ON A GENERALIZED COMMON FIXED POINT THEOREM FOR WEAK ** COMMUTING MAPS IN 2-METRIC SPACES

Dr. SUJATHA KURAKULA*

Department of Mathematics,
Mahaveer College of Engineering and Technology, Hyderabad, India.

(Received On: 06-11-19; Revised & Accepted On: 23-01-20)

ABSTRACT

In this present research article, we prove the existence of a common fixed point for four self mappings defined on a complete 2- metric space through weak ** commutativity. The results of kubaik [3] are generalized in this work.

AMS Subject Classification: 47H10, 54H25.

Key words: fixed point,2-metric space, weak** commutativity, weak* commutativity, weak commutativity.

INTRODUCTION

The notion of 2-metric space was introduced by Gahler [1] in 1963 as a generalization of area function for Euclidean triangles. Many fixed point theorems were established by various authors like Brouwer, Banach, Schauder etc. A point \(x \in X \) is said to be a fixed point of a self-map \(f : X \rightarrow X \) if \(f(x) = x \), where \(X \) is a non-empty set. Theorems concerning fixed points of self-maps are known as fixed point theorems. Most of the fixed point theorems were proved for contraction mappings. It is well known that every contraction on a metric space is continuous. The converse is not necessarily true. The identity mapping on \([0, 1]\) simply serves the counter example.

In this present work we consider commuting self-maps on a 2-metric space. Let \(T_1 \) and \(T_2 \) be two mappings from a metric space \((X, d)\) into itself. \(T_1 \) and \(T_2 \) are said to commute if \(T_1 T_2 x = T_2 T_1 x \), for all \(x \) in \(X \). Sessa [5] introduced the concept of weak commutativity in metric spaces. In subsequent years the condition of weak commutativity was again made weaker. Weak* commutativity was introduced in metric space. In recent years weak** commutativity has been introduced and some theorems have been established. The existence of fixed point for weak**commutative self maps in 2-metric space are studied.

In this research article we present the concepts of weak commutativity, weak* commutativity and weak** commutativity in 2-metric space. Our results generalize the result of kubaik [3]

1. PRELIMINARIES

In this section we define weak**commutativity, weak* commutativity and weak commutativity. We also present an example to establish the fact that weak** commutativity does not imply commutativity.

1.1 Definition: Two self-maps \(A \) and \(S \) of a 2-metric space \((X, d)\) are called weak** commutative

\((1) \ A(X) \subset S(X) \) and

\((1.1) \ d\left(A^2S^2x, A^2x, a\right) \leq d\left(A^2S, xS A^2x, a\right) \leq d\left(AS, xS A^2x, a\right) \leq d\left(S^2A, A^2x, a\right) \)

for all \(x, a \) in \(X \).

1.2 Definition: Two self-maps \(A \) and \(S \) define on a 2-metric space \((X, d)\) are said to be weak* commutative if

\((1) \ A(X) \subset S(X) \)

\((1.1) \ d\left(A^2S^2x, S^2A^2x, a\right) \leq d\left(S^2x, A^2x, a\right) \)

for all \(x, a \) in \(X \).
1.3 Definition: Two self-maps \(A \) and \(S \) define on a 2-metric space \((X, d)\) are said to be **weak commutative** if

\[
(1) \quad d(AX, SAx, a) \leq d(Ax, Sx, a)
\]

for all \(x, a \in X \).

1.4 Example: Let \(X = [0,1] \) with 2-metric \(d \)-defined as

\[
d(x, y, z) = \min \{ |x - y|, |y - z|, |z - x| \}
\]

Let \(A \) and \(S \) be defined as

\[
A(x) = x + 4 \quad \text{and} \quad S(x) = \frac{x}{2}
\]

for all \(x \in X \). Then \(A \) and \(S \) are weak commutative but not weak commutative.

2. GENERALIZED FIXED POINT THEOREM

2.1 Theorem: Let \(A, B, S \) and \(T \) be four self-mappings of a complete 2-metric space \((X, d)\) such that

\[
(A^2, B^2) : X \to S^2(X) \cap T^2(X)
\]

and satisfy

\[
(1) \quad d(A^2x, B^2y, a) \leq c \max \left\{ d(S^2x, T^2y, a), d(S^2x, A^2x, a), d(T^2y, B^2y, a) \right\}
\]

For all \(x, y, a \in X \), where \(0 < c < 1 \). If one of \(A, B, S \) and \(T \) is continuous and if \(A \) and \(B \) weak commutative with \(S \) and \(T \) respectively, then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof: Let \(x_0 \) be an arbitrary point of \(X \) and

