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ABSTRACT 
In [1] we decribe the enlargement of the our universe by compressed numbers. Present paper describes the parallel 
universes by exploded numbers. Introduction shows the most important concepts of the theory of exploded and 
compressed numbers. Part 1 summarizes the algebra of exploded numbers detailed in [2]. Part 2 shows some 
applications concerning the box – model of multiverse which is built by parallel universes.  
 
  
INTRODUCTION 

 
Let x be an arbitrary real number. The ordered pair 
(0.1)                                              �(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ tanh−1{|𝑥𝑥|} , (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ [|𝑥𝑥|]� 

is called exploded x (or exploded of x) and denoted by 𝑥𝑥�. (Here, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 = �
1, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0
0, 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0
−1, 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0

�,     

  tanh−1 𝑥𝑥 = 1
2
𝑙𝑙𝑠𝑠 1+𝑥𝑥

1−𝑥𝑥
 ,−1 < 𝑥𝑥 < 1 ; |𝑥𝑥| = �

𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0
0, 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0
−𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0

�; [𝑥𝑥] is the greatest integer number, which is less than or 

equal to x and {𝑥𝑥} = 𝑥𝑥 − [𝑥𝑥].)  Moreover, we mention 𝑥𝑥� as an exploded number. The identity 
(0.2)                      (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ (𝑡𝑡𝑡𝑡𝑠𝑠ℎ−1{|𝑥𝑥|}) = 𝑡𝑡𝑡𝑡𝑠𝑠ℎ−1(𝑥𝑥 − (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥)[|𝑥𝑥|]),   𝑥𝑥 ∈ ℝ. 
 
yields that for any pair 𝑥𝑥 , 𝑦𝑦 ∈ ℝ , 𝑥𝑥� = 𝑦𝑦� if and only if 𝑥𝑥 = 𝑦𝑦. We give an ordering for exploded numbers by 
 
Definition 0.3: (Ordering of exploded numbers.) 
For any pair 𝑥𝑥 , 𝑦𝑦 ∈ ℝ we say, that 𝑥𝑥� < 𝑦𝑦� if 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥) ∙ [|𝑥𝑥|] < (𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥) ∙ [|𝑦𝑦|] 
or 

 if (𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥) ∙ [|𝑥𝑥|] = (𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥) ∙ [|𝑦𝑦|] then (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ tanh−1{|𝑥𝑥|} < (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ tanh−1{|𝑦𝑦|} 
 
Theorem 0.4: (Theorem of ordering. See [2], Theorem 3.2.10. ) For any pair 𝑥𝑥 ,𝑦𝑦 ∈ ℝ , 𝑥𝑥� < 𝑦𝑦� if and only if 𝑥𝑥 < 𝑦𝑦. 
 
Consequently, the transitivity and trichotomy properties remain valid for extended ordering, too. 
 
We say that the points 𝑢𝑢 = (𝜉𝜉, 𝜂𝜂) ∈ ℝ2 form a „flag” (in the rectangular Descartes coordinate – system of ℝ2) if 
(0.5)                                                             𝜂𝜂 ∈ ℤ 
and  
(0.6)                                                          𝜉𝜉 ∙ 𝜂𝜂 ≥ 0. 
 
By (0.1) it is clear that the exploded numbers are situated on the „flag”. On the other hand, we have the following 
theorem. 
 
Theorem 0.7: (Theorem of completeness. See [2], Theorem 3.2.8.) If  𝑢𝑢 = (𝜉𝜉, 𝜂𝜂) ∈ ℝ2 is situated on the „flag”, then 

(𝜂𝜂 + tanh 𝜉𝜉)� = 𝑢𝑢      ,        (tanh 𝜉𝜉 = 𝑒𝑒𝜉𝜉−𝑒𝑒−𝜉𝜉

𝑒𝑒𝜉𝜉+𝑒𝑒−𝜉𝜉
 ,−∞ < 𝜉𝜉 < ∞) 

 
By Theorem 0.7 we can say that the „flag” is a geometrical representation of the set of exploded numbers 

ℝ� = {�𝑢𝑢 = (𝜉𝜉, 𝜂𝜂) ∈ ℝ2|(𝜉𝜉, 𝜂𝜂) = 𝑥𝑥�, 𝑥𝑥 ∈ ℝ. } 
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Moreover, we may give the concept of compressed of 𝑢𝑢 ∈ ℝ� , as follows 
(0.8)                                                       𝑢𝑢 = 𝜂𝜂 + tanh 𝜉𝜉        ,              𝑢𝑢 = (𝜉𝜉, 𝜂𝜂) ∈ ℝ.� 
 
Hence, we have that 𝑢𝑢 ∈ ℝ. 
 
Definition 0.9: If u is a real number then it is identified with the pair (𝑢𝑢, 0), that is 𝑢𝑢 = (𝑢𝑢, 0).  
 
Theorem 0.10: (Theorem of expansion.) The set of real number ℝ is a real subset of the set of exploded numbers ℝ� . 
Moreover, the inversion formulas 
(0.11)                                    (𝑥𝑥�) = 𝑥𝑥           ,      𝑥𝑥 ∈ ℝ   (see [1], (0.3)) 
and 
(0.12)                                  �𝑢𝑢�� = 𝑢𝑢          ,    𝑢𝑢 ∈ ℝ�   (see [1], (0.4)), 
are valid.    
 
