
International Journal of Mathematical Archive-11(2), 2020, 7-12 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 11(2), Feb.-2020                                                                                                                  7 

 
ON A GENERALIZED COMMON FIXED POINT THEOREM FOR WEAK ** COMMUTING 

MAPS IN 2-METRIC SPACES 
 

Dr. SUJATHA KURAKULA* 
 

Department of Mathematics, 
Mahaveer College of Engineering and Technology, Hyderabad, India. 

 
(Received On: 06-11-19; Revised & Accepted On: 23-01-20) 

 
 

ABSTRACT 
In this present research article, we prove the existence of a common fixed point for four self mappings defined on a 
complete 2- metric space through weak ** commutativity. The results of kubaik [3] are generalized in this work. 
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INTRODUCTION 
 
The notion of 2-metric space was introduced by Gahler [1] in 1963 as a generalization of area function for Euclidean 
triangles.  Many fixed point theorems were established by various authors like Brouwer, Banach, Schauderetc. A point 
x X∈  is said to be a fixed point of a self-map :f X X→ if ( )f x x= , where X is a non- empty set.  Theorems 
concerning fixed points of self-maps are known as fixed point theorems. Most of the fixed point theorems were proved 
for contraction mappings.  It is well known that every contraction on a metric space is continuous.  The converse is not 
necessarily true. The identity mapping on [0, 1] simply serves the counter example. 
 
In this present work we consider commuting self-maps on a 2-metric space. Let T1 and T2be two mappings from a 
metric space (X, d) into itself. T1 and T2 are said to commute if T1T2x = T2T1x, for all x in X. Sessa [5] introduced the 
concept of weak commutativity in metric spaces. In subsequent years the condition of weak commutativity was again 
made weaker. Weak* commutativity was introduced in metric space. In recent years weak** commutativity has been 
introduced and some theorems have been established. The existence of fixed point for weak**commutative self maps in 
2-metric space are studied. 
  
In this research article we present the concepts of weak commutativity, weak* commutativity and weak** 
commutativityin 2-metric space.  Our results generalize the result of kubaik [3] 
 
1. PRELIMINARIES 
 
In this section we define weak**commutativity, weak* commutativity and weak commutativity. We also present an 
example to establish the fact that weak** commutativity does not imply commutativity. 
1.1 Definition: Two self-maps A and S of a 2-metric space (X, d) are called weak** commutative  

(1) ( ) ( ) A X S X⊂ and   

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2(1 1) ,  ,  ,   ,    ,  ,  ,  ,  ,  ,   d A S x S A x a d A S xS A x a d AS x S Ax a d AS xS Ax a d S x A x a≤ ≤ ≤ ≤
for all x, a  in  X. 

1.2 Definition : Two self-maps A and S define on a 2-metric space (X, d) are said to be weak* commutative  if  
( ) ( ) ( )
( ) ( ) ( )2 2 2 2 2 2

1   

1 1   ,  ,    ,  ,

A X S X

d A S x S A x a d S x A x a

⊂

≤
 

for all x, a  in  X. 
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1.3 Definition:  Two self-maps A and S define on a 2-metric space (X, d) are said to be weak commutative if  
( ) ( ) ( )
( ) ( ) ( )
1     

1 1    ,  ,   ,  ,  

A X S X

d ASx SAx a d Ax Sx a≤

⊂

 
for all x, a  in  X. 
 
1.4 Example: let [ ] 0,1   X = with 2-metric d-defined as 

( ) { },  ,      ,  ,  | |d x y z min x y y z z x= − − −  

Let A and S be defined as 

      
4

xAx
x

=
+

and  
2
xSx =   for all x in X  

Then  A and S are weak** commutative but not weak commutative.  
 

2.  GENERALIZED FIXED POINT THEOREM  
 
2.1 Theorem: Let A, B, S and T be four self-mappings of a complete 2-metric space ( ),X d   such that 

( )2 2 2 2,  :    )(A B X S X T X→ ∩  and satisfy 

 (1)   ( )2 2, , )d A x B y a  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 21 ,  ,  , , , , , ,   ,  , ,  ,
2

c ma x d S x T y a d S x A x a d T y B y a d S x B y a d T y A x a ≤ + 
 

    

For all x, y, a in X, where 0 1c< < . If one of A, B, S and T is continuous and if A and B weak** commutative with S 
and T respectively, then A, B, S and T have a unique common fixed point. 
 