Since \(A^2(X) \) and \(B^2(X) \) are contained in \(S^2(X) \cap T^2(X) \),

We can define sequence \(\{x_n\} \) in \(X \) such that

\[
S^2x_{2n-1} = B^2x_{2n-2} \quad \text{and} \quad T^2x_{2n} = A^2x_{2n-1} \quad \text{for} \quad n = 1, 2, 3, \ldots
\]

By (i) we have

\[
d(S^2x_{2n-1}, T^2x_{2n-1}, a) = d(B^2x_{2n-2}, A^2x_{2n-1}, a) = d(A^2x_{2n-1}, B^2x_{2n-2}, a)
\]

\[
\leq c \max \left\{ d(S^2x_{2n-1}, T^2x_{2n-2}, a), d(S^2x_{2n-1}, A^2x_{2n-1}, a), d(T^2x_{2n-2}, B^2x_{2n-2}, a) \right\}
\]

\[
\leq c \max \left\{ \frac{1}{2} \left[d(S^2x_{2n-1}, B^2x_{2n-2}, a) + d(T^2x_{2n-2}, A^2x_{2n-1}, a) \right] \right\}
\]

Thus

\[
d(S^2x_{2n-1}, T^2x_{2n-2}, a) \leq cd(S^2x_{2n-1}, T^2x_{2n-2}, a)
\]

For \(n = 1, 2, 3, \ldots \) and all \(a \in X \).

By induction we obtain

\[
d(S^2x_{2n-1}, T^2x_{2n-2}, a) \leq c^{2n-1}d(S^2x_1, T^2x_0, a) \quad \text{...........(2)}
\]

\[
d(S^2x_{2n+1}, T^2x_{2n}, a) \leq c^{2n-1}d(S^2x_1, T^2x_2, a) \quad \text{...........(3)}
\]

For \(n = 1, 2, 3, \ldots \) and all \(a \in X \).

Thus

\[
d(S^2x_{2n-1}, S^2x_{2n+1}, a) \leq d(S^2x_{2n-1}, S^2x_{2n+1}, T^2x_{2n}) + d(S^2x_{2n-1}, T^2x_{2n}, a) + d(T^2x_{2n}, S^2x_{2n+1}, a)
\]

\[
\leq \cdots c^{2n-1}d(S^2x_1, T^2x_0, a) + c^{2n-1}d(S^2x_1, T^2x_2, a)
\]

\[
\leq 0 + c^{2n-1} \left[d(S^2x_1, T^2x_0, a) + cd(S^2x_1, T^2x_0, a) \right]
\]

© 2020, IJMA. All Rights Reserved
Since $d\left(S^2x_{2n-1}, S^2x_{2n+1}, T^2x_{2n}\right) = 0$ and $d\left(S^2x_1, T^2x_2, a\right) < c d\left(S^2x_1, T^2x_0, a\right)$

$d\left(S^2x_{2n-1}, S^2x_{2n+1}, a\right) \leq c^{2n-1}(1+c) d\left(S^2x_1, T^2x_0, a\right)$

Similarly $d\left(S^2x_{2n+1}, S^2x_{2n+3}, a\right) \leq c^{2n+1}(1+c) d\left(S^2x_1, T^2x_0, a\right)$

$d\left(S^2x_{2n+3}, S^2x_{2n+5}, a\right) \leq c^{2n+3}(1+c) d\left(S^2x_1, T^2x_0, a\right)$ and so on

Since $0 < c < 1$

c^{2n-1} \to 0$ as $n \to \infty$

So that $\left\{S^2x_{2n-1}\right\}$ is a Cauchy sequence in X, thus converges to a point u in X

Consider

$d\left(T^2x_{2n}, u, a\right) \leq d\left(T^2x_{2n}, u, S^2x_{2n-1}\right) + d\left(T^2x_{2n}, S^2x_{2n-1}, a\right) + d\left(S^2x_{2n-1}, u, a\right)$

$\leq d\left(T^2x_{2n}, u, u\right) + d\left(T^2x_{2n}, u, a\right) + d\left(u, u, a\right)$

$d\left(T^2x_{2n}, u, a\right) \leq d\left(T^2x_{2n}, u, a\right)$

Which is a contradiction

$d\left(T^2x_{2n}, u, a\right) = 0$ for every a in X

Therefore $\left\{T^2x_{2n}\right\}$ converges to u

Thus

$\lim_{n \to \infty} S^2x_{2n-1} = \lim_{n \to \infty} B^2x_{2n-2} = \lim_{n \to \infty} T^2x_{2n} = \lim_{n \to \infty} A^2x_{2n-1} = u$

Now suppose that S is continuous, we have the sequence $\left\{A^2Sx_{2n-1}\right\}$ converges to Su

I.e. $\lim_{n \to \infty} A^2Sx_{2n-1} = u$

Since A and S are weak** commute

We have $d\left(A^2Sx, SA^2x, a\right) \leq d\left(A^2x, S^2x, a\right)$ for all $a \in X$

