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ABSTRACT 
In this paper, we first develop advection-diffusion equation by considering mass conservation in a fixed control 
volume. Firstly, we consider the one dimensional situation where there is advection but no diffusion and we also 
described Gaussian plume model for the variation of concentration of air pollutants, from an elevated source in 
presence of wind, in steady state. 
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1. INTRODUCTION 
 
The air pollution dispersion is a complex problem. It covers the pollutant transport and diffusion in the atmosphere. The 
transport of pollutant occurs in a large variety of environmental, agricultural and industrial processes. Accurate 
prediction of the transport of these pollutants is crucial to the effective management of these processes. The transport of 
these pollutants can be adequately described by the advection-diffusion equation. The problems related to environment 
such as deforestation, release of toxic materials, solid waste disposals, air pollution and many more, have attracted 
attention much greater than ever before. The pollutant dispersion in the atmosphere depends on pollutant features, 
meteorological, emission and terrain conditions. Physical and mathematical models are developed to describe the air 
pollution dispersion. Physical models are small scale representations of the atmospheric flow carried out in wind 
tunnels.  
 
The advection-diffusion equation arises in a number of physical problems in engineering including migration of 
contaminants in a stream, smoke plume in atmosphere, dispersion of chemicals in reactors, tracer dispersion in a porous 
medium, etc. 
 
The mass transport is the transport of solute in a solvent. The solute is dissolve and the solvent is the dissolver. 
Generally, the liquids are classified as solvent because they plays an important role in industry. In environmental 
applications, these solvents are solutes and water or air is usually the solvents. Also advection-diffusion arises in a 
number of biological transport problems in which a bulk fluid like water transports a solute or even a drug with 
concentration. The substance being transported can be either dissolved or particulate substances.  
 
Air quality is an important social issue. Acid rain is a regional problem, affected by industrial by-products of toxic gas; 
it pollutes the ground and damages vegetation. In urban areas it is the ozone concentration that is considered to be the 
biggest health hazard. Air quality is mathematical description of atmospheric transport, diffusion, and chemical reaction 
of pollutants. The unknown variables are concentrations of chemical species in air. The aim in developing and studying 
such models is to be able to predict how peak concentrations will change in response to prescribed changes in 
meteorology and in the source of pollution. Ozone air quality modeling has been one of the main areas of emphasis in 
the United States in the last twenty years; it is of particular interest to the automobile industry. In this chapter we 
consider the modeling of transport and diffusion of single chemical, say ozone, ignoring the various underlying 
processes. 
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Since the pioneering work of Roberts [15] and Sutton [16], analytical and approximate solutions for the atmospheric 
dispersion problem have been derived under a wide range of simplifying assumptions, as well as various boundary 
conditions and parameter dependencies. These analytical solutions are especially useful to engineers and environmental 
scientists who study pollutant transport, since they allow parameter sensitivity and source estimation studies to be 
performed. The simplest of these exact solutions is called the Gaussian plume, corresponding to a continuous point 
source that emits contaminants into a unidirectional wind blowing in a domain of infinite extent. This Gaussian plume 
solution, along with numerous variants, has been incorporated into industry-standard software packages that are used 
for monitoring and regulatory purposes. Gaussian plume models have been applied extensively in the study of 
emissions from large industrial operations as well as a variety of other applications including ash release from volcanic 
eruptions [23]; seed, pollen, and insect dispersal [24, 4, 27]; and odor propagation from livestock facilities [21]. The 
same approach (with slight modifications) may also be used to describe the flow of gas or liquid in porous soils and 
rocks, with applications to oil reservoirs, groundwater, and pollutant transport in aquifers, etc. [20, 9]. There has been a 
great deal of recent interest in applications relating to nuclear and biological contaminant release [8, 13], for which the 
importance of analytical approaches is nicely summed up in a review article by Settles: “plume dispersion modeling is 
central to homeland security” [7]. 
 
