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ABSTRACT 
The purpose of this paper is to define and study a new class of closed sets called rNIα - closed sets in nano ideal 

topological spaces. Basic properties of rNIα - closed sets are analyzed and we compared it with some existing and few 
new closed sets in nano ideal topology introduced in this paper.  
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1. INTRODUCTION 

 
The concept of ideal topological space was introduced by Kuratowski [4] . In 1990, Jankovic and Hamlett investigated 
further properties of ideal topological spaces [2]. An ideal I on a nonempty collection of subsets of X which satisfies (i) 

IA∈ and AB ⊂ , implies IB∈ and (ii) IA∈ and IB∈ , implies IBA ∈∪ . Given a topological space
( )τ,X   with an ideal I on X and if P(X) is the set of all subsets of X , a set operator ( ) ( ) ( )XPXP →∗ :.  called a 
local function of A with respect to τ and I is defined as follows: for 

( ) ( ){ }XforeveryUIAUXxIAXA ττ ∈∉∩∈=⊂ ∗ ,:,,  where ( ) { }UXUX ∈∈= :ττ . A Kuratowski 

closure operator cl*(.) for a topology ( )ττ ,I∗  called the *-topology finer than τ , is defined by 

( ) ( )τ,IAAAcl ∗∗ ∪= . When there is no chance of confusion, we will simply write ∗A for ( )τ,IA∗  and ∗τ for

( )ττ ,I∗ . If I is an ideal on X, the space ( )IX ,,τ  is called the ideal topological space.  
 
The concept of nano topology was introduced by Lellis Thivagar.M [5], which was defined in terms of approximations 
and boundary region of a subset of a universe using an equivalence relation on it. He has also defined a Nano 
continuous functions, Nano open mappings, Nano closed mappings and Nano Homeomorphisms and their 
representations in terms of Nano closure and Nano interior.  In this paper, we introduce and investigate a new class of 
closed sets called rNIα - closed sets and also discuss the relationship with some new and existing closed sets in nano 
ideal topological spaces. 
 
2. PRELIMINARIES 

  
Definition 2.1: [5,7] A subset A of a nano ideal topological space ( )( )IXU R ,,,τ  is called,  

(i) NI open if ( )N

ANA ∗⊆ int  and its complement is NI closed. 

(ii) NI  pre open if ( )( )ANclNA ∗⊆ int  and NI  pre closed if ( )( ) AANNcl ⊆∗ int . 

(iii) NI semi open if ( )( )ANNclA int∗⊆  and NI semi closed if ( )( ) AANclN ⊆∗int . 

(iv) NIα  open if ( )( )( )ANNclNA intint ∗⊆  and αNI  closed if ( )( )( ) AANclNNcl ⊆∗∗ int . 

(v) NIβ  open if ( )( )( )ANclNNclA ∗∗⊆ int and βNI  closed if ( )( )( ) AANNclN ⊆∗ intint . 

(vi) NI  regular open if ( )( )ANclNA ∗= int  and NI  regular closed if ( )( ) AANNcl =∗ int . 
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We have the following implications 
 
      

 
 

Nano closed set is independent of NI  closed set.  
 
3. SOME CLOSED SETS IN NANO IDEAL TOPOLOGICAL SPACES 
 
Definition 3.1: A subset A of a nano ideal topological space ( )( )IXU R ,,,τ  is called, 

(i) a nano ideal regular generalized closed set ( −rgNI closed) if ( ) ZANIcl ⊆ whenever ZA ⊆ and Z is 
nano regular open. 

(ii) a nano ideal generalized pre closed set ( −gpNI closed) if ( ) ZANIpcl ⊆ whenever ZA ⊆ and Z is nano 
open. 

(iii) a nano ideal −α  generalized closed set ( −gNIα closed) if ( ) ZAclNI ⊆α whenever ZA ⊆ and Z is 
nano open. 

(iv) a nano ideal generalized −α closed set ( −αgNI closed) if ( ) ZAclNI ⊆α whenever ZA ⊆ and Z is 
nano −α open. 

(v) a nano ideal generalized semi closed set ( −gsNI closed) if ( ) ZANIscl ⊆ whenever ZA ⊆ and Z is nano 
open. 

(vi) a nano ideal semi generalized closed set ( −sgNI closed) if ( ) ZANIscl ⊆ whenever ZA ⊆ and Z is nano 
semi open. 