Put $x = x_{2n-1}$

$d\left(A^2Sx_{2n-1}, SA^2x_{2n-1}, a\right) \leq d\left(A^2x_{2n-1}, S^2x_{2n-1}, a\right)$

$\lim_{n \to \infty} d\left(A^2Sx_{2n-1}, SA^2x_{2n-1}, a\right) \leq \lim_{n \to \infty} d\left(A^2x_{2n-1}, S^2x_{2n-1}, a\right)$

$\leq d(u, u, a) = 0$

$\lim_{n \to \infty} d\left(A^2Sx_{2n-1}, SA^2x_{2n-1}, a\right) = 0$

Also $\lim_{n \to \infty} A^2x_{2n-1} = u$

Since S is continuous

$\lim_{n \to \infty} SA^2x_{2n-1} = Su$

$\lim_{n \to \infty} d\left(A^2Sx_{2n-1}, Su, a\right) = 0 \forall a \in X$

$\Rightarrow \left\{A^2Sx_{2n-1}\right\}$ is convergent to Su

Since $B^2x_{2n} = u$ and S is continuous

$\lim_{n \to \infty} SB^2x_{2n} = Su$

$\lim_{n \to \infty} SS^2x_{2n+1} = Su$
Since \(S^2x_{2n-1} = B^2x_{2n-2} \Rightarrow S^2x_{2n+1} = B^2x_{2n} \)
\[
\lim_{n \to \infty} S^3x_{2n+1} = Su
\]

Now we have
\[
d \left(A^2Sx_{2n-1}, B^2x_{2n}, a \right) \leq c \max \left\{ \frac{1}{2} \left[d \left(S^3x_{2n+1}, T^2x_{2n}, a \right) + d \left(S^3x_{2n+1}, A^2Sx_{2n+1}, a \right) , d \left(T^2x_{2n}, B^2x_{2n}, a \right) \right] \right\}
\]

Letting \(n \to \infty \) \(d(su, u, a) = 0 \forall a \in X \)
\(\Rightarrow Su = u \)

Hence \(u \) is a fixed point of \(S \)
\(\Rightarrow S^2u = Su = u \)

Consider
\[
d \left(A^2u, B^2x_{2n}, a \right) \leq c \max \left\{ \frac{1}{2} \left[d \left(S^2u, B^2x_{2n}, a \right) + d \left(T^2x_{2n}, A^2u, a \right) \right] \right\}
\]

Letting \(n \to \infty \) \(d(A^2u, u, a) = 0 \forall a \in X \)
\(\Rightarrow A^2u = u \)

Since \(B^2(x) \subseteq T^2(x) \) and \(u \in X \)

We have \(B^2u \in B^2(x) \)
\(\Rightarrow u \in B^2(x) \)
\(\Rightarrow u \in T^2(x) \)

There exist \(u_1 \in X \) Such that \(u = T^2(u_1) \)

Then \(d \left(u, B^2u_1, a \right) = d \left(A^2u, B^2u_1, a \right) \leq c \max \left\{ \frac{1}{2} \left[d \left(S^2u, B^2u_1, a \right) + d \left(T^2u_1, A^2u, a \right) \right] \right\} \)
\[
d \left(u, B^2u_1, a \right) = 0
\]
\(\Rightarrow B^2u_1 = u \)

Therefore \(T^2u_1 = B^2u_1 = u \)

Since \(B \) and \(T \) are Weak** commutative
\[
d(B^2T^2x, T^2B^2x, a) \leq d(B^2Tx, TB^2x, a) \leq d(BT^2x, T^2Bx, a) \leq d(BTx, TBx, a) \leq d(B^2x, T^2x, a) \forall x, a \in X
\]
Put $x = u_i$

\[d(B^2 T^2 x, T^2 B^2 x, a) \leq d(B^2 Tu_i, TB^2 u_i, a) \leq d(BT^2 u_i, T^2 Bu_i, a) \leq d(BT u_i, TB u_i, a) \leq d(B^2 u_i, T^2 u_i, a) \forall a \in X \]

\[d(u, T^2 u, a) = 0 \]

\[\Rightarrow T^2 u = u \forall a \in T \]

Hence $A^2 u = B^2 u = S^2 u = T^2 u = u$

Since $A^2 u = u$

\[A(A^2 u) = Au \]

\[A^3 u = Au \]

Then we have

\[d(u, Au, a) = d(Au, u, a) = d(A^3 u, B^2 u, a) = d(A^2 Au, B^2 u, a) \]

\[\leq c \max \left\{ d(S^2 Au, T^2 u, a), d(S^2 Au, A^3 u, a), d(T^2 u, B^2 u, a) \right\} \]

\[\leq \frac{1}{2} \left[d(S^2 Au, B^2 u, a) + d(T^2 u, A^3 u, a) \right] \]

\[\Rightarrow d(u, Au, a) = 0 \]

\[\Rightarrow Au = u \]

\[\therefore Su = Au = u \]