Proof: Let x0 be an arbitrary point of X and  
Since ( )2A X and ( )2B X are contained in ( ) ( )2 2 ,S X T X∩  

We can define sequence { }nx  in X such that 
2 2

2 1 2 2 n nS x B x− −= and 2 2
2 2 1 n nT x A x −=  for   1, 2,3, .n = …………  

 
By (i) we have 

( ) ( ) ( )2 2 2 2 2 2
2 1, 2 2 2 2 1 2 1 2 2,  , ,  , ,  B ,n n n n n nd S x T x a d B x A x a d x x aA− − − − −= =  

( ) ( ) ( )
( ) ( )

22
2

2 2 2 2
2 2 2 2 2

2 1 2 1 1

2 2
2

2 2
2 1 2 1

2

2 2 2

, , , , , , , ,  
 1 , , , ,

2

nn n n

n n

n n

n n

d S x T a d S x A x a d T B a
c max

d S x B a d T A x

x x x

x x a

− − −−

− −

− −

− −

 
 ≤  

+ 


  
 

( ) ( ) ( )2
2 2 2 2

22 2
2 2

2 1 2 1 2 2
1 , , , , , ,   , ,
2 nnn n n nc ma x d S x T a d S x T x a d xx xT aT− − −−

 ≤  


 


 

Thus ( )2 2
2 1, 2,  ,n nd S x T x a− ( )2 2

2 1, 2 2,  ,n ncd S x T x a− −≤  

For  1,  2,  3, . .n = …………… and all   a Xε . 
 
By induction we obtain 

( ) ( )2 2 2 1 2 2
2 1, 2 1, 0 ........ ),  , , .... ( . 2,n

n nd S x T x a c d S x T x a−
− ≤  

( ) ( )2 2 2 1 2 2
2 1, 2 1, 2 .................(3),  , ,  ,n

n nd S x T x a c d S x T x a−
+ ≤  

For  1,  2,  3, . .n = ……………  and all   a Xε  

Thus  ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2
2 1, 2 1 2 1, 2 1 2 2 , 12 1 2 2,S , ,  S , ,  , ,  S ,n n n n n nn n nd S x x a d S x x T x d S x T x a d x x aT− + − −+ ++ +≤  

( ) ( ) ( )2 1 2 1
2 1 2

2 2 2 2 2 2 2
2 1, 1, 1 20 ,,  S , ,  , ,  T ,n

n n
n nd S x x T x d S x T x a d x x ac c S−

− −
+ + +≤  

( ) ( )2 2 2 2
1, 0

1
1,

2
00 ,  , ,  T ,n d S x T x a d x xc c aS−  + + ≤  
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Since ( )2 2 2

2 1, 2 1 2,  S , 0n n nd S x x T x+− =  and  ( ) ( )2 2 2 2
1, 2 1, 0,  , ,  T ,c ad S x T x a d x xS

( ) ( )2
22 2 2 2

2 1, 1
1

1, 0(1 ),  S , ,  T ,n n
nd S x x a d x x ac c S− +
−≤ +  

 
Similarly ( ) ( )2

22 2 2 2
2 1, 3

1
1, 0(1 ),  S , ,  T ,n n

nd S x x a d x x ac c S+ +
+≤ +  

( ) ( )2
22 2 2 2

2 3, 5
3

1, 0(1 ),  S , ,  T ,n n
nd S x x a d x x ac c S+ +
+≤ + and So on 

 Since 0 1c< <  
2 1 0nc − → as n →∞  

 
So that { }2

2 1ns x − is a Cauchy sequence in X, thus converges to a point u in X 

Consider  ( ) ( ) ( ) ( )2 2 2 2 2 2
2 2 2 1 22 2 11, u, , ,  S , , ,, Sn n n nn nd x a d x u x d T x S x a d x u aT T −− −+≤ +  

( ) ( ) ( )2 2
2 2 , ,, ,  u , ,n nd x u d T x a d u u aT u+ +≤  

( ) ( )2 2
2 2, u, , ,  an nd xTx a d uT ≤  

 
Which is a contradiction  

( )2
2 0, u,nxTd a = for every a in X 

Therefore { }2
2nT x  converges to  u 

Thus 2 2 2 2
2 1 2 2 2 2 1lim lim lim limn n n nn n n n

s x B x T x A x u− − −→∞ →∞ →∞ →∞
= = = =  

 
Now suppose that S is continuous, we have the sequence { }2

2 1nA Sx − converges to su 

I.e. 2
2 1lim nn

A Sx u−→∞
=  

 
Since A and S are weak** commute 
 
We have 2 2 2 2( , , ) ( , , )d A Sx SA x a d A x S x a≤ for all a X∈  

Put  2 1nx x −=  
2 2 2 2

2 1 2 1 2 1 2 1( , , ) ( , , )n n n nd A Sx SA x a d A x S x a− − − −≤  
2 2 2 2

2 1 2 1 2 1 2 1lim ( , , ) lim ( , , )n n n nn n
d A Sx SA x a d A x S x a− − − −→∞ →∞

