

Z-OPEN SETS AND Z-CONTINUITY IN TOPOLOGICAL SPACES

A. I.EL-Magharabi and A. M. Mubarki*

Department of Mathematics, Faculty of Science, Taibah Universit P. O. Box, 344, AL-Madinah AL-Munawarah, K. S. A.

E-mail: amaghrabi@taibahu.edu.sa, alimobarki@hotmail.com

(Received on: 19-09-11; Accepted on: 06-10-11)

ABSTRACT

T he aim of this paper is to introduce and study the notion of Z-open sets and Z-continuity. Some characterizations of these notions are presented. Also, some topological operations such as: Z-boundary, Z-exterior, Z-limit... etc, are introduced.

AMS Subject Classification: Primary 54D10, 54C05, 54C08.

Keywords: Z-open sets, locally-Z closed, Z-boundary, Z-exterior, Z-limit, Z*-nbd and Z-continuity.

1. INTRODUCTION

In 1982, Mashhour, Abd EL-Monsef and EL-Deeb [17] introduced preopen sets and pre-continuous mappings in topological spaces. Also, in 1996 Andrijevi'c introduced the notion b-open sets [3]. In 1997, Park, Lee and Son [14] have introduced and studied δ -semiopen in topological spaces. Also, 2008, Ekici [6] introduced e-open sets and e-continuous map in topological spaces. The purpose of this paper is to introduce and study the notion of Z-open sets and Z-continuity. Some topological operations such as: Z-limit, Z-boundary and Z-exterior...atc are introduced. Also, some characterizations of these notions are presented.

2. PRELIMINARIES

A subset A of a topological space (X,τ) is called regular open (resp. regular closed) [16] if A= int(cl(A)) (resp. A= cl(int(A))). The delta interior [17] of a subset A of X is the union of all regular open sets of X contained in A is denoted by δ -int(A). A subset A of a space X is called δ -open if it is the union of regular open sets. The complement of δ -open set is called δ -closed .Alternatively, a set A of (X, τ) is called δ -closed [17] if A= δ -cl(A), where δ -cl(A) = {x \in X: A \cap \mathcal{A} \to \mathcal{A} int(cl(U)) $\neq \emptyset$, U $\in \tau$ and x $\in U$. Throughout this paper (X, τ) and (Y, σ)(simply X and Y) represent non-empty topological spaces on which no separation axioms are assumed ,unless otherwise mentioned . For a subset A of a space (X, τ) , cl(A), int(A) and $X \setminus A$ denote the closure of A, the interior of A and the complement of A respectively. A subset A of a space (X, τ) is called α -open [7] (resp. α -open [13], δ -semiopen [14], semiopen [11], δ -preopen [15], preopen [12], b-open [3] or γ -open [4] or sp-open [5], e-open [6], β -open [1] or semi-preopen [2], e*-open [8] or δ - β open [10]) if $A \subseteq int(cl(\delta-int(A)))$, (resp. $A \subseteq int(cl(int(A)))$, $A \subseteq cl(\delta-int(A))$, $A \subseteq cl(int(A))$, $A \subseteq int(\delta-cl(A))$ $\operatorname{int}(\operatorname{cl}(A)), A \subset \operatorname{int}(\operatorname{cl}(A)) \cup \operatorname{cl}(\operatorname{int}(A)), A \subset \operatorname{cl}(\delta \operatorname{-int}(A)) \cup \operatorname{int}(\delta \operatorname{-cl}(A)), A \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))), A \subset \operatorname{cl}(\operatorname{int}(\delta \operatorname{-cl}(A))).$ The complement of a δ -semiopen (resp. semiopen, δ -preopen) set is called δ -semi-closed (resp. semi-closed, δ -preclosed, pre-closed). The intersection of all δ -semi-closed (resp. semi-closed, δ -pre-closed, pre-closed) sets containing A is called the δ -semi-closure(resp. semi-closure, δ -pre-closure, pre-closure) of A and is denoted by δ -scl(A) (resp. scl(A), δ -pcl(A), pcl(A)). The union of all δ -semiopen (resp. semiopen, δ -preopen, preopen) sets contained in A is called the δ -semi-interior (resp. semi-interior, δ -pre-interior, pre-interior) of A and is denoted by δ -sint(A)(resp. sint(A), δ -pint(A), pint(A)). The family of all δ -open (resp. α -open, α -open, δ -semiopen, semiopen, δ -preopen, preopen, b-open, e-open, β -open, e*-open) is denoted by aO(X) (resp. aO(X), $\alpha O(X)$, $\delta SO(X)$, SO(X), $\delta PO(X)$, PO(X), BO(X), $eO(X), \beta O(X), e^*O(X)).$

Lemma: 2.1[17]. Let A ,B be two subsets of (X, τ) .Then:

(1) A is δ -open if and only if A = δ -int(A),

Corresponding author: A. M. Mubarki, *E-mail: alimobarki@hotmail.com International Journal of Mathematical Archive- 2 (10), Oct. – 2011

(2) $X \setminus (\delta - int(A)) = \delta - cl(X \setminus A)$ and $\delta - int(X \setminus A) = X \setminus (\delta - cl(A))$, (3) $cl(A) \subseteq \delta - cl(A)$ (resp. $\delta - int(A) \subseteq int(A)$), for any subset A of X, (4) $\delta - cl(A \cup B) = \delta - cl(A) \cup \delta - cl(B)$, $\delta - int(A \cap B) = \delta - int(A) \cap \delta - int(B)$.