Analytical solutions of equations are of fundamental importance in understanding and describing physical phenomena 
[18]. Many operative models (using an analytical formula for the air pollution concentration) adopt empirical 
algorithms for describing dry deposition. The Gaussian plume equation was modified to include source depletion 
models [5, 17]. The solutions proposed by [6, 19, 25] also retained the framework of invariant wind speed and eddies 
with height (as the Gaussian approach). More recent analytical solutions of the advection–diffusion equation with dry 
deposition at the ground have utilized height-dependent wind speed and eddy diffusivities [3, 12, 14]. However, these 
solutions are restricted to the specific case in which the source is located at the ground level and/or with restrictions to 
the wind speed and eddy diffusivity vertical profiles. 
 
In this paper, we first develop advection-diffusion equation by considering mass conservation in a fixed control 
volume, we also described Gaussian plume model for the variation of concentration of air pollutants, C, from an 
elevated source in presence of wind, in steady state (Stockie, 2011) [26]. 
 
2. Derivation of advection-diffusion equation: 
 
We will develop the diffusion equation by considering mass conservation in a fixed control volume. The mass 
conservation equation can be written as [2, 10] 

                 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝐹𝐹𝑟𝑟 + 𝑆𝑆𝑜𝑜𝐹𝐹𝑟𝑟𝑆𝑆𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑆𝑆𝑆𝑆𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.              (2.1) 
We will use the rectangular control volume for the development of mass conservation (diffusion) equation.  
 
2.1. Diffusive flux rate and Convective flux rate: 
In the development of advection-diffusion equation, we have need of two types of flux rates one is diffusive flux rates 
and other is convective flux rates. The molecules of fluid “at rest” are still moving because of their internal energy. 
They are vibrating, in a solid, the molecules are held in a lattice. In a gas or liquid they are not, so they move around 
because of this vibration. Since the molecules are vibrating in all directions, the movement appears to be random. The 
molecules are generally much farther apart in gases, so the diffusivity of a compound in a gas is significantly larger 
than in liquid. Fick’s law is a physically meaningful mathematical description of diffusion that is based on the analogy 
to heat conduction (Fick, 1855). Fick’s law state two rule. (1) Diffusion occurs in the direction from high concentration 
to low concentration. (2) The rate of diffusion is proportional to the difference in the concentration. Let us consider one 
side of our control volume, normal to the 𝐹𝐹 axis, with an area 𝐴𝐴𝐹𝐹 , shown in figure 3.1. Fick’s law describes the 
diffusive flux rate as 

Diffusive flux rate= −𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹  

 𝐴𝐴𝐹𝐹                                                                                                        (2.1.1) 
where 𝜕𝜕 is concentration of the solute, 𝐷𝐷 is the diffusion coefficient of the solute in the solvent (water), which relates to 
how fast and how far the tracer molecules are moving to and fro, and  𝜕𝜕𝜕𝜕

𝜕𝜕𝐹𝐹  
  is the gradient of concentration with respect 

to 𝐹𝐹, or the slope of 𝐹𝐹. Thus the diffusive flux rate depends on the diffusion coefficient and the gradient of 
concentration with distance. 
 
The convective flux rate into our control volume is simply the chemical mass carried in by convection. If we consider 
the box as a control volume, except with a velocity component u in the 𝐹𝐹 direction, the convective flux rate into the box 
from the left hand side is 

�𝜕𝜕𝑜𝑜𝑖𝑖𝐶𝐶𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝐶𝐶𝑟𝑟𝑓𝑓𝑖𝑖𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � = �𝑉𝑉𝑟𝑟𝐹𝐹𝑜𝑜𝑆𝑆𝑖𝑖𝑟𝑟𝑉𝑉 𝑆𝑆𝑜𝑜𝐴𝐴𝑐𝑐𝑜𝑜𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟 
𝑖𝑖𝑜𝑜𝑟𝑟𝐴𝐴𝑟𝑟𝐹𝐹 𝑟𝑟𝑜𝑜 𝑠𝑠𝐹𝐹𝑟𝑟𝑓𝑓𝑟𝑟𝑆𝑆𝑟𝑟 � × [𝑆𝑆𝐹𝐹𝑟𝑟𝑓𝑓𝑟𝑟𝑆𝑆𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] ×  [𝜕𝜕𝑜𝑜𝑖𝑖𝑆𝑆𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖]                  (2.1.2) 