(vii) a nano ideal generalized closed set ( −gNI closed) if ( ) ZANIcl ⊆ whenever ZA ⊆ and Z is nano open. 

(viii) a nano ideal generalized pre regular closed set ( −gprNI closed) if ( ) ZANIpcl ⊆ whenever ZA ⊆ and Z 
is nano regular open. 

(ix) a nano ideal generalized −β  closed set ( −βgNI closed) if ( ) ZAclNI ⊆β whenever ZA ⊆ and Z is nano 
open. 

(x) a nano ideal generalized regular closed set ( −grNI closed) if ( ) ZANIrcl ⊆ whenever ZA ⊆ and Z is 
nano open. 

   
4. NANO IDEAL α  REGULAR CLOSED SET 
 
Definition 4.1: A subset A of a nano ideal topological space ( )( )IXU R ,,,τ  is called nano ideal α regular closed set 

(briefly rNIα - closed) if ( ) ZAclNI ⊆α whenever ZA ⊆ and Z is nano regular open. 
 
Theorem 4.2:  In a nano ideal topological space ( )( )IXU R ,,τ , 

(i) every  gNIα - closed , gNI α - closed and grNI - closed set is rNIα - closed 

(ii) every  rNIα - closed set is gprNI - closed 
 
Converse of the above theorem need not be true as shown in the following example. 
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Example 4.3: Let { }dcbaU ,,,= , { } { } { }{ }dcbaRU ,,,/ = , { }dbX ,=  and { }{ }aI ,φ= . Then 

( ) { } { } { }{ }dcbdcbUXR ,,,,,,,φτ = . 

(i) { }dbA ,=   is rNIα - closed, but not gNIα - closed     

(ii) { }cbB ,=   is rNIα - closed, but not αgNI - closed. 

(iii) { }cC = is gprNI - closed, but not rNIα - closed. 

(iv) { }dcbD ,,=  is rNIα - closed, but not grNI - closed. 

The following example shows that rNIα - closed set is independent of gpNI - closed, gsNI - closed, sgNI - closed,

gNI - closed and βgNI - closed sets. 
 
Example 4.4: Let { }dcbaU ,,,=  , { } { } { }{ }dcbaRU ,,,/ =  , { }dbX ,=  and { }{ }aI ,φ= . Then

( ) { } { } { }{ }dcbdcbUXR ,,,,,,,φτ = . 

(i) rNIα - closed set= { } { } { } { } { } { } { } { } { } { }{ }Udcbdcadbacbadbcbdacabaa ,,,,,,,,,,,,,,,,,,,,,,,,φ   

(ii) gpNI - closed set= { } { } { } { } { } { } { } { } { }{ }Udcadbacbadacabadca ,,,,,,,,,,,,,,,,,,,φ  

(iii) gsNI - closed set= { } { } { } { } { } { } { } { } { } { } { }{ }Udcadbacbadcdacabadcba ,,,,,,,,,,,,,,,,,,,,,,φ  

(iv) sgNI - closed set= { } { } { } { } { } { } { } { } { } { } { }{ }Udcadbacbadcdacabadcba ,,,,,,,,,,,,,,,,,,,,,,φ  

(v) gNI - closed set= { } { } { } { } { } { } { } { } { }{ }Udcadbacbadacabadca ,,,,,,,,,,,,,,,,,,,φ  
(vi) gNI β -closed set= { } { } { } { } { } { } { } { } { } { } { }{ }Udcadbacbadcdacabadcba ,,,,,,,,,,,,,,,,,,,,,,φ  

 
Theorem 4.5: Let ( )( )IXU R ,,τ be a nano ideal topological space and A be a subset of U. Then   

(i) every  nano closed set is rNIα - closed  

(ii) every NI
  
α - closed set is rNIα - closed 

(iii) every  NI   regular closed set is rNIα - closed. 
 
Proof: (i)  Let  ZA ⊆ , where Z is nano regular open. By hypothesis and since every nano closed set is NI  α - 

closed, ( ) ( ) ZAANclAclNI ⊆=⊆α . Hence A is rNIα - closed. 
Proofs of (ii) & (iii) are similar to (i). 
 
The following example shows that rNIα - closed set is independent of NI - closed, NI  pre closed, NI  semi closed 

and NI  β  closed sets. 
 
Example 4.6: Let { }dcbaU ,,,= , { } { } { }{ }dcbaRU ,,,/ = , { }dbX ,=  and { }{ }aI ,φ= . Then 

( ) { } { } { }{ }dcbdcbUXR ,,,,,,,φτ = . 