Proposition: 2.1. Let A be a subset of a space (X, τ) . Then: (1) scl(A) = A \cup int(cl(A)), sint (A) = A \cap cl(int(A)) [11], (2) pcl(A) = A \cup cl(int(A)), pint (A) = A \cap int(cl(A)) [12], (3) δ -scl(X \ A) = X \ δ -sint(A), δ -scl(A \cup B) $\subset \delta$ -scl(A) $\cup \delta$ -scl(B)[14], (4) δ -pcl(X \ A) = X \ δ -pint(A), δ -pcl(A \cup B) $\subset \delta$ -pcl(A) $\cup \delta$ -pcl(B)[15].

Lemma: 2.2[14]. The following hold for a subset H of a space (X, τ) . (1) δ -pcl(H) = H \cap cl(δ -int(H)) and δ -pint (H) = H \cap int(δ -cl(H)), (2) δ -sint(H) = H \cap cl(δ -int(H)) and δ -scl(H) = H \cup int(δ -cl(H)).

Lemma: 2.3. [6] The following hold for a subset H of a space (X, τ) . $cl(\delta-int(H)) = \delta-cl(\delta-int(H))$ and $int(\delta-cl(H)) = \delta-int(\delta-cl(H))$,

Definition: 2.1. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called precontinuous [12](resp. δ -semicontinuous [9], γ -continuous[4], e-continuous [6]) if $f^{-1}(V)$ is preopen (resp. δ -semiopen, γ -open, e-open) for each $V \in \sigma$.

3. Z-OPEN SETS

Definition: 3.1 A subset A of a topological space (X, τ) is said to be: (1) a Z-open set if $A \subseteq cl(\delta-int(A)) \cup int(cl(A))$, (2) a Z-closed set if $int(\delta-cl(A)) \cap cl(int(A)) \subseteq A$.

The family of all Z-open (resp. Z-closed) subsets of a space (X, τ) will be as always denoted by ZO(X) (resp. ZC(X)).

Remark: 3.1 One may notice that (1) Every δ-semiopen (resp. preopen) set is Z-open, (2) Every Z-open set is b-open (resp. e-open).

But the converse of the a bovine are not necessarily true in general as shown by the following examples.

Example: 3.1 Let $X = \{a, b, c, d\}$, with topology $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c, d\}, X\}$. Then: (1) A subset $\{c\}$ of X is Z such by that $f \in X$ is a subset of X is Z and $f \in X$.

(1) A subset {a} of X is Z-open but not δ -semiopen,

(2) A subset $\{a, d\}$ of X is b-open but not Z-open,

(3) A subset {b, c} of X is e-open but not Z-open.

Example: 3.2 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{b, c\}$ is a Z-open set but not preopen.

Remark: 3.2 According to Definition 3.1 and Remark 3.1, the following diagram holds for a subset A of a space X:

Theorem: 3.1 Let (X, τ) be a topological space .Then: (1) If $A \in \delta O(X)$ and $B \in ZO(X)$, then $A \cap B$ is Z-open, (2) If $A \in \tau$ and $B \in ZO(X)$, then $A \cap B$ is b-open, (2) If $A \in \tau$ and $B \in ZO(X)$, then $A \cap B$ is b-open,

(3) If $A \in aO(X, \tau)$ and $B \in ZO(X, \tau)$, then $A \cap B \in ZO(X, \tau_A)$.

Proof: (1) Suppose that $A \in \delta O(X)$. Then $A = \delta \operatorname{-int}(A)$. Since $B \in ZO(X)$, then $B \subseteq cl(\delta \operatorname{-int}(B)) \cup \operatorname{int}(cl(B))$ and hence $A \cap B \subseteq \delta \operatorname{-int}(A) \cap (cl(\delta \operatorname{-int}(B)) \cup \operatorname{int}(cl(B)))$ © 2011, IJMA. All Rights Reserved

 $= (\delta - int(A) \cap cl(\delta - int(B))) \cup (\delta - int(A) \cap int(cl(B))) \\ \subseteq cl(\delta - int(A) \cap (\delta - int(B))) \cup int(int(A) \cap cl(B))) \subseteq cl(\delta - int(A \cap B)) \cup int(cl(A \cap B)). \\ Thus A \cap B \subseteq cl(\delta - int(A \cap B)) \cup int(cl(A \cap B)). \\ Therefore, A \cap B is Z-open,$