𝜕𝜕𝑜𝑜𝑖𝑖𝐶𝐶𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹 𝐴𝐴𝐹𝐹  𝜕𝜕                                                                                                   (2.1.3) 
where 𝐹𝐹 is the component of velocity in the 𝐹𝐹- direction and 𝐴𝐴𝐹𝐹  is the surface area normal to the 𝐹𝐹 axis on then side of 
the box. All six sides of our box would have a convective flux through them, just as they would have a diffusive flux. 
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2.2. Accumulation, Source and sink rate:  
The rate of accumulation is the change of chemical mass per unit time, or Rate of accumulation is given as 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑓𝑓 𝑟𝑟𝑆𝑆𝑆𝑆𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖 = 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟  

                                                                                         (2.2.1) 
where  𝑉𝑉�  is the volume of the box. The solute chemical can appear or disappear through chemical reaction. For both 
cases the source and sink rates are given as 

Source - Sink rate = 𝑆𝑆𝑉𝑉                                                                                                                  (2.2.2) 
where 𝑆𝑆 is the net source/sink rate per unit volume. 
 
2.3. Mass balance on control volume 
A mass balance on one compound in our box is based on the principle that whatever comes in must do one of three 
things: (1) be accumulated in the box, (2) flux out off another side, or (3) react in the source/sink terms. We will begin 
by assigning lengths to the sides of our box 𝑑𝑑𝐹𝐹,𝑑𝑑𝑉𝑉 𝑟𝑟𝑖𝑖𝑑𝑑 𝑑𝑑𝑑𝑑, as shown in Figure Then, for simplicity in this mass 
balance, we will arbitrarily designate thr flux as positive in the + 𝐹𝐹- direction, + 𝑉𝑉- direction, and + 𝑑𝑑- direction. The 
𝐹𝐹- direction flux, so designed then, two flux terms in equation (2.1) become 

Flux rate in + Difference in flux rate = Flux rate out;                                                                    (2.3.1) 
or because a difference can be equated to a gradient times distance over which the gradient is applied, 

Flux rate out - Flux rate in = Gradient in flux rate × Distance                                                      (2.3.2) 
 
Equation (2.3.2) can thus be applied along each spatial component as 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝐹𝐹 = 𝜕𝜕
𝜕𝜕𝐹𝐹

 (𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝐹𝐹                                                                                (2.3.3) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝑉𝑉 = 𝜕𝜕
𝜕𝜕𝐹𝐹

 (𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉                                                                                (2.3.4) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝑑𝑑 = 𝜕𝜕
𝜕𝜕𝐹𝐹

 (𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑                                                                                (2.3.5) 
 
We will discuss the convective and diffusive flux rates separately, because they are separated in the final advection-
diffusion equation, and it is convenient to make that break now. The 𝐹𝐹- component of the convective flux rate is equal 
to the 𝐹𝐹- component of the velocity 𝐹𝐹, times the concentration, 𝜕𝜕, times the area of our box normal to the 𝐹𝐹- axis. 
Therefore, in term of the convective rates, equation (2.3.3) becomes 
 
𝜕𝜕𝑜𝑜𝑖𝑖𝐶𝐶𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝑖𝑖𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝐹𝐹 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 ( 𝐹𝐹 𝜕𝜕 𝐴𝐴𝐹𝐹)𝑑𝑑𝐹𝐹 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 ( 𝐹𝐹 𝜕𝜕 )𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                                         (2.3.6) 

 
Because the normal area, 𝐴𝐴𝐹𝐹 = 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑 of our box does not change with 𝐹𝐹, it can be pulled out of the partial with respect 
to 𝐹𝐹. This is done in the second part of equation (2.3.6). The same can be done with the 𝑉𝑉- and 𝑑𝑑- components of 
convective flux rate. 
 