Proof:  Let x be an arbitrary real number. Considering the real number tanh 𝑥𝑥 and having that 0 ≤ |tanh 𝑥𝑥| < 1. By 
(0.1) we can write 

(tanh 𝑥𝑥)� = ��𝑠𝑠𝑠𝑠𝑠𝑠 (tanh 𝑥𝑥)� ∙ tanh−1{|tanh 𝑥𝑥|}  , 0� = 

= ��𝑠𝑠𝑠𝑠𝑠𝑠 (tanh 𝑥𝑥)� ∙ tanh−1|tanh 𝑥𝑥|  ,0� = 

= �tanh−1 ��𝑠𝑠𝑠𝑠𝑠𝑠 (tanh 𝑥𝑥)� ∙ |tanh 𝑥𝑥|�  , 0� = 
= (tanh−1(tanh 𝑥𝑥) , 0) = (𝑥𝑥 , 0). 

 
Hence, the Definition 0.9 gives (tanh 𝑥𝑥)� = 𝑥𝑥. So, ℝ ⊆ ℝ�  .  As 1� = (0 , 1) ∉ ℝ but 1� ∈ ℝ�  we have that  ℝ is a real 
subset of ℝ� . Using (0.8), by (0.1) we can write 

(𝑥𝑥�) = (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ [|𝑥𝑥|] + tanh�(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ tanh−1{|𝑥𝑥|}� = 
= (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ [|𝑥𝑥|] + tanh�tanh−1�(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ {|𝑥𝑥|}�� = 

= (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥  ) ∙ ([|𝑥𝑥|] + {|𝑥𝑥|}) = (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ |𝑥𝑥| = 𝑥𝑥. 
 
Denoting 𝑥𝑥� = 𝑢𝑢 , we have that (𝑥𝑥�) = 𝑢𝑢 . Hence, by (0.11) 𝑥𝑥 = 𝑢𝑢 is obtained. Using again, that 𝑥𝑥� = 𝑢𝑢  
 
we have (0.12). 
 
With respect to the Definition 0.9 for the arbitrary real number x the compression formula (0.8) says that 𝑥𝑥 = tanh 𝑥𝑥 . 
For this reason, the set 

ℝ = ��𝜉𝜉 ∈ ℝ|𝜉𝜉 = 𝑥𝑥, 𝑥𝑥 ∈ ℝ. � 
may considered as compressed number line. Clearly, (−1) ∉ ℝ and 1 ∉ ℝ , so ℝ = ]−1,1[. If  x is running the open 
interval ]−1,1[  then 𝑥𝑥� is running the real number line. If 𝑥𝑥 ∈ ℝ ∖ ℝ then 𝑥𝑥� is outside the number line. In this case the 
number line is considered as an one dimensional space and 𝑥𝑥� is called invisible exploded number. If 𝑥𝑥 ∈ ℝ we can say 
that the real number 𝑥𝑥� is a visible exploded number. The greatest invisible exploded number which is smaller than all 
of real numbers is (−1)�  is called negative discriminator. The smallest invisible exploded number which is greater than 
all of real numbers is 1�  called positive discriminator. 
 
Theorem 0.13: (The monotonity property of explosion.) Let 𝑥𝑥 ≠ 0 an arbitrary real number. 
a/  If 
(0.14)                                                     0 < 𝑥𝑥 
then 
(0.15)                                                     𝑥𝑥 < 𝑥𝑥.�  
b/  If 
(0.16)                                                     𝑥𝑥 < 0 
then 
(0.17)                                                     𝑥𝑥� < 𝑥𝑥. 
Proof. 
Ad a/  
Having that 𝑥𝑥 = (𝑥𝑥, 0) , by (0.14) and (0.1) we have 𝑥𝑥� = (tanh−1{𝑥𝑥} , [𝑥𝑥]). Starting from the condition (0.14) the 
Definition 0.3  yields that 0 < 𝑥𝑥.�  If 𝑥𝑥� < 1�  , then 𝑥𝑥� = tanh−1 𝑥𝑥. As the function tanh−1  is strictly convex on the 
interval [0,1[, the inequality (0.15) is obtained. If 1� ≤ 𝑥𝑥� , then the definition of positive discriminator gives (0.15). 
Ad b/ 
 
Having that 𝑥𝑥 = (𝑥𝑥, 0) , by (0.16) and (0.1) we have 

𝑥𝑥� = (−tanh−1{(−𝑥𝑥)} ,−[(−𝑥𝑥)]) = (tanh−1({𝑥𝑥} − 1) , [𝑥𝑥] + 1). 
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Starting from the condition (0.16) the Definition 0.3  yields that 𝑥𝑥� < 0. If (−1)� < 𝑥𝑥�  then −1 < 𝑥𝑥 , so, [𝑥𝑥] =
−1 𝑡𝑡𝑠𝑠𝑎𝑎 {𝑥𝑥} = 𝑥𝑥 + 1 so, 𝑥𝑥� = tanh−1 𝑥𝑥. As the function tanh−1  is strictly concave on the interval ]−1,0],   the 
inequality (0.17) is obtained. If 𝑥𝑥� ≤ (−1)�  , then the definition of negative discriminator gives (0.17). 
 
Theorem 0.18: (The monotonity property of compression.) Let 𝑢𝑢 ≠ 0 an arbitrary exploded number. 
a/  If 
(0.19)                                                     0 < 𝑢𝑢 
then 
(0.20)                                                     0 < 𝑢𝑢 < 𝑢𝑢 
b/  If 
(0.21)                                                     𝑢𝑢 < 0  
then 
(0.22)                                                     𝑢𝑢 < 𝑢𝑢 < 0. 
 
