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ABSTRACT 
In this paper, we derive a formula to express the maximum number of non-intersecting diagonals of arbitrary length 
that can be drawn in 𝑛𝑛 × 𝑛𝑛 square arrays, where 𝑛𝑛 is a multiple of 𝑙𝑙 + 1. 
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1. INTRODUCTION 
 
Spatial filling problems have been extensively explored and examined over the years and the results obtained along the 
way are important as they are applied to various branches of Science. In this paper, we shall study one aspect of such a 
filling problem. The problem of finding the maximum number of non-intersecting diagonals of length 1 that can be 
accommodated in an array [3] is the motivation of this paper. The problem of finding maximum number of non-
intersecting diagonals was reminiscent of classical chessboard problems that involve placing the maximum number of 
certain types of chess pieces (e.g., queens, bishops, rooks or pawns) on the board so that no piece attacks another [2]. 
 
In this paper, we will generalize the results to diagonals of arbitrary length subject to certain constraints. 
 
This work is an improvement of a study already done on the maximum number of non-intersecting diagonals of length 
1 (length of a diagonal is elaborated later in this paper) in an array [3]. In the earlier study by Boyland et.al [3], 
extensive work has been done in obtaining results for diagonals of length 1 in square as well as rectangular arrays. 
 
In the context of the earlier work [3], this paper explores the idea of diagonals of any finite length, where a general 
formula for the maximum number of non-intersecting diagonals of any finite length 𝑙𝑙is obtained as the final result.  
 
However, generalizing the length of the diagonals brings about certain complexities which require certain conditions to 
be imposed so as to get meaningful results. In this paper, only positive diagonals are considered in square arrays of size 
𝑛𝑛 × 𝑛𝑛 where 𝑛𝑛 is a multiple of 𝑙𝑙 + 1. 
 
There is also a scope for further study on this topic, where the constraints may be removed. The problem can also be 
extended to diagonals of finite length in 3-dimensional space. 
 
An array is a systematic arrangement of similar objects in rows and columns. In this paper, we deal with two-
dimensional square arrays. An 𝑛𝑛 × 𝑛𝑛squarearray will be denoted as an 𝑛𝑛-array. 
 
A diagonal of a unit square in an array is a straight line joining the opposite corners (or opposite lattice points) of the 
unit square. 
 
In this paper, we will be considering only positive diagonals, i.e., diagonal having positive slope. 
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A diagonal of a unit square in an array can be thought of as having length 1, and is denoted as a 1-diagonal. Two           
1-diagonals in an array are said to intersect if they share a common lattice point or if they belong to the same unit 
square. 
 
Definition 1: Consider 𝑙𝑙consecutive unit squares in an array, such that anytwo adjacent unit squares will have exactly 
one lattice point in common. Adiagonal of length𝑙𝑙is a diagonal which is contained in all of these 𝑙𝑙unitsquares in such a 
way that the diagonal passes through the common lattice points. Such a diagonal is denoted as a 𝑙𝑙-diagonal. 
 
Any two 𝑙𝑙-diagonals in an array are said to intersect if any of the 1-diagonals that form them intersect each other. 
 
Definition 2: The L-arrangement is a way of arranging diagonals in an n-array. This method of arrangement is as 
follows: 

(i) 𝑙𝑙-diagonals are drawn starting from the leftmost column of the array in such a way that each diagonal 
occupies the first 𝑙𝑙lef tmost columns. Then 𝑙𝑙-diagonals are drawn starting from the bottom row in such a way 
that each diagonal occupies the last l bottom rows. This step forms the outermost L. 

(ii) A column is skipped after the columns that are accommodating the previous 𝑙𝑙-diagonals, and then                   
𝑙𝑙-diagonals are drawn starting from the next column and are continued downwards. A row is skipped after the 
rows that are accommodating the previous 𝑙𝑙-diagonals and 𝑙𝑙-diagonals are drawn starting from the row 
above the skipped row and are continued towards the right. 

(iii) Steps (i) and (ii) are repeated until the number of columns and rows that are left is less than 𝑙𝑙 + 1. 
 
Figure 1 is an illustration of the L-arrangement of 2-diagonals in an 8 × 8 array. 
 

 
 

Figure-1: L-arrangement of 2-diagonals in an 8 × 8 array. 
 

Definition 3: [1] Let 𝑃𝑃𝑥𝑥  be a path on x vertices. A sub path 𝑃𝑃𝑦𝑦  of 𝑃𝑃𝑥𝑥  is a path on y vertices where 𝑦𝑦 ≤ 𝑥𝑥 
We use the following notations: 
• 𝐷𝐷𝑙𝑙(𝑛𝑛) : The maximum number of 𝑙𝑙-diagonals that can be accommodated in an n-array. 
• 𝐿𝐿𝑙𝑙(𝑛𝑛): The number of 𝑙𝑙-diagonals that can be accommodated in an n-array. 
• 𝑚𝑚𝑙𝑙(𝑃𝑃𝑘𝑘): The maximum number of subpaths of length 𝑙𝑙in a path 𝑃𝑃𝑘𝑘 , such that every sub path is at a distance of at 

least one in 𝑃𝑃𝑘𝑘  (Note that the sub path has 𝑙𝑙 + 1 vertices). 
 