𝜕𝜕𝑜𝑜𝑖𝑖𝐶𝐶𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝑖𝑖𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝑉𝑉 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 � 𝐶𝐶 𝜕𝜕 𝐴𝐴𝑉𝑉�𝑑𝑑𝑉𝑉 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 ( 𝐶𝐶𝜕𝜕 )𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                                          (2.3.7)                                                                      

 
𝜕𝜕𝑜𝑜𝑖𝑖𝐶𝐶𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝑖𝑖𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝑑𝑑 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 ( 𝑤𝑤 𝜕𝜕 𝐴𝐴𝑍𝑍  )𝑑𝑑𝐹𝐹 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 ( 𝑤𝑤 𝜕𝜕 )𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                                              (2.3.8) 

 
Finally, adding equations (2.3.6), (2.3.7) and (2.3.8) results in the total net convective flux rate 
 
𝑁𝑁𝑟𝑟𝑟𝑟 𝑆𝑆𝑜𝑜𝑖𝑖𝐶𝐶𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝑖𝑖𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = � 𝜕𝜕

𝜕𝜕𝐹𝐹
 ( 𝐹𝐹 𝜕𝜕 ) + 𝜕𝜕

𝜕𝜕𝑉𝑉
 ( 𝐶𝐶 𝜕𝜕 ) + 𝜕𝜕

𝜕𝜕𝑑𝑑
 ( 𝑤𝑤 𝜕𝜕 )�  𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                                      (2.3.9) 

 
For net diffusive flux rate in the 𝐹𝐹- direction, equation (2.3.3) becomes 
 
𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝐹𝐹𝑠𝑠𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ( 𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝐹𝐹 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 �−𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝐹𝐹
 𝐴𝐴𝐹𝐹�𝑑𝑑𝐹𝐹 = 𝜕𝜕

𝜕𝜕𝐹𝐹
 �−𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝐹𝐹
 � 𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                             (2.3.10)  

 
Write out the diffusive flux rate in the 𝑉𝑉 and 𝑑𝑑 - direction on a separate sheet of paper. The result is similar to equation 
(2.3.10). 
𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝐹𝐹𝑠𝑠𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ( 𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝑉𝑉 = 𝜕𝜕

𝜕𝜕𝑉𝑉
 �−𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝑉𝑉
 𝐴𝐴𝑉𝑉� 𝑑𝑑𝑉𝑉 = 𝜕𝜕

𝜕𝜕𝑉𝑉
 �−𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝑉𝑉
 � 𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                             (2.3.11) 

𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝐹𝐹𝑠𝑠𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ( 𝑜𝑜𝐹𝐹𝑟𝑟 − 𝑖𝑖𝑖𝑖)𝑑𝑑 = 𝜕𝜕
𝜕𝜕𝑑𝑑

 �−𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 𝐴𝐴𝑑𝑑� 𝑑𝑑𝑑𝑑 = 𝜕𝜕
𝜕𝜕𝑑𝑑

 �−𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 � 𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                              (2.3.12) 
 
Finally, we can add equation (2.3.10) to (2.3.12) to write an equation describing the net diffusive flux rate (out-in) out 
of the control volume: 
𝑁𝑁𝑟𝑟𝑟𝑟 𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝐹𝐹𝑠𝑠𝑖𝑖𝐶𝐶𝑟𝑟 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = − � 𝜕𝜕

𝜕𝜕𝐹𝐹
 � 𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝐹𝐹
 � + 𝜕𝜕

𝜕𝜕𝑉𝑉
 � 𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝑉𝑉
 � + 𝜕𝜕

𝜕𝜕𝑑𝑑
 � 𝐷𝐷 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
 �� 𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑                                          (2.3.13) 
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The diffusion coefficient is often not a function of distance, such that equation (2.3.13) can be further simplified by 
putting the constant value diffusion coefficient in front of the partial derivative. However, we will also be substituting 
turbulent diffusion and dispersion coefficients for 𝐷𝐷 when appropriate to certain applications, and they are not always 
constant in all directions. Therefore, we will leave the diffusion coefficient inside the brackets. We can now combine 
equations (2.1), (2.2.1), (2.2.2), (2.3.9) and (2.3.13) into a mass balance on our box for Cartesian coordinates. After 
dividing by 𝑉𝑉�⃗ = 𝑑𝑑𝐹𝐹 𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑 and moving the diffusive flux terms to the right-handed side, this mass balance is                    

