \rho^*(g) = \sum_i (v_i, v_i^*) \rho(g^{-1}) v_i$

(g) $\chi_V (1) = \text{tr} (\text{id}) = \dim_C V$.

This completes the proof of the proposition.

Proposition 2.2: Let $\rho : N \rightarrow NL(V)$ be a representation of N and $V^g = \{ g \in V : g.v = v \}$.

Then $\int_N \chi_V (g) dg = \dim_{C} V$.

Proof:

Consider $Q : V \rightarrow V$ given by $Q(V) = \int_N \rho(g) v dg$. We claim that Q is a linear N-equivalent map such that $Q(V) \subseteq V^g$ and $Q|V^g = \text{id}_{V^g}$.
It is clear that Q is linear. Now,
\[
Q(\rho(a) v) = \int_N \rho(g) \rho(a) v \, dg = \int_N \rho(\rho(a) v) \, dg = \int_N \rho(g) v \, dg = Q(v) = \int_N \rho(g) v \, dg
\]

and so $Q(v) \subseteq V^N$ and $Q(\rho(a) . v) = Q(v)$ for all $g \in N$ and $v \in V$. Also if $v \in V^N$ we have
\[
Q(v) = \int_N \rho(g) c \, dg = \int_N v \, dg = v. \quad \text{since} \quad \int_N dg = 1.
\]

This claim implies that $\text{tr}(Q) = \dim V^N$. On the other hand,
\[
\text{Tr}(Q) = \sum_{ii} (\chi_L, \chi_M) = \int_N \chi_L(g) \chi_M(g) \, dg = \dim C(L, M).
\]

In particular, if L, M are irreducible, then $(\chi_L, \chi_M) = \begin{cases} 0 & L \cong M \\ 1 & L \text{ not } \cong M \end{cases}$

Proof:

\[
\int_N (\chi_L, \chi_M) (g) \, dg = \int_N \chi_{\text{Hom}}(L, M) (g) \, dg = \text{Hom}(L, M)^N = \text{Hom}_N(L, M).
\]

This completes the proof of the theorem.

ACKNOWLEDGMENT

Dr N V Nagendram being a Professor is indebted to the referee for his various valuable comments leading to the improvement of the advanced research article in algebra of Mathematics. For the academic and financial year 2019, this work was supported by our Hon’ble chairman Sri B. Srinivasa Rao, Kakinada Institute of Technology & Science (K.I.T.S.), R&D education Department Humanities & sciences (Mathematics), Divili 533 433. Andhra Pradesh INDIA.

REFERENCES

© 2019, IJMA. All Rights Reserved 3

19. N V Nagendram research paper on "Near Left Almost Near-Fields (N-LA-NF)" communicated to for 2nd international conference by International Journal of Mathematical Sciences and Applications, IJM@ mindreader publications, New Delhi on 23-04-2012 also for publication.

20. N V Nagendram, T Radha Rani, Dr T V Pradeep Kumar and Dr Y V Reddy “A Generalized Near Field and (m, n) Bi-Ideals over Noetherian regular Delta-near rings (GNF-(m, n) BI-NR-delta-NR)" published in an International Journal of Theoretical Mathematics and Applications (TMA), Greece, Athens, dated 08-04-2012.

24. N V Nagendram, Ch Padma, Dr T V Pradeep Kumar and Dr Y V Reddy "Ideal Comparability over Noetherian Regular Delta Near Rings(IC-NR-Delta-NR)" Published in International Journal of Advances in Algebra (IIAJA, Jordan), ISSN 0973-6964 Vol:5:NO:1(2012), pp.43-53 @ Research India publications, Rohini, New Delhi.

29. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Bounded Matrix over a Noetherian Regular Delta Near Rings (BMNR-delta-NR)”, Int. J. of Contemporary Mathematics,Vol.2, No. 1-2, Jan-Dec 2011, Copyright @ Mind Reader Publications, ISSN No: 0973-6298, pp.11-16

© 2019, IJMA. All Rights Reserved

34. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy Some Fundamental Results on P- Regular delta-Near–Rings and their extensions (PNR-delta-NR)”, International Journal of Contemporary Mathematics, IJCM, Jan-December’2011, Copyright@MindReader Publications, ISSN:0973-6298, vol.2.No.1-2, PP.81-85.

37. N VNagendram1, N Chandra Sekhara Rao2 "Optical Near field Mapping of Plasmonic Nano Prisms over Noetherian Regular Delta Near Fields (ONFMPN-NR-Delta-NR)" accepted for 2nd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA@ mind reader publications, New Delhi going to conduct on 15 – 16 December 2012 also for publication.

40. N V Nagendram “Amenability for dual concrete complete near-field spaces over a regular delta near-rings (ADC-NFS-R-δ-NR)” accepted for 3nd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA@ mind reader publications, New Delhi going to conduct on 15–16th December 2014 also for publication.

41. N V Nagendram "Characterization of near-field spaces over Baer-ideals" accepted for 4th international Conference by International Journal Conference of Mathematical Sciences and Applications, IJCMSA@ mind reader publications, New Delhi going to conduct on 19–20th December 2015 at Asian Institute of Technology AIT, Klaung Lange 12120, Bangkok, Thailand.

57. N V Nagendram "Tensor product of a near-field space and sub near-field space over a near-field" published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.8, No.6, Pg. 8 – 14, 2017.

61. Dr. NV Nagendram "A Note on B₁-Near-fields over R-delta-NR (B₁-NFS-R-δ-NR)" Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.6, No.8, Pg. 144 – 151, 2015.

64. Dr. N V Nagendram "Certain Near-field spaces are Near-fields(C-NFS-NF)" Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.7, No.4, Pg. 1 – 7, 2016.

68. Dr N V Nagendram, “Closed (or open) sub near-field spaces of commutative near-field space over a near-field”, 2016, Vol.7, No.9, ISSN NO.2229 – 5046, Pg No.57 – 72.

72. Dr N V Nagendram, “Commutative Theorem on near-field space and sub near-field space over a near-field” IJMA July, 2017, Vol.8, No.7, ISSN NO.2229 – 5046, Pg No. 1 – 7.

73. Dr N V Nagendram, "Project on near-field spaces with sub near-field space over a near-field", IJMA Oct, 2017, Vol.8, No.11, ISSN NO.2229 – 5046, Pg No. 7 – 15.

76. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Fuzzy sub near-field spaces in Γ-near-field space over a near-field “, IJMA Nov, 2017, Vol.8, No, 12, ISSN NO.2229 – 5046, Pg No.188 – 196.
77. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Gamma Semi Sub near-field spaces in gamma near-field space over a near-field PART I”, IJMA Jan, 2018, Vol. 9, No, 2, ISSN NO.2229 – 5046, Pg No.135 – 145.
78. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Gamma Semi Sub near-field spaces in gamma near-field space over a near-field PART II”, IJMA 14 Feb, 2018, Vol. 9, No, 3, ISSN NO.2229 – 5046, Pg No.6 – 12.
80. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Gamma Semi Sub near-field spaces in gamma near-field space over a near-field PART IV”, IJMA 09 Mar, 2018, Vol. 9, No, 4, ISSN NO.2229 – 5046, Pg No.1 – 14.
82. Dr N V Nagendram, “Topological Nagendram Gamma-Semi Sub near-field spaces in gamma near-field space over a near-field”, IJMA 29 May, 2018, Vol. 9, No, 7, ISSN NO.2229 – 5046, Pg No.7 – 18.
84. Dr N V Nagendram “Representation of Nagendram Gamma-semi sub near-field spaces of a Gamma-near-field space over near-field” November 2018, IJMA, Vol. 9, No, 11, ISSN NO.2229 – 5046, Pg No.46 – 54.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2019. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]