Proof:  
Ad a/  
By (0.12) and (0.19) we have that �0�� < �𝑢𝑢�� . Applying Theorem 0.4, we get the inequaity 0 < 𝑢𝑢. As 0 = 0, the left 
hand side of (0.20) is obtained. Having this and applying the part a/ of Theorem 0.13, we get that  𝑢𝑢 < �𝑢𝑢�� . Using the 
inversion formula (0.12) again, we have the right hand side of (0.20). 
Ad b/  
 
By (0.12) and (0.21) we have that �𝑢𝑢�� < �0�� . Applying Theorem 0.4 we get the inequaity 𝑢𝑢 < 0. As  
0 = 0, the right hand side of (0.22) is obtained. Having this and applying the part b/ of Theorem 0.13,  
we get that  �𝑢𝑢�� < 𝑢𝑢 . Using the inversion formula (0.12) again, we have the left hand side of (0.22). 
 
1. SUPER - OPERATIONS IN THE SET OF EXPLODED NUMBERS 

 
Definition 1.1: (The concepts of super – addition and super - multiplication) Let x and y be arbitrary real numbers. The 
super – sum and super – product of 𝑥𝑥� and 𝑦𝑦� are 
(1.2)                                            𝑥𝑥�⨁𝑦𝑦� = (𝑥𝑥 + 𝑦𝑦)�          ,   𝑥𝑥, 𝑦𝑦 ∈ ℝ. 
and 
(1.3)                                            𝑥𝑥�⨀𝑦𝑦� = (𝑥𝑥 ⋅ 𝑦𝑦)�          ,   𝑥𝑥, 𝑦𝑦 ∈ ℝ, 
respectively. 
 
Remark: Some equivalent formulations are         
(1.4)           𝑥𝑥�⨁𝑦𝑦� = ��𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥 + 𝑦𝑦)� ⋅ tanh−1{|𝑥𝑥 + 𝑦𝑦|} ,  �𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥 + 𝑦𝑦)� ⋅ [|𝑥𝑥 + 𝑦𝑦|]�      , 𝑥𝑥, 𝑦𝑦 ∈ ℝ. 

(1.5)           𝑥𝑥�⨀𝑦𝑦� = ��𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥 ∙ 𝑦𝑦)� ⋅ tanh−1{|𝑥𝑥 ∙ 𝑦𝑦|} ,  �𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥 ∙ 𝑦𝑦)� ⋅ [|𝑥𝑥 ∙ 𝑦𝑦|]�      , 𝑥𝑥,𝑦𝑦 ∈ ℝ. 

(1.6)                                            𝑢𝑢⨁𝑣𝑣 = �𝑢𝑢 + 𝑣𝑣��         ,𝑢𝑢, 𝑣𝑣 ∈ ℝ.� 
(1.7)                                            𝑢𝑢⨀𝑣𝑣 = �𝑢𝑢 ⋅ 𝑣𝑣��         ,𝑢𝑢, 𝑣𝑣 ∈ ℝ.� 
 
By (1.2) and (1.3) the mutually and unamgiguous map 
(1.8)                                                            𝑥𝑥 ↔ 𝑥𝑥� 
is an isomorphism between the fields (ℝ , + , ∙) and �ℝ�   , ⨁ ,⨀�. 
 
Theorem 1.9: (The monotonity of super – addition.) Let 𝑥𝑥� ,𝑦𝑦� and �̌�𝑧 be arbitrary exploded numbers. If  
(1.10)                                                          𝑥𝑥� < 𝑦𝑦� 
then 
(1.11)                                                      𝑥𝑥�⨁�̌�𝑧 < 𝑦𝑦�⨁�̌�𝑧 
holds. 
 
Proof: By (1.10), Theorem 0.4 yields that 𝑥𝑥 < 𝑦𝑦. Hence, 𝑥𝑥 + 𝑧𝑧 < 𝑦𝑦 + 𝑧𝑧. Considering (1.2), by Theorem 0.4, we have 
(1.11) 
 
Theorem 1.12: (The monotonity of super – multiplication.) Let 𝑥𝑥� , 𝑦𝑦� be arbitrary and �̌�𝑧 be an arbitrary positive 
exploded numbers. If (1.10) is valid then 
(1.13)                                                      𝑥𝑥�⨀�̌�𝑧 < 𝑦𝑦�⨀�̌�𝑧 
holds. 
 
Proof: By (1.10) and �̌�𝑧 > 0, Theorem 0.4 yields that 𝑥𝑥 < 𝑦𝑦 𝑡𝑡𝑠𝑠𝑎𝑎 𝑧𝑧 > 0. Hence, 𝑥𝑥 ⋅ 𝑧𝑧 < 𝑦𝑦 ⋅ 𝑧𝑧.  
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Considering (1.3), by Theorem 0.4, we have (1.13)  
 
Theorem 1.14: If 𝑥𝑥� ,𝑦𝑦� are arbitrary and �̌�𝑧 is an arbitrary negative exploded numbers, then  
(1.15)                                                      𝑥𝑥�⨀�̌�𝑧 > 𝑦𝑦�⨀�̌�𝑧 
holds.  
 
Proof: By (1.10) and �̌�𝑧 < 0, Theorem 0.4 yields that 𝑥𝑥 < 𝑦𝑦 𝑡𝑡𝑠𝑠𝑎𝑎 𝑧𝑧 < 0. Hence, 𝑥𝑥 ⋅ 𝑧𝑧 > 𝑦𝑦 ⋅ 𝑧𝑧.  
 