≤  

                                                    ( , , ) 0d u u a≤ =  
2 2

2 1 2 1lim ( , , ) 0n nn
d A Sx SA x a− −→∞

=  

 
Also  2

2 1lim nn
A x u−→∞

=  

 
Since  S is continuous 

       
2

2 1lim nn
SA x Su−→∞

=  

       
2

2 1lim ( , , ) 0nn
d A Sx Su a a X−→∞

= ∀ ∈  

{ }2
2 1nA Sx −⇒ is convergent to Su 

Since 2
2lim nn

B x u
→∞

= and S is continuous 

2
2lim nn

SB x Su
→∞

=  

2
2 1lim nn

SS x Su+→∞
=  
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Since 2 2

2 1 2 2n nS x B x− −= 2 2
2 1 2n nS x B x+⇒ =  

3
2 1lim nn

S x Su+→∞
=  

 
Now we have  

( )2 2
2 1 2,  B ,n nd x x aA S − ≤

( ) ( ) ( )
( ) ( )

2 2 2 2
2 1 2 1 2 1

2 2 2
2 1

3 3
2 2 2

3
2 2 12

, , , , , , , ,  
 1 , , , ,

2

n n n

n

n

n

n n

n n

d S x T a d S x A x a d T B a
c a

x S x x

x x
m x

d S x B a d T A aSx

+ + +

+ +

 
 
 

+ 


  


 

Letting n →∞ ( , , ) 0d su u a a X= ∀ ∈  
Su u⇒ =  

 
Hence u is a fixed point of S  

2S u Su u⇒ = =  
 
Consider  

( )
( ) ( ) ( )

( ) ( )

2 2 2 2

2 2
2 2 2 2

2 2
2

2

2 2

2 2

, , , , , , , ,  
,  B ,  1 , , , ,

2

n n

n

n

n

n

d S T a d S A a d T B a
d a

u x u u x x
x c max

d S u
u

uB a d ax x A
A

T

 
 
 

+ 


≤
  

 
Letting n →∞ 2( , , ) 0d A u u a a X= ∀ ∈  

2A u u⇒ =  
 
Consider 

( ) ( )
( ) ( ) ( )

( ) ( )

22 2 2 2 2

2 2

2 2 2 2

2
, , , , , , , ,  

,  B , ,  B ,  1 , , , ,
2

d S T a d S A a d T B a
d

d

u u u u

u
a d a c max

ud S

u u
u u A u

A
u

uu B a T a
= ≤

  

 
 
 

+
 

 

( )2 0,  B ,d u au =
 

2B u u⇒ =  
 
Since ( ) ( )2 2B x T x⊂  and u X∈

  
We have ( )2 2B u B x∈

 
( )2u B x⇒ ∈

 
( )2u T x⇒ ∈

 
There exist 1u X∈ Such that ( )2

1u T u=
 

Then ( ) ( )
( ) ( ) ( )

( ) ( )

22 2
1 1 1

2
1 1

2 2 2

2

1 1

2

2 2 2 2

, , , , , , , ,  
,  B , ,  B ,  1 , , , ,

2

d S T a d S A a d T B a
d

T

u u u u u
a d a c max

d S u B a d

u
u u A u u

u uA au

 
 
 

+ 

≤
  

=
 

( )2
1,  B , 0u ud a =

 
2

1B u u⇒ =  

There fore 2 2
1 1T u B u u= =  

 
Since B and T are Weak** commutative 

2 2 2 2 2 2 2 2 2 2( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ,d B T x T B x a d B Tx TB x a d BT x T Bx a d BTx TBx a d B x T x a x a X≤ ≤ ≤ ≤ ∀ ∈
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Put 1x u=  
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1( , , ) ( , , ) ( , , ) ( , , ) ( , , )d B T x T B x a d B Tu TB u a d BT u T Bu a d BTu TBu a d B u T u a a X≤ ≤ ≤ ≤ ∀ ∈