(2) It is similar to that of (1),

 $\begin{array}{l} (3) \operatorname{Since} A \cap B \subset \operatorname{int}(cl(\delta\operatorname{-int}(A))) \cap (cl(\delta\operatorname{-int}(B)) \cup \operatorname{int}(cl(B))) \\ = (\operatorname{int}(cl(\delta\operatorname{-int}(A))) \cap cl(\delta\operatorname{-int}(B))) \cup (\operatorname{int}(cl(\delta\operatorname{-int}(A))) \cap \operatorname{int}(cl(B))) \\ \subset cl (cl(\delta\operatorname{-int}(A)) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int} (cl(\delta\operatorname{-int}(A)) \cap \operatorname{int}(cl(B))) \\ \subset cl (cl(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B))) \cup \operatorname{int} (cl(\delta\operatorname{-int}(A)) \cap \operatorname{int}(cl(B))) \text{ and hence} \\ A \cap B \subset (A \cap cl(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B))) \cup (A \cap \operatorname{int}(cl(\delta\operatorname{-int}(A)) \cap \operatorname{int}(cl(B)))) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int}_{A}(cl(\delta\operatorname{-int}(A) \cap \operatorname{int}(cl(B)))) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int}_{A}(cl(\delta\operatorname{-int}(A) \cap \operatorname{cl}(B)))) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int}_{A}(cl(\delta\operatorname{-int}(A) \cap cl(B))) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int}_{A}(cl(\delta\operatorname{-int}(A) \cap cl(B))) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int}_{A}(cl(\delta\operatorname{-int}(A) \cap cl(B))) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int}_{A}(cl(\delta\operatorname{-int}(A) \cap cl(\delta\operatorname{-int}(A) \cap B))) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \cup \operatorname{int}_{A}(cl_{A}(\delta\operatorname{-int}(A) \cap B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(B)) \\ \subset cl_{A}(\delta\operatorname{-int}(A) \cap \delta\operatorname{-int}(A) \cap \delta\operatorname{-in$

Therefore $A \cap B \in ZO(X, \tau_A)$.

Proposition: 3.1 Let (X, τ) be a topological space .Then the closure of a Z-open subset of X is semiopen.

Proof: Let $A \in ZO(X)$. Then $cl(A) \subseteq cl(cl(\delta - int(A)) \cup int(cl(A))) \subseteq cl(\delta - int(A)) \cup cl(int(cl(A))) = cl(int(cl(A)))$. Therefore, cl(A) is semiopen.

Proposition: 3.2 Let A be a Z-open subset of a topological space (X, τ) and δ -int $(A) = \emptyset$. Then A is preopen.

Proof: obvious.

Lemma: 3.1 Let (X, τ) be a topological space .Then the following statements are hold . (1) The union of arbitrary Z-open sets is Z-open, (2)The intersection of arbitrary Z-closed sets is Z-closed.

Proof: (1) Let $\{A_i, i \in I\}$ be a family of Z-open sets. Then $A_i \subseteq cl(\delta - int(A_i)) \cup int(cl(A_i))$ and hence $\cup_i A_i \subseteq \cup_i (cl(\delta - int(A_i)) \cup int(cl(A_i))) \subset cl(\delta - int(\cup_i A_i)) \cup int(cl(\cup_i A_i))$, for all $i \in I$. Thus $\cup_i A_i$ is Z-open. (2) It follows from (1)

Remark: 3.3 By the following we show that the intersection of any two Z-open sets is not Z-open.

Example: 3.3 Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then $A = \{a, c\}$ and $B = \{a, b\}$ are Z-open sets, but $A \cap B = \{a\}$ is not Z-open.

Definition: 3.2 Let (X, τ) be a topological space .Then:

(1) The union of all Z-open sets of X contained in A is called the Z-interior of A and is denoted by Z-int(A),

(2) The intersection of all Z-closed sets of X containing A is called the Z-closure of A and is denoted by Z-cl(A).

Theorem: 3.2 Let A, B be two subsets of a topological space (X, τ) . Then the following are hold: (1) Z-cl(X \ A) = X \ Z-int (A), (2) Z-int(X \ A) = X \ Z-cl(A), (3) If A \subseteq B, then Z-cl (A) \subseteq Z -cl(B) and Z-int(A) \subseteq Z-int (B), (4) $x \in$ Z-cl(A) if and only if for each a Z-open set U contains x, U \cap A $\neq \emptyset$, (5) $x \in$ Z-int(A) if and only if there exist a Z-open set W such that $x \in W \subset A$. (6) Z-cl (Z-cl(A)) = Z-cl(A) and Z-int (Z-int(A)) = Z-int(A), (7) Z-cl(A) \cup Z-cl(B) \subset Z-cl(A \cup B) and Z-int(A) \cup Z-int(B) \subset Z-int(A \cup B), (8) Z-int(A \cap B) \subset Z-int(A) \cap Z-int(B) and Z-cl(A \cap B) \subset Z-cl(A) \cap Z-cl(B).