Considering (1.3), by Theorem 0.4, we have (1.15)  
 
By (1.2) , (1.3) and Theorems 1.9, 1.12 and 1.14 we see that  

(ℝ , + , ∙ , <) and �ℝ�   , ⨁ ,⨀ , <� 
are isomorphic ordered fields.   
Further important properties of the ordered field �ℝ�  , ⨁ ,⨀ , <�: 
1.16 . (Associative laws.)  �𝑥𝑥�⨁𝑦𝑦��⨁�̌�𝑧 = 𝑥𝑥�⨁�𝑦𝑦�⨁�̌�𝑧� and �𝑥𝑥�⨀𝑦𝑦��⨀�̌�𝑧 = 𝑥𝑥�⨀�𝑦𝑦�⨀�̌�𝑧�. 
1.17 . (Commutative laws.) 𝑥𝑥�⨁𝑦𝑦� = 𝑦𝑦�⨁𝑥𝑥� and 𝑥𝑥�⨀𝑦𝑦� = 𝑦𝑦�⨀𝑥𝑥� . 
1.18 . (Distributive law.) �𝑥𝑥�⨁𝑦𝑦��⨀�̌�𝑧 = �𝑥𝑥�⨀�̌�𝑧�⨁�𝑦𝑦�⨀�̌�𝑧� . 
1.19 . (Additive unit element.) 𝑥𝑥�⨁0 = 𝑥𝑥� ,  uniqueness of additive unit element can be proved. 
1.20 . (Additive inverse element.) 𝑥𝑥�⨁(−𝑥𝑥)� = 0 , uniqueness of additive inverse element can be proved. 
1.21 . (Multiplicative unit element.) 𝑥𝑥�⨀1� = 𝑥𝑥� ,  uniqueness of multiplicative unit element can be proved. 

1.22 . (Multiplicative iverse element.) If 𝑥𝑥 ≠ 0 𝑡𝑡ℎ𝑒𝑒𝑠𝑠 𝑥𝑥�⨀ �1
𝑥𝑥
�� = 1�  ,  uniqueness of multiplicative inverse element can be   

          proved. 
 
The extension of the sign „minus”. By the uniqueness of additive inverse element we use 
 
(1.23)                                  −𝑥𝑥� =𝑎𝑎𝑒𝑒𝑖𝑖 (−𝑥𝑥)�                        , 𝑥𝑥 ∈ ℝ. 
 
 
Clearly, if 𝑥𝑥 ∈ ℝ  then  𝑥𝑥� ∈ ℝ   𝑡𝑡𝑠𝑠𝑎𝑎      (−𝑥𝑥)� = tanh−1(−𝑥𝑥) = − tanh−1 𝑥𝑥 = −𝑥𝑥� .  
 
Other equivalent formulations are 
(1.24)                                  −𝑥𝑥� = (−(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ tanh−1{|𝑥𝑥|} ,−(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ [|𝑥𝑥|])   , 𝑥𝑥 ∈ ℝ. 
(1.25)                                  −𝑥𝑥� = (−1)�⨀𝑥𝑥� = �−1��⨀𝑥𝑥�  , 𝑥𝑥 ∈ ℝ. 
(1.26)                                  −𝑢𝑢 = �−𝑢𝑢��                            , 𝑢𝑢 ∈ ℝ� . 
 
Hence, by the inversion formula (0.11) yields 
(1.27)                                   (−𝑢𝑢) = −𝑢𝑢                          , 𝑢𝑢 ∈ ℝ.�  
(1.28)                                  −𝑢𝑢 = (−1)�⨀𝑢𝑢 = �−1��⨀𝑢𝑢  , 𝑢𝑢 ∈ ℝ� . 
 
Hence, by the associative law and (1.3) with the multiplicative unit element property, we have 
(1.29)                               −(−𝑢𝑢) = (−1)�⨀�(−1)�⨀𝑢𝑢� = �(−1)�⨀(−1)��⨀𝑢𝑢 = 𝑢𝑢      ,  𝑢𝑢 ∈ ℝ� . 
 
The extension of „absolute value”. 
 
(1.30)                                    |𝑢𝑢| =𝑎𝑎𝑒𝑒𝑖𝑖 ��𝑢𝑢���                      , 𝑢𝑢 ∈ ℝ� . 
 
Clearly, if 𝑢𝑢 ∈ ℝ  then  �𝑢𝑢� = |tanh 𝑢𝑢| = tanh|𝑢𝑢| and ��𝑢𝑢��� = tanh−1(tanh|𝑢𝑢|) = |𝑢𝑢|. 
Equivalent formulation is 

(1.31)                                   |𝑢𝑢| = �    
𝑢𝑢   𝑖𝑖𝑖𝑖 𝑢𝑢 > 0  
0  𝑖𝑖𝑖𝑖  𝑢𝑢 = 0
−𝑢𝑢   𝑖𝑖𝑖𝑖   𝑢𝑢 < 0

�,       , 𝑢𝑢 ∈ ℝ� .    (See (1.26).) 

 
Hence, by (1.29) and (1.31) the equality 
(1.32)                                              |−𝑢𝑢| = |𝑢𝑢|                           ,  𝑢𝑢 ∈ ℝ� , 
is obtained. 
 
Theorem 1.33: If u and v are arbitrary exploded numbers, then we have 
(1.34)                                                  �𝑢𝑢⨀𝑣𝑣� = |𝑢𝑢|⨀|𝑣𝑣|. 
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Proof: By (0.11), (1.7) and (1.30) we can write 

�𝑢𝑢⨀𝑣𝑣� = ��𝑢𝑢⨀𝑣𝑣��� = ��𝑢𝑢 ∙ 𝑣𝑣��� = ��𝑢𝑢� ∙ �𝑣𝑣��� = ��𝑢𝑢���⨀��𝑣𝑣��� = |𝑢𝑢|⨀|𝑣𝑣|. 
 
Theorem 1.35: (Triangle inequality for exploded numbers.)  If u and v are arbitrary exploded numbers, then we have 
(1.36)                                                  �𝑢𝑢⨁𝑣𝑣� ≤ |𝑢𝑢|⨁|𝑣𝑣|.    
 