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+ 𝜕𝜕
𝜕𝜕𝐹𝐹

(𝐹𝐹 𝜕𝜕) + 𝜕𝜕
𝜕𝜕𝑉𝑉

(𝐶𝐶 𝜕𝜕) + 𝜕𝜕
𝜕𝜕𝑑𝑑

(𝑤𝑤 𝜕𝜕) = � 𝜕𝜕
𝜕𝜕𝐹𝐹

 �𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹

 � + 𝜕𝜕
𝜕𝜕𝑉𝑉

 �𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉

 � + 𝜕𝜕
𝜕𝜕𝑑𝑑

 �𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
�� + 𝑆𝑆                (2.3.14) 

 
If the flow is assumed to be incompressible, the incompressible flow assumption is most always accurate for water in 
environmental applications and is often a good assumption for air. Then by using continuity equation, the above 
equation reduces to                                           

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

 + 𝐹𝐹 𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹

 + 𝐶𝐶 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉

 + 𝑤𝑤 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 = 𝐷𝐷 � 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝐹𝐹 2 + 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑉𝑉 2 + 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑 2� + 𝑆𝑆                                                               (2.3.15) 

 
Then we can consider the particular case of equation of above equation without convective term. Then equation reduces 
to diffusion equation in three dimensions without any source. General solutions of the diffusion equation can be 
obtained for a various initial and boundary conditions provided the diffusion coefficient is constant  
 
3. AIR QUALITY MATHEMATICAL MODELING 
 
Advection is essentially the effect of the wind “blowing” the fumes in a given direction without significantly dispersing 
them. A good example is a distant cloud moving with a fixed velocity in a given direction without apparently altering 
its size or shape.  
 
3.1. The mathematical air quality model: 
We denote by 𝑆𝑆 the concentration of one species, it is function of position  (𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3) and of time 𝑟𝑟. The species is 
being transported by the wind, whose velocity 𝐹𝐹�⃗ = 𝐹𝐹�⃗ (𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3, 𝑟𝑟) is assumed to be known. Particles of the species are 
also diffusing locally, they tend to move from areas of high concentration to areas of low concentration. If diffusion is 
ignored then the transport equation is [1] 

𝜕𝜕𝑆𝑆
𝜕𝜕𝐹𝐹

+ ∇. (𝐹𝐹�⃗ 𝑆𝑆) = 0.                                                                                                                               (3.1) 
 
This is in some contexts also called the continuity equation. If we integrate (3.1) over any bounded domain 𝐷𝐷 in 𝑅𝑅3 we 
get 

𝒅𝒅
𝒅𝒅𝒅𝒅

 ∭𝒄𝒄(𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3, 𝑟𝑟)𝒅𝒅𝐹𝐹1𝒅𝒅𝐹𝐹2𝒅𝒅𝐹𝐹3 𝑜𝑜𝐶𝐶𝑟𝑟𝑟𝑟 𝐷𝐷 = ∫∫ 𝑆𝑆 𝐹𝐹�⃗ .𝑖𝑖�⃗ 𝑑𝑑𝑆𝑆 𝑜𝑜𝐶𝐶𝑟𝑟𝑟𝑟 𝜕𝜕𝐷𝐷,                                                (3.2) 
where 𝜕𝜕𝐷𝐷 is the boundary of 𝐷𝐷 and 𝑖𝑖�⃗  is the outward unit normal to 𝜕𝜕𝐷𝐷. This equation says that the rate of increase of 
the chemical in any domain 𝐷𝐷 is equal to the flow of chemicals across the boundary. If diffusion is not ignored then 
(3.1) is replaced by a more complicated partial differential equation. 

𝜕𝜕𝑆𝑆
𝜕𝜕𝐹𝐹

+ ∇. (𝐹𝐹�⃗ 𝑆𝑆) = ∑ 𝜕𝜕
𝜕𝜕𝐹𝐹𝑖𝑖

3
𝑖𝑖 ,𝑗𝑗=1 �𝑆𝑆𝑖𝑖𝑗𝑗

𝜕𝜕𝑆𝑆
𝜕𝜕𝐹𝐹𝑖𝑖
�,                                                                                                    (3.3) 

where 𝑆𝑆𝑖𝑖𝑗𝑗  is a positive definite matrix, called the diffusion matrix. 
 
In either case (3.1) or (3.2), we are given the concentration 𝑆𝑆 at an initial time, say at 𝑟𝑟 = 0; 

𝑆𝑆(𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3, 0) = 𝑆𝑆0(𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3)                                                                                                         (3.4) 
and our task is to compute the concentration 𝑆𝑆(𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3, 𝑟𝑟) at subsequent times. 
 