Proof: (1) It follows from Definition 3.2.

Remark: 3.4 By the following example we show that the inclusion relation in parts (7) and (8) of the above theorem cannot be replaced by equality.

Example 3.4 Let $X = \{a, b, c, d\}$, with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then (1) If $A = \{a, d\}, B = \{b, d\}$, then $A \cup B = \{a, b, d\}$ and hence Z-cl(A) = A, Z-cl(B) = B and Z-cl($A \cup B$) = X. Thus Z-cl($A \cup B$) $\notin Z$ -cl($A \cup Z$ -cl(B),

- (2) If $E = \{a, b\}$, $F = \{a, c\}$, then $E \cap F = \{a\}$ and hence Z-cl(E) =X, Z-cl(F) = F and Z-cl($E \cap F$) = $\{a\}$.Thus Z-cl(E) \cap Z-cl(F) $\not\subset$ Z-cl($E \cap F$).
- (3) If $M = \{c, d\}$, $N = \{b, d\}$, then $M \cup N = \{b, c, d\}$ and hence Z-int $(M) = \emptyset$, Z-int(N) = N and Z-int $(M \cup N) = \{b, c, d\}$. Thus Z-int $(M \cup N) \notin Z$ - int $(M) \cup Z$ - int(N).

Theorem: 3.3 Let (X, τ) be a topological space and $A \subset X$. Then A is a Z-open set if and only if $A = \delta$ -sint(A) \cup pint(A).

Proof: Let A be a Z-open set. Then $A \subseteq cl(\delta - int(A)) \cup int(cl(A))$ and hence by Proposition 2.1 and Lemma 2.2, δ -sint(A) \cup pint(A) = (A $\cap cl(\delta - int(A))) \cup (A \cap int(cl(A))) = A \cap (cl(\delta - int(A)) \cup int(cl(A))) = A$. The Converse it follows from Proposition 2.1 and Lemma 2.2.

Proposition: 3.3.Let (X, τ) be a topological space and $A \subset X$. Then A is a Z-closed set if and only if $A = \delta$ -scl $(A) \cap pcl(A)$.

Proof: It follows from Theorem 3.3.

Theorem: 3.4 Let A be a subset of a space(X, τ). Then: (1) Z-cl(A) = δ -scl(A) \cap pcl(A), (2) Z-int(A) = δ -sint(A) \cup pint(A).

Proof: (1) It is easy to see that Z-cl(A) $\subseteq \delta$ -scl(A) \cap pcl(A).Also, δ -scl(A) \cap pcl(A) = (A \cup int(δ -cl(A)) \cap (A \cap cl(int(A)) = A \cup (int(δ -cl(A)) \cap cl(int(A))).Since Z-cl(A) is Z-closed, then Z-cl(A) \supset int(δ -cl(Z-cl(A))) \cap cl(int(Z-cl(A))) \supset int(δ -cl(A)) \cap cl(int(A)).

Thus $A \cup (int(\delta - cl(A)) \cap cl(int(A))) \subset A \cup Z - cl(A) = Z - cl(A)$ and hence, $\delta - scl(A) \cap pcl(A) \subset Z - cl(A)$. So, $Z - cl(A) = \delta - scl(A) \cap pcl(A)$.

(2) It follows from (1).

Theorem: 3.5 Let A be a subset of a space (X, τ) . Then (1)A is a Z-open set if and only if A =Z-int(A), (2) A is a Z-closed set if and only if A=Z-cl(A).

Proof: (1) It follows from Theorems 3.3, 3.4.

Lemma: 3.2 Let A be a subset of a topological space (X, τ) . Then the following statement are hold : (1) δ -pint(pcl(A)) = pcl(A) \cap int(δ -cl(A)), (2) δ -pcl(pint(A)) = pint(A) \cup cl(δ -int(A)).

Proof: (1) By Lemma 1.3, δ -pint(pcl(A)) = pcl(A) \cap int(δ -cl(pcl(A))) = pcl(A) \cap int(δ -cl(A \cup int(cl(A)))) = pcl(A) \cap int(δ -cl(A)). (2) It follows from (1).

Proposition: 3.4 Let A be a subset of a topological space (X, τ) . Then: (1) Z-cl(A) = A $\cup \delta$ -pint(pcl(A)), (2) Z-int(A) = A $\cap \delta$ -pcl(pint(A)).

Proof : (1) By Lemma 3.2, $A \cup \delta$ -pint(pcl(A)) = $A \cup (pcl(A) \cap int(\delta$ -cl(A))) = ($A \cup pcl(A)$) $\cap (A \cup int(\delta$ -cl(A))) = pcl(A) $\cap \delta$ -scl(A) = Z-cl(A).

(2) It follows from (1).