Since B and T are weak** commutative

\[d(B^2 T^2 u, T^2 B^2 u, a) \leq d(B^2 Tu, TB^2 u, a) \leq d(BT^2 u, T^2 Bu, a) \leq d(BT u, TB u, a) \leq d(B^2 u, T^2 u, a) \]

\[d(u, u, a) \leq d(B^2 Tu, Tu, a) \leq d(Bu, T^2 Bu, a) \leq d(BTu, TB u, a) \leq d(u, u, a) \]

\[0 \leq d(B^2 Tu, Tu, a) \leq d(Bu, T^2 Bu, a) \leq d(BTu, TB u, a) \leq 0 \forall a \in X \]

\[d(B^2 Tu, Tu, a) = 0 \Rightarrow B^2 Tu = Tu \]

\[d(Bu, T^2 Bu, a) = 0 \Rightarrow T^2 Bu = Bu \]

\[d(BTu, TB u, a) = 0 \Rightarrow BT u = TB u \]

\[d(u, Tu, a) = d(A^3 u, B^2 Tu, a) \]

\[\leq \frac{1}{2} \left[d(S^2 u, B^2 Tu, a) + d(T^2 Tu, A^3 u, a) \right] \]

\[\Rightarrow d(u, Tu, a) = 0 \]

\[\therefore Tu = u \]

Since $B^2 u = u$

\[BB^2 u = Bu \]

\[B^3 u = Bu \]

We have

\[d(u, Bu, a) = d(A^3 u, B^3 u, a) = d(A^2 u, B^2 Bu, a) \]

\[\leq \frac{1}{2} \left[d(S^2 u, B^2 Bu, a) + d(T^2 Bu, A^2 u, a) \right] \]
\[d(u, Bu, a) = 0 \]
\[\Rightarrow Bu = u \]
\[\therefore Au = Su = Tu = Bu = u \]

Hence \(u \) is a common fixed point of \(A, S, T \) and \(B \)

Now we prove that \(u \) is a Unique fixed point of \(A, S, T \) and \(B \)

Suppose that there is a point \(v \in X \) such that
\[A v = S v = B v = T v = v \]
\[A^2 v = S^2 v = B^2 v = T^2 v = v \]

Then
\[d(u, v, a) = d(A^2 u, B^2 v, a) \leq c \max \left\{ \frac{d(S^2 u, T^2 v, a) + d(S^2 u, A^2 u, a) + d(T^2 v, B^2 v, a)}{2}, d(S^2 u, B^2 v, a) + d(T^2 v, A^2 u, a) \right\} \]
\[d(u, v, a) = 0 \]
\[\therefore u = v \]

So, we proved that \(u \) is the unique common fixed point of \(A, B, S \) and \(T \).

2.2 Corollary:
Let \(S, T : X \to X \) and either \(S \) or \(T \) be continuous. Then \(S \) and \(T \) have a common fixed point \(z \) if there exists two self mappings \(A, B \) of \(X \) and \(A \) (resp. \(B \)) weakly commute with \(S \) (resp. \(T \)). Further \(z \) is the unique common fixed point of \(A, B, S \) and \(T \).

Proof: As \(A \) (resp. \(B \)) weakly commutes with \(S \) (resp. \(T \)). But weakly commutativity implies weak **commutativity.** Thus the proof of theorem [2.1] work.

Remark:
1. The corollary (2.2) generalizes theorem 1 of kubaik [3] where continuity of both \(S \) and \(T \) and commutative of both \(A \) and \(B \) with \(S \) and \(T \) are assumed. But assumptions in corollary (2.2) are much weaker than that of kubaik [3] and thus theorem (2.1) is more general than kubaik [3].

2.3 Theorem:
Let \(A, B, S \) and \(T \) be four self-mappings of a complete 2-metric space \((X, d)\) such that
\[(1) \ A^2(X) \subset T^2(X) \text{ and } B^2(X) \subset S^2(X), \]
\[(11) \ d(A^2 x, B^2 y, a) \leq c \max \{d(S^2 x, T^2 x, a), d(S^2 x, A^2 x, a), d(T^2 y, B^2 y, a), d(S^2 x, B^2 y, a) + d(T^2 x, A^2 y, a)\} \]

For all \(x, y, a \) in \(X \), where \(0 < c < 1 \). if one of \(A, B, S \) and \(T \) is continuous and if \(A \) and \(B \) weak**commute with \(S \) and \(T \) respectively, then \(A, B, S \) and \(T \) have a unique common fixed point in \(X \).

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]