3.2. One dimensional advection equation: 
 
Firstly, we consider the one dimensional situation where there is advection but no diffusion. Suppose at time 𝑟𝑟 = 0 the 
density of the fumes has a distribution given by profile 𝑆𝑆0(𝐹𝐹). This profile moves to the right with the constant wind 
velocity U, giving rise to the moving profile for the concentration  

𝑆𝑆(𝐹𝐹, 𝑟𝑟) = 𝑆𝑆0(𝐹𝐹 − 𝑈𝑈𝑟𝑟).                                                                                                                     (3.2.1) 
 
Differentiating partially, using the chain rule, we get 

𝜕𝜕𝑆𝑆
𝜕𝜕𝐹𝐹

(𝐹𝐹, 𝑟𝑟) = 𝑆𝑆0
, (𝐹𝐹 − 𝑈𝑈𝑟𝑟), 𝜕𝜕𝑆𝑆

𝜕𝜕𝑟𝑟
(𝐹𝐹, 𝑟𝑟) = 𝑆𝑆0

, (𝐹𝐹 − 𝑈𝑈𝑟𝑟). (−𝑈𝑈).                                                                  (3.2.2) 
 
Thus giving us the “advection equation” 

𝜕𝜕𝑆𝑆
𝜕𝜕𝑟𝑟

(𝐹𝐹, 𝑟𝑟) + 𝜕𝜕(𝑈𝑈𝑆𝑆)
𝜕𝜕𝐹𝐹

(𝐹𝐹, 𝑟𝑟) = 0                                                                                                              (3.2.3) 
With “initial” condition 𝑆𝑆(𝐹𝐹, 0) = 𝑆𝑆0(𝐹𝐹).In the particular situation described here, we knew the solution of the partial 
differential equation in advance. In a more complicated situation, such as when the “wind velocity” U is not a constant, 
this will not be the case. 
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Looking at the form with the concentration profile (3.2.1) we see that the noxious fumes will arrive at ”your” house in 
the same concentration as they left the factory: very high! Luckily all is not lost! As we have hinted earlier, there is 
another process at work: diffusion. This is the reason that even without the presence of wind, foul smelling odors 
usually disappear after a time. 
 
Now, we ignore diffusion and assume that the wind velocity is only in the horizontal direction. For simplicity we also 
assume that the direction of the wind is fixed. Say, in the x-direction. Then 𝐹𝐹�⃗ = (𝑈𝑈, 0,0) and the transport equation 
reduces to 

𝜕𝜕𝑆𝑆
𝜕𝜕𝑟𝑟

+ 𝜕𝜕(𝑈𝑈𝑆𝑆)
𝜕𝜕𝐹𝐹

= 0;                                                                                                                                (3.2.4) 
 
This is called the advection equation. We also assume that initially c depends only on x, i.e., 

𝑆𝑆(𝐹𝐹, 0) = 𝑆𝑆0(𝐹𝐹) ,             − ∞ < 𝐹𝐹 < ∞.                                                                                          (3.2.5) 
 
The velocity 𝑈𝑈 = 𝑈𝑈(𝐹𝐹) is a function of 𝐹𝐹. To solve (3.2.4), (3.2.5), we rewrite (3.2.5) in the form 

𝜕𝜕𝑆𝑆
𝜕𝜕𝑟𝑟

+ 𝑈𝑈 𝜕𝜕𝑆𝑆
𝜕𝜕𝐹𝐹

= 𝑓𝑓              (𝑓𝑓 = −𝑈𝑈𝐹𝐹𝑆𝑆)                                                                                                 (3.2.6) 
 
And assume that 𝑈𝑈(𝐹𝐹) is continuously differentiable (𝑈𝑈𝐹𝐹 = 𝑑𝑑𝑈𝑈/𝑑𝑑𝐹𝐹). Consider the differential equation      