Theorem: 3.6 Let A be a subset of a topological space (X, τ) . Then the following are equivalent : (1) A is a Z-open set, (2) $A \subseteq \delta$ -pcl(pint(A)), (3) there exists $U \in PO(X)$ such that $U \subset A \subset \delta$ -pcl(U), (4) δ -pcl(A) = δ -pcl(pint(A)).

Proof: (1) \rightarrow (2) Let A be a Z-open set. Then by Theorem 3.5, A = Z-int(A) and By Proposition 3.4, A = A $\cap \delta$ -pcl(pint(A)) and hence , A $\subseteq \delta$ -pcl(pint(A)).

 $(2) \rightarrow (1)$ Let $A \subseteq \delta$ -pcl(pint(A)) .Then by Proposition 3.4, $A \subseteq A \cap \delta$ -pcl(pint(A)) = Z-int(A), and hence A = Z-int(A). Thus A is Z-open.

 $(2) \rightarrow (3)$. It follows from putting U= pint(A),

 $(3) \rightarrow (2)$. Let there exists $U \in PO(X)$ such that $U \subset A \subset \delta$ -pcl(U). Since $U \subset A$, then δ -pcl(U) $\subset \delta$ -pcl(pint(A)), therefore $A \subset \delta$ -pcl(U) $\subset \delta$ -pcl(pint(A)),

(2) \leftrightarrow (4). It is clear.

Theorem: 3.7 Let A be a subset of a topological space X. Then the following are equivalent: (1) A is a Z-closed set, (2) δ -pint(pcl(A)) \subseteq A, (3) there exists $U \in PC(X)$ such that δ -pint(U) $\subset A \subset U$, (4) δ -pint(A) = δ -pint(pcl(A)).

Proof: It follows from Theorem 3.6.

Proposition: 3.5 If A is a Z-open subset of a topological space (X, τ) such that $A \subset B \subset \delta$ -pcl(A), then B is Z-open.

Proof: It is clear.

Definition: 3.3 A subset A of a topological space (X, τ) is said to be locally Z-closed if $A = U \cap F$, where $U \in \tau$ and $F \in ZC(X)$.

Theorem: 3.8 Let H be a subset of a space X. Then H is locally Z-closed if and only if $H = U \cap Z$ -cl(H).

Proof: Since H is a locally Z-closed set, then $H = U \cap F$, where $U \in \tau$ and $F \in ZC(X)$ and hence

 $H \subseteq Z \text{-} cl(H) \subseteq Z \text{-} cl(F) = F. \text{ Thus } H \subseteq U \cap Z \text{-} cl(H) \subseteq U \cap Z \text{-} cl(F) = H.$

Therefore $H = U \cap Z$ -cl(H). The Converse is clear.

Theorem: 3.9 Let A be a locally Z-closed subset of a space (X, τ) . Then the following statement are hold: (1) Z-cl(A) \ A is a Z-closed set, (2)(AU (X \ Z-cl(A))) is a Z-open, (3) A \subseteq Z-int(A U (X \ Z-cl(A))).

Proof.(1) If A is a locally Z-closed set, then there exists an open set U such that $A=U\cap Z-cl(A)$. Hence, $Z-cl(A) \setminus A = Z-cl(A) \setminus (U \cap Z-cl(A)) = Z-cl(A) \cap (X \setminus (U \cap Z-cl(A))) = Z-cl(A) \cap ((X \setminus U) \cup (X \setminus Z-cl(A))) = Z-cl(A) \cap (X \setminus U)$ which is Z-closed.

(2) Since Z-cl(A) \ A is Z-closed, then $X \setminus (Z-cl(A) \setminus A)$ is a Z-open set. Since $X \setminus (Z-cl(A) \setminus A) = ((X \setminus Z-cl(A)) \cup (X \cap A)) = (A \cup (X \setminus Z-cl(A)))$, then $A \cup (X \setminus Z-cl(A))$ is Z-open.

(3) It follows from (2).

Definition: 3.4 A subset A of a space (X, τ) is said to be D(c, z) iff int(A) = Z-int(A).

Remark: 3.5 One may notice that the concepts of Z-open and D(c, z) are independent and by we show this the following example.

Example: 3.5 Let X = {a, b, c, d}, with $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, c, d\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{a, b, c\}, X\}$.

Then a subset $\{a, b\}$ is Z-open but not D(c, z) in (X, τ) . Also a subset $\{b, d\}$ is D(c, z) but not Z-open in (X, σ) .

Theorem: 3.10 Let A be a subset of topological space X. Then the following are equivalent: (1) A is an open set, (2) A is Z-open and D(c, z).

Proof: Obvious.

© 2011, IJMA. All Rights Reserved

4. SOME TOPOLOGICAL OPERATIONS

Definition: 4.1 Let (X, τ) be a topological space and $A \subset X$. Then the Z-boundary of A (briefly, Z-b(A)) is defined by Z-b(A) = Z-cl(A) \cap Z-cl(X \ A).