Proof: By Theorem 0.4, (0.11), (1.6) and (1.30) we can write 

�𝑢𝑢⨁𝑣𝑣� = ��𝑢𝑢⨁𝑣𝑣��� = ��𝑢𝑢 + 𝑣𝑣��� ≤ ��𝑢𝑢� + �𝑣𝑣��� = ��𝑢𝑢���⨁��𝑣𝑣��� = |𝑢𝑢|⨁|𝑣𝑣|. 
 
Definition 1.37: Let 𝕊𝕊 be a set of exploded numbers.  

- We say that the set 𝕊𝕊 is bounded from above if there exists 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢 ∈ ℝ�  such that for any 𝑢𝑢 ∈ 𝕊𝕊 the inequality 
𝑢𝑢 ≤ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢 . holds. The 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢  is called an upper bound of 𝕊𝕊. 

- We say that the set 𝕊𝕊 is bounded from below if there exists 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑢𝑢 ∈ ℝ�  such that for any 𝑢𝑢 ∈ 𝕊𝕊 the inequality 
𝑢𝑢 ≥ 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑢𝑢  holds. The 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑢𝑢  is called a lower bound of 𝕊𝕊. 

- We say that the set 𝕊𝕊 is bounded if for any 𝑢𝑢 ∈ 𝕊𝕊 , 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑢𝑢 ≤ 𝑢𝑢 ≤ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢  . 
 
Definition 1.38: Let 𝕊𝕊 be a set of exploded numbers. 

- We say that, that the exploded number 𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢∈𝕊𝕊 𝑢𝑢 is the upper limit of the set 𝕊𝕊, if it is an upper bound of 𝕊𝕊 but 
for any 𝑣𝑣�∈ ℝ�� which is less than 𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢∈𝕊𝕊 𝑢𝑢 and there exists 𝑢𝑢0 ∈ 𝕊𝕊, such that 𝑣𝑣 < 𝑢𝑢0. (The 𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢∈𝕊𝕊 𝑢𝑢 is 
mentioned as the least upper bound, too.) 

- We say that, that the exploded number 𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢∈𝕊𝕊 𝑢𝑢 is the lower limit of the set 𝕊𝕊, if it is a lower bound of 𝕊𝕊 but 
for any 𝑣𝑣�∈ ℝ�� which is greater than 𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢∈𝕊𝕊 𝑢𝑢 and there exists 𝑢𝑢0 ∈ 𝕊𝕊 , such that 𝑢𝑢0 < 𝑣𝑣. (The 𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢∈𝕊𝕊 𝑢𝑢 is 
mentioned as the greaeast lower bound, too.) 

 
Definition 1.39: Let 𝕊𝕊 be a set of exploded numbers. The set 

𝕊𝕊 = ��𝑥𝑥 = 𝑢𝑢�𝑢𝑢 ∈ 𝕊𝕊� 
is called the compressed of set 𝕊𝕊. Clearly, 𝕊𝕊 ⊆ ℝ. Moreover,�ℝ�� = ℝ. 
Theorem 1.40. (The upper limit property of the set of exploded numbers.) Let 𝕊𝕊 be a set of exploded numbers. If it the 
𝕊𝕊�⊂ ℝ�� is non empty and bounded from above, then there exists its upper limit. 
 
Proof: Let us consider the upper bound 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢  of 𝕊𝕊 and the set 𝕊𝕊. (See Definition 1.39.) Now, through the inversion 
formulas, Theorem 0.4 says that for any 𝑥𝑥 ∈ 𝕊𝕊 , the inequality 𝑥𝑥 ≤ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢  is valid. By the completeness axiom 𝕊𝕊 has its 
least upper bound  𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥. Hence for any 𝑥𝑥 ∈ 𝕊𝕊 , the inequalty 𝑥𝑥 ≤ 𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥 holds. Applying Theorem 0.4 again, we 
have that for any 𝑢𝑢 ∈ 𝕊𝕊 the inequality  

𝑢𝑢 ≤ �𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥� �  

holds.  We state, that �𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥��  is the least upper bound of 𝕊𝕊 . If our statement is not true then there exists 𝑣𝑣�∈ ℝ�� 

which is less then �𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥� � and an upper boumd of 𝕊𝕊. So, for any 𝑢𝑢 ∈ 𝕊𝕊 the inequality 𝑢𝑢 ≤ 𝑣𝑣 < �𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥� � is valid.  
 
By Theorem 0.4, for any 𝑥𝑥 ∈ 𝕊𝕊  the inequality 

𝑥𝑥 ≤ 𝑣𝑣 < 𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥. 
 
This is a contradiction, because 𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥 is the least upper bound of the set 𝕊𝕊. So,  

�𝑠𝑠𝑢𝑢𝑢𝑢𝑥𝑥∈𝕊𝕊 𝑥𝑥� � = 𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢∈𝕊𝕊 𝑢𝑢. 
In a similar way, we are able to prove 
 
Theorem 1.41: (The lower limit property of the set of exploded numbers.) Let 𝕊𝕊 be a set of exploded numbers. If it the 
𝕊𝕊�⊂ ℝ�� is non empty and bounded from below, then there exists its lower limit. 
 