( )2 0,T ,u ud a =  
2T u u a T⇒ = ∀ ∈  

Hence 2 2 2 2A u B u S u T u u= = = =  
 
Since 2A u u=  

( )2

3

A A u Au

A u Au

=

=
 

Then we have 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

22 2

2 2 2

2 2

3

2 2 3

32

,  A , , , , , ,  B ,

, , , , , , , ,  
 1 , , , ,

2

d a d a d B a d a

d S T a d S

u u Au u A u u A Au u

Au u

d

Au u u u

u

A a d T B a
c max

S Au B a d T Au u a

 
 
 

+ 

= =



=

≤
 



 

( ), 0,u u
Au u

Su Au u

d A a⇒ =

⇒ =
∴ = =

 

 
Since B and T are weak** commutative 

2 2 2 2 2 2 2 2 2 2

2 2

2 2

( , , ) ( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , ) ( , , )

0 ( , , ) ( , , ) ( , , ) 0

d B T u T B u a d B Tu TB u a d BT u T Bu a d BTu TBu a d B u T u a
d u u a d B Tu Tu a d Bu T Bu a d BTu TBu a d u u a

d B Tu Tu a d Bu T Bu a d BTu TBu a a X

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ∀ ∈
 

( )
( )
( )

2

2

2

2

0

0

, ,

, ,

, , 0

d

u

B Tu u B Tu Tu

Bu u T Bu Bu

BTu u BT

T a

d T B a

d TB u Ba T

= ⇒ =

= ⇒ =

= ⇒ =  

( ) ( )
( ) ( ) ( )

( ) ( )
( )

2

2 2 2

2

2

2

2 2

2 2

2

,T , , ,

, , , , , , , ,  
 1 , , , ,

2
,T , 0

u u A u u

u Tu u u Tu Tu

d a d B T a

d S T a d S A a d T B a
c max

d S u B a d T A aT

d a

u Tu u

u u
Tu u

 
 
 

+ 
 

=

≤
  

=

∴ =

 

Since 2B u u=  
2

3

BB u Bu
B u Bu

=

=
 

We  have 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

32 2

2 2

2

2 2 2

2 2 2

2

2

,  B , , , , ,

, , , , , , , ,  
 1 , , , ,

2

u

d u u A u u A u u

u

S

a d B a d B B a

d S T a d S

T

Bu u Bu

u

A a d T B a
c max

d u B a d A

Bu

aBu B u

= =

≤
  

 
 
 

+
   
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( ), 0,

u
d uB au

Bu
=

⇒ =  
Au Su Tu Bu u∴ = = = =  

 
Hence u is a common fixed point of A, S, T and B 
 
Now we prove that u is a Unique fixed point of A, S, T and B 
 
Suppose that there is a point v X∈  such that 

2 2 2 2

Av sv Bv Tv v
A v s v B v T v v

= = = =

= = = =
 

Then ( ) ( )
( ) ( ) ( )

( ) ( )

2 2 2 2

2

2 2

2

2

2

2

2

, , , , , , , ,  
,  v , ,  B ,  1 , , , ,

2

d S T a d S A a d T B a
d

T

u v u u v v
u A u v

v v u
a d a c max

d S u B a d A a

 
 
 

+ 

≤
  

=
 

( ) 0,  v,ud a =

 
u v∴ =

 
 
So, we proved that u is the unique common fixed point of A, B, S and T.  
 
2.2 Corollary: Let S, T: X→X and either S or T be continuous. Then S and T have a common fixed point z if there 
exists two self mappings A,B of X and A (resp. B) weakly commute with S(resp. T) . Further z is the unique common 
fixed point of A, B, S and T. 
 
Proof: As A (resp. B) weakly commutes with S (resp. T). But weakly commutativity implies weak **commutativity. 
Thus the proof of theorem [2.1] work. 
 
Remark: 

1. The corollary (2.2) generalizes theorem 1 of kubaik [3] where continuity of both S and T and commutative of 
both A and B with S and T are assumed. But assumptions in corollary (2.2) are much weaker than that of 
kubaik [3] and thus theorem (2.1) is more general than kubaik [3]. 

 
2.3 Theorem: Let A, B, S and T be four self-mappings of a complete 2-metric space (X, d) such that  
(1) A2(X)  ⊂ T2(X) and B2(X) ⊂  S2(X), 
(11) d(A2x, B2y, a) ≤ c max. {d(S2x, T2x, a), d(S2x, A2x, a), d(T2y, B2y, a), [d(S2x, B2y, a)+d(T2x, A2y, a)]} 
 
For all x, y, a in X, where 0<c<1. if one of A, B, S and T is continuous and if A and B weak**commute with S and T 
respectively, then A, B, S and T have a unique common fixed point in X. 
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