Theorem: 4.1 If A is a subsets of a topological space (X, τ) , then the following statement are hold: (1) Z-b(A) = Z-b(X \ A), (2) Z-b(A) = Z-cl(A) \ Z-int(A), (3) Z-b(A) \cap Z-int(A) = Ø, (4) Z-b(A) \cup Z-int(A) = Z-cl(A).

Proof: (1) It is clear.

Theorem: 4.2 If A is a subset of a space X, then the following statement are hold: (1) A is a Z-open set if and only if $A \cap Z$ -b(A) = Ø, (2) A is a Z-closed set if and only if Z-b(A) $\subset A$, (3) A is a Z-clopen set if and only if Z-b(A) = Ø.

Proof: (1) It follows from Theorem 4.1.

Definition: 4.2 Let (X, τ) be a topological space and $A \subset X$. Then the set $X \setminus (Z-cl(A))$ is called the Z-exterior of A and is denoted by Z-ext(A). A point $p \in X$ is called a Z- exterior point of A, if it is a Z-interior point of $X \setminus A$.

Theorem: 4.3 If A and B are two subsets of a space (X, τ) , then the following statement are hold: (1) Z-ext(A) = Z-int $(X \setminus A)$, (2) Z-ext(A) \cap Z-b(A) = \emptyset , (3) Z-ext(A) \cup Z-b(A) = Z-cl($X \setminus A$), (4){Z-int(A), Z-b(A) and Z-ext(A)} form a partition of X. (5) If $A \subset B$, then Z-ext(B) \subset Z-ext(A), (6) Z-ext(A \cup B) \subset Z-ext(A) \cup Z-ext(B), (7) Z-ext(A \cap B) \supset Z-ext(A) \cap Z-ext(B), (8) Z-ext(\emptyset) = X and Z-ext(X)= \emptyset .

Proof: It follows from Theorems 3.5 and 4.1.

Remark: 4.1 The inclusion relation in parts (6) and (7) of the above theorem cannot be replaced by equality as is shown by the following example.

Example: 4.1 Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$.

If A= {b, c} and B= {a, c}, then Z-ext(A) = {a, d}, Z-ext(B) = {b}.But Z-ext(A \cup B) = \emptyset,

Therefore Z-ext(A) \cup Z-ext(B) $\not\subset$ Z-ext(A \cup B) . Also, Z-ext (A \cap B) = {a, b, d}, hence, Z-ext (A \cap B) $\not\subset$ Z-ext (A) \cap Z-ext(B).

Definition: 4.3 Let A is a subset of a topological space (X, τ) , Then a point $P \in X$ is called a Z-limit point of a set $A \subset X$ if every Z-open set $G \subset X$ containing p contains a point of A other than p. The set of all Z-limit points of A is called a Z-derived set of A and is denoted by Z-d(A).

Theorem: 4.4 If A and B are two subsets of a space X, then the following statement are hold: (1) If $A \subset B$, then Z-d(A) \subset Z-d(B), (2) Z-d(A) \cup Z-d(B) \subset Z-d(A \cup B), (3) Z-d(A \cap B) \subset Z-d(A) \cap Z-d(B), (4) A is a Z-closed set if and only if it contains each of its Z-limit points, (5) Z-cl(A) = A \cup Z-d(A).

Proof: It is clear.

Definition: 4.4 A subset N of a topological space (X, τ) is called a Z-neighbourhood (briefly, Z-nbd) of a point $P \in X$ if there exists a Z-open set W such that $P \in W \subseteq N$. The class of all Z-nbds of $P \in X$ is called the Z-neighbourhood system of P and denoted by Z-N_p.

Theorem: 4.5 A subset G of a space X is Z-open if and only if it is Z-nbd, for every point P∈G.

Proof: It is clear.

Theorem: 4.6 In a topological space (X, τ) , let Z-N_p be the Z-nbd. System of a point P \in X, then the following statement are hold:

(1)Z-N_p is not empty and p belongs to each member of Z-N_p,

(2) Each superset of members of N_p belongs to Z- N_p ,

(3) Each member $N \in Z-N_p$ is a superset of a member $W \in Z-N_p$, where W is Z-nbd of each point $P \in W$.

(4) The intersection of δ -nbd of a point p and Z-nbd of p is Z-nbd of p.

Proof: (4) It follows from Theorem 3.1.

5. Z-CONTINUOUS MAPPINGS

Definition: 5.1 A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called Z-continuous if the inverse image of each member of (Y, σ) is Z-open in (X, τ) .

Remark: 5.1 Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be mapping from a space (X, τ) into a space (Y, σ) , The following diagram hold:

Now, the following examples show that these implication are not reversible.