Definition 1.42: (The concepts of super – subtraction and super - division.)  
 (1.43)                                            𝑥𝑥� ⊝ 𝑦𝑦� = (𝑥𝑥 − 𝑦𝑦)�          ,   𝑥𝑥, 𝑦𝑦 ∈ ℝ. 
and 

(1.44)                                            𝑥𝑥� ⊘ 𝑦𝑦� = �𝑥𝑥
𝑦𝑦
��          ,   𝑥𝑥, 𝑦𝑦(≠ 0) ∈ ℝ, 

 
Equivalent formulations are         
(1.45)                                            𝑢𝑢 ⊝ 𝑣𝑣 = �𝑢𝑢 − 𝑣𝑣��         ,𝑢𝑢, 𝑣𝑣 ∈ ℝ.� 
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(1.46)                                            𝑢𝑢 ⊘ 𝑣𝑣 = �𝑢𝑢
𝑣𝑣
��         ,𝑢𝑢, 𝑣𝑣(≠ 0) ∈ ℝ.� 

 
For real numbers the super – operations are able to express tradinional addition and subtraction. 
 
Theorem 1.47: If x and y are arbitrary real numbers, then 

𝑥𝑥 + 𝑦𝑦 = �𝑥𝑥⨁𝑦𝑦� ⊘ �1� ⊕ �𝑥𝑥 ⊙ 𝑦𝑦�� 
and 

𝑥𝑥 − 𝑦𝑦 = �𝑥𝑥 ⊝ 𝑦𝑦� ⊘ �1� ⊝ �𝑥𝑥 ⊙ 𝑦𝑦�� 
are valid. 
 
Proof: If x and y are real numbers, then 𝑥𝑥 ,𝑦𝑦 𝑡𝑡𝑠𝑠𝑎𝑎 

𝑥𝑥+𝑦𝑦

1+𝑥𝑥⋅𝑦𝑦
  ∈ ℝ.  Using (1.6), (1.7), (1.2) and (1.44) we can write 

�𝑥𝑥⨁𝑦𝑦� ⊘ �1� ⊕ �𝑥𝑥 ⊙ 𝑦𝑦�� = �𝑥𝑥 + 𝑦𝑦�� ⊘�1� ⊕ �𝑥𝑥 ∙ 𝑦𝑦�� � = �𝑥𝑥 + 𝑦𝑦�� ⊘�1 + 𝑥𝑥 ∙ 𝑦𝑦�� = �
𝑥𝑥 + 𝑦𝑦

1 + 𝑥𝑥 ⋅ 𝑦𝑦
�

�
. 

 
Using (0.1) and (0.8) with Definition 9, 

�
𝑥𝑥 + 𝑦𝑦

1 + 𝑥𝑥 ⋅ 𝑦𝑦
�

�
= tanh−1 tanh 𝑥𝑥 + tanh 𝑦𝑦

1 + tanh 𝑥𝑥 ∙ tanh 𝑦𝑦
= 𝑥𝑥 + 𝑦𝑦 

is obtained. The statement concerning subtraction we ara able to prove in a similar way. 
 
2. A MATHEMATICAL MODEL FOR MULTIVERSE AND PARALEL UNIVERSES 
 
In this part the space ℝ3 will be mentioned as „our universe”, too. Using the explosion of numbers we are able to 
explode the universe ℝ3. So, the multiverse 
(2.1)                                    ℝ3� = ��𝑃𝑃� = (𝑥𝑥�,𝑦𝑦�, �̌�𝑧)�𝑃𝑃 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ ℝ3� 
is obtained. In general, point  𝑃𝑃� = (𝑥𝑥�,𝑦𝑦�, �̌�𝑧) is invisible in our universe ℝ3. Having the open cube 

ℝ3 = ��(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) ∈ ℝ3|
−1 < 𝜉𝜉 < 1
−1 < 𝜂𝜂 < 1
−1 < 𝜁𝜁 < 1

� 

 
Definition (0.1) yields that condition 𝑃𝑃� = (𝑥𝑥�,𝑦𝑦�, �̌�𝑧) ∈ ℝ3 is fulfilled if and only if 𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3.  
 
For example we show the case of plane 𝕊𝕊 = {�𝑃𝑃 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)|𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦     , 𝑥𝑥, 𝑦𝑦 ∈ ℝ} 
 
The exploded of plane 𝕊𝕊 is the super-plane 𝕊𝕊� = ��𝑃𝑃� = (𝑥𝑥�,𝑦𝑦�, �̌�𝑧)�𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝕊𝕊�. Its visible part is the exploded of 
𝕊𝕊 ∩ ℝ3     

 
 

Fig.-2.2 
 
Exploding the open hexagon presented by Fig. 2.2 , we have the visible part of the super – plane 𝕊𝕊�  
 

𝕊𝕊� ∩ ℝ3 = ��𝑃𝑃� = (𝑥𝑥�,𝑦𝑦�, �̌�𝑧)�𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ (𝕊𝕊 ∩ ℝ3)� 
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Fig.-2.3 

 
is obtained. For the sake of visibility of more parts of super-plane 𝕊𝕊� we introduce the box – model of multiverse ℝ3� . 
First we devide the universe ℝ3 by cube-compositions  
(2.4)   𝐶𝐶(𝑢𝑢 ,𝑞𝑞 ,𝑢𝑢)

𝑏𝑏𝑙𝑙𝑥𝑥 = {�(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3| 𝑢𝑢 ≤ |𝑥𝑥| < 𝑢𝑢 + 1 ; 𝑞𝑞 ≤ |𝑦𝑦| < 𝑞𝑞 + 1 ; 𝑢𝑢 ≤ |𝑧𝑧| < 𝑢𝑢 + 1 ; 𝑢𝑢, 𝑞𝑞, 𝑢𝑢 ∈ ℕ0
+}  

 
Fig.-2.5 

 
Clearly,                                     ⋃ 𝐶𝐶(𝑢𝑢 ,𝑞𝑞 ,𝑢𝑢)

𝑏𝑏𝑙𝑙𝑥𝑥
𝑢𝑢 ,𝑞𝑞 ,𝑢𝑢∈ℕ0

+ = ℝ3  and   𝐶𝐶(0,0,0)
𝑏𝑏𝑙𝑙𝑥𝑥 = ℝ3 . 