�𝑑𝑑𝐹𝐹
𝑑𝑑𝑟𝑟

= 𝑈𝑈(𝐹𝐹), 𝑟𝑟 > 0 𝑟𝑟𝑖𝑖𝑑𝑑 𝐹𝐹(0) = 𝐹𝐹0, 𝑟𝑟 = 0  �                                                                                  (3.2.7) 
And denote its solution 𝐹𝐹(𝑟𝑟) by (𝑟𝑟; 𝐹𝐹0). Geometrically, 𝐹𝐹(𝑟𝑟; 𝐹𝐹0) determines a unique curve 𝛾𝛾𝐹𝐹0  passing through the 
point (𝐹𝐹0, 0).we can show that 𝐹𝐹(𝑟𝑟; 𝐹𝐹0) is actually differentiable in the parameter 𝐹𝐹0 and the derivative 

𝑑𝑑(𝑟𝑟) ≡ 𝜕𝜕𝐹𝐹 (𝑟𝑟;𝐹𝐹0) 
𝜕𝜕𝐹𝐹0

                                                                                                                                (3.2.8) 
Satisfies 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

= 𝑈𝑈𝐹𝐹�𝐹𝐹(𝑟𝑟;𝐹𝐹0)�z,    z(0) = 1.                                                                                                     (3.2.9) 
 
We now examine the function 

𝑆𝑆(𝐹𝐹(𝑟𝑟; 𝐹𝐹0), 𝑟𝑟),                                                                                                                                (3.2.10) 
 
as a function of the variable 𝑟𝑟. We find that   

𝜕𝜕𝑆𝑆
𝜕𝜕𝑟𝑟

= 𝜕𝜕𝑆𝑆
𝜕𝜕𝑟𝑟

+ 𝜕𝜕𝑆𝑆
𝜕𝜕𝐹𝐹

𝜕𝜕𝐹𝐹
𝜕𝜕𝑟𝑟

= 𝜕𝜕𝑆𝑆
𝜕𝜕𝑟𝑟

+ 𝑈𝑈 𝜕𝜕𝑆𝑆
𝜕𝜕𝐹𝐹

= 𝑓𝑓 = −𝑈𝑈𝐹𝐹�𝐹𝐹(𝑟𝑟; 𝐹𝐹0)�c,                                                                   (3.2.11) 
or 

𝜕𝜕
𝜕𝜕𝑟𝑟

 𝐹𝐹𝑜𝑜𝑙𝑙𝑆𝑆 == −𝑈𝑈𝐹𝐹�𝐹𝐹(𝑟𝑟; 𝐹𝐹0)�.                                                                                                         (3.2.12) 
It follows that 

𝑆𝑆(𝐹𝐹(𝑟𝑟; 𝐹𝐹0), 𝑟𝑟) = 𝑆𝑆0(𝐹𝐹0) 𝑟𝑟𝐹𝐹𝑐𝑐 �−∫ 𝑈𝑈𝐹𝐹�𝐹𝐹(𝑠𝑠; 𝐹𝐹0)�ds𝑟𝑟
0 �.                                                                    (3.2.13) 

 
Solution of (3.2.4) with (3.2.5) is given by the formula (3.2.13). 
 
4. GAUSSIAN PLUME MODEL 
 
The variation of concentration of air pollutants, C, from an elevated source in presence of wind, in steady state, is 
described by the following partial differential equation (Stockie, 2011) [26] 

𝐹𝐹 𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹

= 𝐾𝐾 �𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑉𝑉2 + 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑑𝑑2�                                                                                                                         (4.1) 

where 𝐹𝐹 is wind speed and K, the diffusion coefficient. Here, wind direction is in x-direction which is horizontal, y is 
horizontal and perpendicular to x, and z-direction is vertical increasing upwards. The source of pollutant having 
strength as Q is located at coordinates: (0,0,H). This source is represented in terms of Delta function as [22] 

𝜕𝜕(0, 𝑉𝑉, 𝑑𝑑)  =  𝑄𝑄𝛿𝛿(𝐹𝐹)𝛿𝛿(𝑉𝑉)𝛿𝛿(𝑑𝑑–𝐻𝐻)                                                                                                     (4.2) 
 
The boundary conditions for the model equations are: 