Example: 5.1 Let X = Y = {a, b, c, d}, $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}, \sigma_1 = \{\emptyset, \{b, c\}, Y\}, \sigma_2 = \{\emptyset, \{a\}, Y\}, \sigma_3 = \{\emptyset, \{a, d\}, Y\}$

(1) The identity $f : (X, \tau) \to (Y, \sigma_1)$ is e-continuous but not Z-continuous, (2) The identity $f : (X, \tau) \to (Y, \sigma_2)$ is Z-continuous but not δ -semi continuous. (3) The identity $f : (X, \tau) \to (Y, \sigma_3)$ is γ -continuous but not Z-continuous.

Example: 5.2 Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, \sigma = \{\emptyset, \{b, c\}, Y\}$, then the identity $f : (X, \tau) \rightarrow (Y, \sigma)$ is Z-continuous but not precontinuous.

Theorem: 5.1 Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping ,then the following statements are equivalent: (1) f is Z-continuous. (2) For each $x \in X$ and $V \in \sigma$ containing f(X), there exists $U \in ZO(X)$ containing x such that f (U) $\subset V$, (3) The inverse image of each closed set in Y is Z-closed in X, (4) int(δ -cl(f⁻¹(B))) \cap cl(int(f⁻¹(B))) \subset f⁻¹(cl(B)), for each B \subset Y, (5) f⁻¹(int(B)) \subset cl(δ -int(f⁻¹(B))) \cup int(cl(f⁻¹(B))), for each B \subset Y, (6) If f is bijective, then int(f(A)) \subset f(cl (δ -int (A))) \cup f(int (cl(A))), for each A \subset X, (7) If f is bijective, then f(int (δ -cl (A))) \cap f(cl(int(A))) \subset cl(f(A)), for each A \subset X.

Proof: (1) \leftrightarrow (2) and (1) \leftrightarrow (3) are obvious.

(3) → (4). Let B⊂Y, then by (3) $f^{-1}(cl(B))$ is Z-closed. This means $f^{-1}(cl(B)) \supset int(\delta - cl(f^{-1}(cl(B)))) \cap cl(int(f^{-1}(cl(B)))) \supset int(\delta - cl(f^{-1}(B))) \cap cl(int(f^{-1}(B)))$.

 $\begin{array}{l} (4) \rightarrow (5). \ By \ replacing \ Y \setminus B \ instead \ of \ B \ in \ (4) \ , we \ have \\ int(\delta-cl(\ f^{-1}(Y \setminus B))) \ \cap \ cl(int(f^{-1}(Y \setminus B))) \subset f^{-1}(cl(Y \setminus B)) \ and \ therefore \ f^{-1}(int(B)) \subset cl(\delta-int(f^{-1}(B))) \ \cup \ int(cl(f^{-1}(B))) \ , \\ \end{array}$

 $(5) \rightarrow (6)$. Follows directly by replacing A instead of $f^{-1}(B)$ in (5) and applying the bijection of f.

 $(6) \rightarrow (7)$. By complementation of (6) and applying the bijective of f, we have $f(int(\delta - cl (X \setminus A))) \cap f(cl(int(X \setminus A))) \subset cl(f(X \setminus A))$. We obtain the required by replacing A instead of $X \setminus A$.

 $(7) \rightarrow (1)$. Let $V \in \sigma$. Set $W = Y \setminus V$, by (7), we have $f(int(\delta - cl (f^{-1}(W)))) \cap f(cl(int(f^{-1}(W)))) \subset cl(ff^{-1}(W)) \subset cl(W) = W$. So $int(\delta - cl (f^{-1}(W))) \cap cl(int(f^{-1}(W))) \subset f^{-1}(W)$ implies $f^{-1}(W)$ is Z-closed and therefore $f^{-1}(V) \in ZO(X)$.

Theorem: 5.2 Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping ,then the following statements are equivalent: (1) f is Z-continuous, (2) Z-cl(f⁻¹(B)) \subset f⁻¹(cl(B)), for each B \subset Y, (3) f (Z-cl(A)) \subset cl(f(A)), for each A \subset X, (4) If f is bijective, then int(f(A)) \subset f (Z-int(A)),for each A \subset X, (5) If f is bijective, then f⁻¹(int(B)) \subset Z-int(f⁻¹(B)), for each A \subset X.

Proof: (1) \rightarrow (2). Let $B \subset Y$, $f^{-1}(cl(B))$ is Z-closed in X, then Z-cl $(f^{-1}(B)) \subset Z$ -cl $(f^{-1}(cl(B))) = f^{-1}(cl(B))$.

 $(2) \rightarrow (3)$. Let A \subset X, then f (A) \subset Y, by (2), f⁻¹(cl(f(A))) \supset Z-cl(f⁻¹(f (A))) \supset Z-cl(A),

Therefore, $cl(f(A)) \supset f f^{-1}(cl(f(A))) \supset f (Z-cl(A))$,

 $(3) \rightarrow (4)$. Follows directly by complementation of (3) and applying the bijection of f,

 $(4) \rightarrow (5)$. By replacing f⁻¹(B) instead of A in (4) and using the bijection, we have int(B) = int (f f⁻¹(B)) \subset f (Z-int(f⁻¹(B))), therefore f⁻¹(int(B)) \subset Z-int(f⁻¹(B)),

 $(5) \rightarrow (1)$. Let $V \in \sigma$, by (5), $f^{-1}(V) = f^{-1}(int(V)) \subset Z-int(f^{-1}(V))$, therefore $f^{-1}(V) \in ZO(X)$.