 
Second, we define the box-exploded of the point 𝑃𝑃 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ ℝ3 
(2.6)      𝑃𝑃�𝑏𝑏𝑙𝑙𝑥𝑥 = �(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ tanh−1{|𝑥𝑥|} ,  (𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦) ∙ tanh−1{|𝑦𝑦|} ,  (𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧) ∙ tanh−1{|𝑧𝑧|} ,  𝑎𝑎(𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧)�  
where 
(2.7)                      𝑎𝑎(𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧) = (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥) ∙ [|𝑥𝑥|] + (𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦) ∙ [|𝑦𝑦|] ∙ √2 + (𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧) ∙ [|𝑧𝑧|]√3  . 
 
Moreover, for any set 𝕊𝕊 ⊆ ℝ3  
(2.8)                                        𝕊𝕊�𝑏𝑏𝑙𝑙𝑥𝑥 = ��𝑃𝑃�𝑏𝑏𝑙𝑙𝑥𝑥 �𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝕊𝕊�. 
Especially, 
(2.9)                                        ℝ3�𝑏𝑏𝑙𝑙𝑥𝑥

= ��𝑃𝑃�𝑏𝑏𝑙𝑙𝑥𝑥 �𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3�. 
 
Hence, by (2.6) and (2.9) we can see that  ℝ3�𝑏𝑏𝑙𝑙𝑥𝑥

⊂ ℝ4. 
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Using (2.4) – (2.6) we explode the boxes 𝐶𝐶(𝑢𝑢 ,𝑞𝑞 ,𝑢𝑢)

𝑏𝑏𝑙𝑙𝑥𝑥  and  get„ parallel” three - dimensional spaces 

(2.10)          �𝐶𝐶(𝑢𝑢 ,𝑞𝑞 ,𝑢𝑢)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

= ��(𝑢𝑢, 𝑣𝑣,𝑙𝑙,𝑎𝑎) ∈ ℝ3�𝑏𝑏𝑙𝑙𝑥𝑥
�  

−∞<𝑢𝑢<∞
−∞<𝑣𝑣<∞
−∞<𝑙𝑙<∞

𝑎𝑎=±𝑢𝑢±𝑞𝑞√2±𝑢𝑢√3
𝑢𝑢, 𝑞𝑞, 𝑢𝑢 ∈ ℕ0

+�. (See, [1], (6.2.12)-(6.2.19).) 

 

Having that   𝐶𝐶(0,0,0)
𝑏𝑏𝑙𝑙𝑥𝑥 = ℝ3 , by (2.6) , (2.7) and (2.8) is �𝐶𝐶(0,0,0)

𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥
= ��(𝑢𝑢, 𝑣𝑣,𝑙𝑙,𝑎𝑎) ∈ ℝ3�𝑏𝑏𝑙𝑙𝑥𝑥

�  
−∞<𝑢𝑢<∞
−∞<𝑣𝑣<∞
−∞<𝑙𝑙<∞

𝑎𝑎=0
   � , 

we obtain that  our universe  in the box- model is represented by �𝐶𝐶(0,0,0)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

. 
Plane 𝕊𝕊 turns out from box 𝐶𝐶(0,0,0)

𝑏𝑏𝑙𝑙𝑥𝑥  and a part is situated in the „Right – Back- Upper”  part of the box  
 

𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 = {�(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3| − 1 < 𝑥𝑥 < 1 ;−1 < 𝑦𝑦 < 1 ; 1 ≤ |𝑧𝑧| < 2 } 

 
Fig.-2.11 

 
Super – plane 𝕊𝕊� has the equation  
(2.12)                                                     𝑙𝑙 = 𝑢𝑢⨁𝑣𝑣      ,   𝑢𝑢, 𝑣𝑣 ∈ ℝ.� 
and 𝕊𝕊�𝑏𝑏𝑙𝑙𝑥𝑥 ⊂ ℝ3�𝑏𝑏𝑙𝑙𝑥𝑥

. Moreover, the exploded of the plane-part which is in the Fig. 2.11 will be situated in the three - 
dimensional space 

�𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

= ��(𝑢𝑢, 𝑣𝑣,𝑙𝑙,𝑎𝑎) ∈ ℝ3�𝑏𝑏𝑙𝑙𝑥𝑥
�  
−∞<𝑢𝑢<∞
−∞<𝑣𝑣<∞
−∞<𝑙𝑙<∞
𝑎𝑎=±√3

   �. 

Writing that 
𝑢𝑢 = tanh−1 𝑥𝑥  , 0 ≤ 𝑥𝑥 < 1; 𝑣𝑣 = tanh−1 𝑦𝑦 , 0 ≤ 𝑦𝑦 < 1 ; 𝑙𝑙 = tanh−1(𝑧𝑧 − 1),  1 ≤ 𝑧𝑧 < 2; 

by (2.12) the equation 
(2.13)              𝑙𝑙 = tanh−1(tanh𝑢𝑢 + tanh 𝑣𝑣 − 1)         ,1 ≤ tanh𝑢𝑢 + tanh 𝑣𝑣 < 2 , 𝑢𝑢, 𝑣𝑣 ∈ ℝ0

+ 

is obtained. This is the equation of continuation (in �𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

) of  𝕊𝕊� ∩ ℝ3 introduced on Fig. 2.3. 

𝕊𝕊�𝑏𝑏𝑙𝑙𝑥𝑥 ∩ �𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

 

 
                                                                     Fig.-2.14 
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By (2.13), in the highness” 𝑙𝑙 = 1�  the level – curve of super-plane 𝕊𝕊� has the equation 

tanh𝑢𝑢 + tanh 𝑣𝑣 = 1    ,  𝑢𝑢, 𝑣𝑣 ∈ ℝ0
+. 