𝜕𝜕(𝐹𝐹, ±∞, 𝑑𝑑)  =  0                                                                                                                              (4.3) 
𝜕𝜕(𝐹𝐹,𝑉𝑉,∞)  =  0                                                                                                                                 (4.4) 
𝐾𝐾 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
 (𝐹𝐹,𝑉𝑉, 0)  =  0                                                                                                                           (4.5) 

These conditions respectively assume that concentration, 𝜕𝜕 decays to zero as 𝐹𝐹 tends to ∞,𝑉𝑉 tends to ±∞ and flux is 
zero at the earth’s surface. We have all necessary boundary conditions for the air quality equation. This equation can be 
solved by the method of separation of variables. Stockie (2011) has given a detailed analysis of mathematics of this 
solution. The solution for concentration 𝜕𝜕(𝐹𝐹,𝑉𝑉, 𝑑𝑑), called Gaussian plume solution, is given as 

𝜕𝜕(𝐹𝐹,𝑉𝑉, 𝑑𝑑) = 𝑄𝑄
4𝜋𝜋𝐾𝐾𝐹𝐹

𝑟𝑟−
𝑉𝑉2𝐹𝐹
4𝐾𝐾𝐹𝐹 �𝑟𝑟−�

𝐹𝐹 (𝑑𝑑−ℎ )
4𝐾𝐾𝐹𝐹 �

2

+ 𝑟𝑟−�
𝐹𝐹 (𝑑𝑑+ℎ )

4𝐾𝐾𝐹𝐹 �
2

�                                                                           (4.6) 
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This equation is made of simple exponential functions. Each exponential function is Gaussian type, like 𝑟𝑟−𝑐𝑐2having 
value as one at 𝑐𝑐 = 0 and decaying to zero as 𝑐𝑐 tends to infinity. This solution can be used to build solution for various 
sources located at various locations as the air quality equation given above is linear and principle of superposition can 
be used. Stockie (2011) has presented several numerical results. This model can be used both for physical 
understanding and also regulations. 
 
For transient release of the air pollutants, the model equation for concentration 𝜕𝜕(𝐹𝐹,𝑉𝑉, 𝑑𝑑, 𝑟𝑟) is given as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+ 𝐹𝐹 𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹

= 𝐾𝐾 �𝜕𝜕
2𝜕𝜕

𝜕𝜕𝐹𝐹2 + 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑉𝑉2 + 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑑𝑑2�                                                                                                      (4.7) 
 
We now have 𝑄𝑄 as a function of time, non-zero for 𝑟𝑟 ≥ 0. We also need initial condition for concentration, which can 
be taken as 

𝜕𝜕(𝐹𝐹,𝑉𝑉, 𝑑𝑑, 0)  =  0                                                                                                                               (4.8) 
 
The boundary condition in x-coordinate is 

𝜕𝜕(±∞,𝑉𝑉, 𝑑𝑑)  =  0                                                                                                                               (4.9) 
 
All other boundary conditions remain the same as in steady state case. The solution is given as [11] 

𝜕𝜕(𝐹𝐹,𝑉𝑉, 𝑑𝑑, 𝑟𝑟) = ∫ 𝑄𝑄(𝜏𝜏)

(2𝜋𝜋𝐾𝐾)
3
2

exp ��𝐹𝐹−𝐹𝐹(𝑟𝑟−𝜏𝜏)�
2
−𝑉𝑉2

4𝐾𝐾(𝑟𝑟−𝜏𝜏)
�𝐹𝐹

0  �exp �− (𝑑𝑑−𝐻𝐻)2

4𝐾𝐾(𝑟𝑟−𝜏𝜏)
� + exp �− (𝑑𝑑+𝐻𝐻)2

4𝐾𝐾(𝑟𝑟−𝜏𝜏)
�� 𝑑𝑑𝜏𝜏                  (4.10) 

This solution can be used to find the distribution of air pollutants for given location and time history of the sources. 
 
5. CONCLUSIONS  
 
Analytical solutions of the one dimensional advection equation have been provided. We also described Gaussian plume 
model for the variation of concentration of air pollutants, C, from an elevated source in presence of wind, in steady 
state. This solution can be used to find the distribution of air pollutants for given location and time history of the 
sources. 
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