Definition: 5.2 Let X and Y be spaces .A mapping $f: X \to Y$ is called Z-continuous at a point $P \in X$ if the inverse image of each Z-neighbourhood of f(P) is Z-neighbourhood of P.

Theorem: 5.3 Let X and Y be spaces .Then the mapping f: $X \rightarrow Y$ is Z-continuous if and only if it is Z-continuous at every point $x \in X$.

Proof: Let $H \subseteq Y$ be an open set containing f (p). Then p \in f⁻¹(H), but f is Z-continuous, hence f⁻¹(H) is an Z-open of X containing p, therefore, f is Z-continuous at every point $p \in X$,

On the other hand Suppose that $G \subseteq Y$ is open set for every $p \in f^{-1}(G)$ and f is Z-continuous at every point $p \in X$. Then there exists an Z-open set H containing p such that $p \in G \subseteq f^{-1}(G)$, i.e., $f^{-1}(G) = \bigcup \{H : p \in f^{-1}(G), H \text{ is } Z\text{-open}\}$, then $f^{-1}(G) \subseteq X$ is Z-open. SO, f is Z-continuous.

Remark: 5.2 The composition of two Z-continuous mappings need not be Z-continuous as show by the following example.

Example: 5.3 Let $X = Z = \{a, b, c\}$, $Y = \{a, b, c, d\}$ with topologies $\tau_x = \{\emptyset, \{a\}, X\}$, $\tau_Y = \{\emptyset, \{a, c\}, Y\}$, $\tau_Z = \{\emptyset, \{c\}, \{a, b\}, Z\}$. Let the identity mapping f and g: $Y \rightarrow Z$ defined as g(a) = a, g(b) = g(d) = b and g(c) = c. It is clear that f and g is Z-continuous but $g \circ f$ is not Z-continuous.

Theorem: 5.4 The restriction mapping $f/A : (A, \tau_A) \rightarrow (Y, \sigma)$ of a Z-continuous mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is Z-continuous if $A \in aO(X, \tau)$.

Proof: Let $U \in \sigma$ and f be a Z-continuous mapping. Then $f^{-1}(U) \in ZO(X, \tau)$. Since $A \in aO(X, \tau)$, then by Theorem 3.1, $(f/A)^{-1}(U) = A \cap f^{-1}(U) \in ZO(X, \tau)$, therefore f/A is Z-continuous.

REFERENCES

[1] M. E. Abd El-Monsef; S. N. El-Deeb and R.A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1983), 77-90.

[2]D. Andrijevi'c, Semi-preopen sets, Math. Vesnik, 38(1) (1986), 24-32.

[3] D.Andrijevi'c ,On b-open sets, Mat. Vesnik, 48 (1996), 59 - 64.

[4] A.A.EL-Atik, A study of some types of mappings on topological spaces, M.Sc. Thesis, Tanta Univ. Egypt (1997).

[5] J.Dontchev and M.Przemski, An the various decompositions of continuous and some weakly continuous, Acta Math. Hungarica, 71(1-2) (1996), 109 – 120.

[6] E. Ekici, On e-open sets, *DP**-sets and *DPE**-sets and decompositions of continuity, Arabian J. Sci, 33 (2) (2008), 269 – 282.

[7] E. Ekici, On *a*-open sets, A*-sets and decompositions of continuity and super continuity, Annales Univ. Sci. Budapest, 51(2008), 39 -51.

[8] E. Ekici, On e*-open sets and $(D, S)^*$ -sets and decompositions of continuous functions, Mathematical Moravica, in Press.

[9] E. Ekici and G.B. Navalagi, "δ-Semicontinuous Functions", Math. Forum, 17 (2004-2005), pp. 29-42.

[10] E. Hatir; T. Noiri. Decompositions of continuity and complete continuity, Acta Mathematica Hungarian, 113,(2006). 281–287 .

[11] N.Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36 - 41.

[12] A. S. Mashhour; M. E. Abd EL-Monsef and S. N. EL-Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math . Phys. Soc. Egypt, 53 (1982), 47 - 53.

[13] O. Njastad, On some classes of nearly open sets, Pacific J. Math, 15 (1965), 961 - 970.

[14] J. H. Park; B .Y. Lee and M . J. Son, On δ -semiopen sets in topological spaces, J. Indian Acad. Math, 19 (1) (1997), 59 - 67.

[15] S. Raychaudhuri and M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357 - 366.

[16] M. H. Stone, Application of the theory of Boolean rings to general topology, TAMS, 41 (1937), 375 – 381.

[17] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl, 78 (1968), 103-118.