(i) rNIα -closed set= { } { } { } { } { } { } { } { } { } { }{ }Udcbdcadbacbadbcbdacabaa ,,,,,,,,,,,,,,,,,,,,,,,,φ   

(ii) NI - closed set= { } { } { } { } { } { } { } { } { }{ }Udcadbacbadacabadca ,,,,,,,,,,,,,,,,,,,φ  

(iii) NI - pre closed set= { } { } { } { } { } { } { } { } { }{ }Udcadbacbadacabadca ,,,,,,,,,,,,,,,,,,,φ  

(iv) NI - semi closed set= { } { } { } { } { }{ }Udcadcbaba ,,,,,,,,,,φ  
(v) NIβ  closed set=  

    { } { }{ } { } { } { } { } { } { } { } { } { } { }{ }Udcadbacbadcdbcbdacabadcba ,,,,,,,,,,,,,,,,,,,,,,,,,φ  
 
 
 
 
 
 



G. Gincy*1 and Dr. C. Janaki2/  
Nano Ideal α - Regular Closed Sets In Nano Ideal Topological Spaces / IJMA- 11(1), Jan.-2020. 

© 2020, IJMA. All Rights Reserved                                                                                                                                                                          4 

 
The above discussions are summarized in the following diagram 

 
1. rNIα - closed 2. nano closed   3. NI   α - closed  4. NI   r – Closed   5. grNI - closed 

6. αgNI - closed   7. gprNI - closed   8. gNIα - closed 9. gNI - closed 10. sgNI - closed 

11. gsNI - closed   12. gpNI - closed   13. βgNI - closed 
 
Theorem 4.7:   Finite union of two rNIα - closed sets is rNIα - closed. 
 
Proof: Let A, B be two rNIα - closed sets. Then ( ) 1ZAclNI ⊆α  and ( ) 2ZBclNI ⊆α , whenever 1ZA ⊆  and 

2ZB ⊆  and 21 , ZZ are nano regular open. ( ) ( ) 21 ZZBclNIAclNI ∪⊆∪ αα .That is,

( ) ZZZBAclNI ⊆∪⊆∪ 21α (say). BA∪∴ is rNIα - closed. 

The following example shows that the intersection of two rNIα - closed sets need not be rNIα - closed. 

Example 4.8: Let  { }dcbaU ,,,= , { } { } { }{ }dbcaRU ,,,/ = , { }baX ,= and { }{ }aI ,φ= . Then 

( ) { } { } { }{ }dbadbaUXR ,,,,,,,φτ = . 

rNIα - closed set = { } { } { } { } { } { } { } { } { } { }{ }Udcbdcadbacbadccbdacabac ,,,,,,,,,,,,,,,,,,,,,,,,φ . 

(i) { } { } { }∈=∪ dcacda ,,, rNIα - closed set           (ii) { } { } { }∉=∩ acaba ,, rNIα -closed set. 
 
Theorem 4.9: Let A be rNIα - closed in a nano ideal topological space ( )( )IXU R ,,τ . Then for all 

( ) { }( ) φα ≠∩∈ AxNrclAclNIx , . 
 
Proof: Let A be rNIα - closed. Suppose ( ) { }( ) φα =∩∈ AxNrclAclNIx , . Then { }( )xNrclUA −⊆ . This  

implies ( ) { }( )xNrclUAclNI −⊆α  , which is a contradiction, since ( ).AclNIx α∈ { }( ) φ≠∩∴ AxNrcl . 
 
Converse of the above theorem does not hold, which is shown in the following example. 
 
Example 4.10: In example 4.8, let { }dbA ,= , ( ) { }dcbAclNI ,,=α . Take { } ( )AclNIb α∈ , 

{ }( ) { } { } { } φ≠=∩=∩ dbdbdcbAbNrcl ,,,, . But { } rNIdb α∉, - closed set. 
 
Theorem 4.11: Let A be rNIα - closed in a nano ideal topological space ( )( )IXU R ,,τ . Then ( ) AAclNI −α  
contains no non empty nano regular closed set. 
 
Proof: Let  G be a nano regular closed set such that ( ) AAclNIG −⊆ α . Then AUG −⊆ , which implies

GUA −⊆ . Then ( ) GUAclNI −⊆α . ( )AclNIUG α−⊆ . Also ( )AclNIG α⊆ .