This level – curve is situated on the border of our universe, so, it is invisible for us. On the other side”, it is visible in 

the neighbouring” universe �𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

. (See Fig. 2.14.) 
 
Let us imagine that a surveyor starts from the origo of our three - dimensional space ℝ3 and moves on the super – line  
𝕃𝕃� = ��𝑃𝑃� = (𝑥𝑥�,𝑦𝑦�, �̌�𝑧)�𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝕃𝕃�,where 

(2.15)                                   𝕃𝕃 = �𝑃𝑃 = �(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3|

𝑥𝑥= 1
√6

∙𝑡𝑡

𝑦𝑦= 1
√6

∙𝑡𝑡

𝑧𝑧= 2
√6
∙𝑡𝑡

  , 𝑡𝑡 ∈ ℝ� . 

 
The line 𝕃𝕃 bores through infinite many box – compositions given under (2.4). 

 
Fig.-2.16 

 

By (2.4) and (2.15) we can see that 𝕃𝕃 ∩ 𝐶𝐶(0,0,0)
𝑏𝑏𝑙𝑙𝑥𝑥 = �𝑃𝑃 = �(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3|

𝑥𝑥= 1
√6

∙𝑡𝑡

𝑦𝑦= 1
√6

∙𝑡𝑡

𝑧𝑧= 2
√6
∙𝑡𝑡

  ,−√6
2

< 𝑡𝑡 < √6
2
�. 

 

Hence, 𝕃𝕃� ∩ �𝐶𝐶(0,0,0)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

= ��(𝑢𝑢, 𝑣𝑣,𝑙𝑙) ∈ ℝ3|

𝑢𝑢=tanh −1 𝑡𝑡
√6

𝑣𝑣=tanh −1 𝑡𝑡
√6

𝑙𝑙=tanh −1 2𝑡𝑡
√6

  ,−√6
2

< 𝑡𝑡 < √6
2
�  (See the next figure.) 

It is easy to see that  lim
𝑡𝑡→√6

2
𝑢𝑢(𝑡𝑡) = tanh−1 1

2
 , lim

𝑡𝑡→√6
2
𝑣𝑣(𝑡𝑡) = tanh−1 1

2
  𝑡𝑡𝑠𝑠𝑎𝑎 lim

𝑡𝑡→√6
2
𝑙𝑙(𝑡𝑡) = ∞, 

and  𝐺𝐺� = ��1
2
�� , �1

2
�� , 1�� ∉ ℝ3.     (See Fig. 2.16.) 

 
At the point 𝐺𝐺� the surveyor turns into the three - dimensional space �𝐶𝐶(0,0,1)

𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥
and moves towards the point   

𝐻𝐻� = �1� , 1� , 2�� ∉ �𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

.     (See Fig. 2.16.) on the way 

𝕃𝕃� ∩ �𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

=

⎩
⎪
⎨

⎪
⎧
�(𝑢𝑢, 𝑣𝑣,𝑙𝑙) ∈ ℝ3|

𝑢𝑢=tanh −1 𝑡𝑡
√6

𝑣𝑣=tanh −1 𝑡𝑡
√6

𝑙𝑙 = tanh−1 �2𝑡𝑡
√6

− 1�
  ,
√6
2
≤ 𝑡𝑡 < √6

⎭
⎪
⎬

⎪
⎫

. 
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Fig.-2.17 

 
As 

lim
𝑡𝑡→√6

𝑢𝑢(𝑡𝑡) = ∞ , lim
𝑡𝑡→√6

𝑣𝑣(𝑡𝑡) = ∞  𝑡𝑡𝑠𝑠𝑎𝑎 lim
𝑡𝑡→√6

𝑙𝑙(𝑡𝑡) = ∞ , 

and the box – explosion formula (2.6) with (2.7) shows that  𝐻𝐻�𝑏𝑏𝑙𝑙𝑥𝑥 = �0 , 0 , 0 ,1 + √2 +  2√3� is the origo of the three 
- dimensional space 

�𝐶𝐶(1,1,2)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

= ��(𝑢𝑢, 𝑣𝑣,𝑙𝑙,𝑎𝑎) ∈ ℝ3�𝑏𝑏𝑙𝑙𝑥𝑥
�  

−∞<𝑢𝑢<∞
−∞<𝑣𝑣<∞
−∞<𝑙𝑙<∞

𝑎𝑎=±1+±√2±2√3
   � 

where the surveyor  arrives. (This point is already invisible in the universe �𝐶𝐶(0,0,1)
𝑏𝑏𝑙𝑙𝑥𝑥 �� .) In this newer universe we have 

𝕃𝕃� ∩ �𝐶𝐶(1,1,,2)
𝑏𝑏𝑙𝑙𝑥𝑥 �� 𝑏𝑏𝑙𝑙𝑥𝑥

= ��(𝑢𝑢, 𝑣𝑣,𝑙𝑙) ∈ ℝ3|

𝑢𝑢=tanh −1� 𝑡𝑡
√6

−1�

𝑣𝑣=tanh −1� 𝑡𝑡
√6

−1�

𝑙𝑙=tanh −1�2𝑡𝑡
√6
−2�

  ,√6 ≤ 𝑡𝑡 < 3√6
2
�  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.-2.18 

 

and the surveyor tends to the point  𝐾𝐾� = ��3
2
�� , �3

2
�� , 3�� assuming that it has sufficient capacity to move.  

The Fig. 2.16 , 2.17 and 2.18 show that the further way in the  multiverse is periodical.   
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