( )( ) ( )( ) φαα =∩−⊆∴ AclNIAclNIUG . Therefore ( ) AAclNI −α  contains no non empty nano  regular 
closed set. 
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Converse of the above theorem does not hold as seen in the following example. 
 
Example 4.12:  In example 4.8, let { }dA = , then ( ) { } { } { }cbddcbAAclNI ,,, =−=−α which does not contain 

any non empty nano regular closed set. Also A is not rNIα - closed. 
 
Theorem 4.13:  Let A be  rNIα - closed in a nano ideal topological space ( )( )IXU R ,,τ . Then A is αNI - closed iff 

( ) AAclNI −α  is nano regular closed. 
 
Proof: Let A be αNI - closed and hence ( ) AAclNI =α , that implies ( ) φα =− AAclNI , which is nano regular 

closed. Conversely, suppose ( ) AAclNI −α  is nano regular closed and let it be φ . Hence A is αNI - closed, since

( ) AAclNI =α . 
 
Theorem 4.14:  If A is rNIα - closed ( )AclNIBA α⊂⊂ , then B is rNIα - closed. 

Proof: Let ZB ⊆ and Z is nano regular open. Since ZABA ⊂⊂ , , also ( ) ZAclNI ⊆α . Since 

( ) ( ) ZAclNIBclNIBA ⊆⊂⊂ αα, . This shows that B is rNIα - closed. 
 
5. NANO IDEAL α  REGULA OPEN SET 
 
Definition 5.1: A set A in a nano ideal topological space ( )( )IXU R ,,τ  is called nano ideal α regular open ( rNIα -
open) if and only if its complement is nano ideal α regular closed. 
 
Remark 5.2: ( ) ( )ANIUAUclNI intαα −=−  
 
Remark 5.3: The following example shows that 

(i) Finite Intersection of two rNIα -open sets is rNIα -open. 

(ii) Union of two rNIα -open sets needs not be rNIα -open. 
 
Example 5.4: In example : 4.8, rNIα -open sets are {φ , {a}, {b}, {c}, {d}, {a,b}, {a,d}, {b,c}, {b,d},{c,d}, 
{a,b,d},U} 

(i) { } { } { }, ,a b b c b∩ = ∈ rNIα -open set. 

(ii) { } { } { }, , , ra b c a b c NIα∪ = ∉ -open set. 
 
Theorem 5.5: In a nano ideal topological space ( )( )IXU R ,,τ , UA ⊆ is rNIα -open if and only if 

( )ANIF intα⊆ , whenever F is nano regular closed and AF ⊆ .  
 
Proof: Let A be rNIα -open and  F is nano regular closed , AF ⊆ . Then FUAU −⊆− , U-F is nano regular 

open. ( ) ( ) ( )ANIFFUANIUFUAUclNI intint ααα ⊆⇒−⊆−⇒−⊆− . 

Conversely, suppose F is nano regular closed and AF ⊆ implies ( )ANIF intα⊆ . Let ,ZAU ⊆− where Z is 
nano regular open. Then AZU ⊆−  where U- Z is nano regular closed.  By hypothesis, 

( ) ( ) ZANIUANIZU ⊆−⇒⊆− intint αα . By remark : 5.2, ( ) ZAUclNI ⊆−α . Then U-A is rNIα -

closed and hence A is rNIα -open.  
 
Theorem 5.6:  If ( ) ABANI ⊂⊂intα and A is rNIα -open, then B is rNIα -open.  

Proof: ( ) ABANI ⊂⊂intα implies ( ) ( )AUclNIANIUBUAU −=−⊂−⊂− αα int . Since U-A is 

rNIα -closed, by theorem-4.14, U-B is rNIα -closed and hence B is rNIα -open.  
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Remark 5.7:  If ( )( ) φαα =−⊆ AAclNINIUA int, . 
 
Theorem 5.8: If UA ⊆ is rNIα -closed, then ( ) AAclNI −α  is rNIα -open. 
 
Proof: Let A be rNIα -closed and let G be a nano regular closed set such that ( ) AAclNIG −⊆ α . Then by 

theorem: 4.11, φ=G  and hence by remark: 5.7 ( )( )AAclNINIG −⊂ αα int . This shows that ( ) AAclNI −α  is 

rNIα -open.  
 
The converse of the above theorem is not true as shown in the following example.  
 
Example 5.9:  From example: 4.12 let { } ( ) { }cbAAclNIdA ,, =−= α  which is rNIα -open. But A is not rNIα -
closed.  
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