2. Maximum Number of Non-Intersecting l-Diagonals in an n-array 
 
Theorem 1: For any 𝑙𝑙-diagonal in an n-array, where n is a multiple of 𝑙𝑙 + 1 and 𝑙𝑙 is a positive integer, we have 
𝐿𝐿𝑙𝑙(𝑛𝑛) = 𝑛𝑛2−𝑛𝑛(𝑙𝑙−2)

𝑙𝑙+1
 

 
Proof: Since𝑛𝑛is a multiple of 𝑙𝑙 + 1, we have 

      𝑛𝑛 ≡ 0�𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙 + 1)� 
⟹ 𝑛𝑛 = (𝑙𝑙 + 1) × 𝑎𝑎 

where 𝑎𝑎 is a positive integer. 
In accordance with the L-arrangement as defined in Definition 4, the first 𝑙𝑙 − 1 columns and the last 𝑙𝑙 − 1 rows will not 
accommodate any 𝑙𝑙-diagonal. Also, a column and a row are to be skipped after every L-formation. Therefore, the 
number of diagonals in the L-arrangement is: 
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𝐿𝐿𝑙𝑙(𝑛𝑛) = �𝑛𝑛 − (𝑙𝑙 − 1)� + (𝑛𝑛 − 𝑙𝑙) + �𝑛𝑛 − (𝑙𝑙 + 1) − (𝑙𝑙 − 1)� + (𝑛𝑛 − (𝑙𝑙 + 1) − 𝑙𝑙)(𝑛𝑛 − 2(𝑙𝑙 + 1) − (𝑙𝑙 − 1))

+ (𝑛𝑛 − 2(𝑙𝑙 + 1) − 𝑙𝑙) + �𝑛𝑛 − 3(𝑙𝑙 + 1) − (𝑙𝑙 − 1)� + (𝑛𝑛 − 3(𝑙𝑙 + 1) − 𝑙𝑙) + ⋯
+ �𝑛𝑛 − (𝑎𝑎 − 1)(𝑙𝑙 + 1) − (𝑙𝑙 − 1)� + (𝑛𝑛 − (𝑎𝑎 − 1)(𝑙𝑙 + 1) − 𝑙𝑙) 

⟹ 𝐿𝐿𝑙𝑙(𝑛𝑛) = �𝑛𝑛 − (𝑙𝑙 − 1)� + (𝑛𝑛 − 𝑙𝑙) + ��𝑛𝑛 − 𝑗𝑗(𝑙𝑙 + 1) − (𝑙𝑙 − 1)� + �(𝑛𝑛 − 𝑗𝑗(𝑙𝑙 + 1) − 𝑙𝑙)
𝑎𝑎−1

𝑗𝑗=1

𝑎𝑎−1

𝑗𝑗=1

 

⟹ 𝐿𝐿𝑙𝑙(𝑛𝑛) = 2𝑛𝑛 − 2𝑙𝑙 + 1 + 2𝑛𝑛(𝑎𝑎 − 1) − 2�
(𝑎𝑎 − 1)𝑎𝑎

2
� (𝑙𝑙 + 1) − (𝑎𝑎 − 1)(𝑙𝑙 − 1) − (𝑎𝑎 − 1)𝑙𝑙

⟹ 𝐿𝐿𝑙𝑙(𝑛𝑛) = 2𝑛𝑛 − 2𝑙𝑙 + 1 + (𝑎𝑎 − 1)(2𝑛𝑛 − 𝑎𝑎(𝑙𝑙 + 1) − (𝑙𝑙 − 1) − 𝑙𝑙) 
Substituting 𝑎𝑎 = 𝑛𝑛

𝑙𝑙+1
 , we have, 

       𝐿𝐿𝑙𝑙(𝑛𝑛) = 2𝑛𝑛 − 2𝑙𝑙 + 1 + �
𝑛𝑛

𝑙𝑙 + 1
− 1� (2𝑛𝑛 − 𝑛𝑛 − 2𝑙𝑙 + 1) 

⟹ 𝐿𝐿𝑙𝑙(𝑛𝑛) = 2𝑛𝑛 − 2𝑙𝑙 + 1 + �
𝑛𝑛 − 𝑙𝑙 − 1
𝑙𝑙 + 1

� (𝑛𝑛 − 2𝑙𝑙 + 1) 

⟹ 𝐿𝐿𝑙𝑙(𝑛𝑛) =
2𝑛𝑛(𝑙𝑙 + 1) − 2𝑙𝑙(𝑙𝑙 + 1) + (𝑙𝑙 + 1) + (𝑛𝑛 − 𝑙𝑙 − 1)(𝑛𝑛 − 2𝑙𝑙 + 1)

𝑙𝑙 + 1
 

⟹ 𝐿𝐿𝑙𝑙(𝑛𝑛) =
2𝑛𝑛 + 𝑛𝑛2 − 𝑛𝑛𝑛𝑛

𝑙𝑙 + 1
 

⟹ 𝐿𝐿𝑙𝑙(𝑛𝑛) =
𝑛𝑛2 − 𝑛𝑛(𝑙𝑙 − 2)

𝑙𝑙 + 1
 

Since L-arrangement is one form of arrangement, we have 𝐿𝐿𝑙𝑙(𝑛𝑛) as a lower bound for 𝐷𝐷𝑙𝑙(𝑛𝑛), 
𝑖𝑖. 𝑒𝑒. , 𝐿𝐿𝑙𝑙(𝑛𝑛) ≤ 𝐷𝐷𝑙𝑙(𝑛𝑛) 

𝑖𝑖. 𝑒𝑒. ,𝐷𝐷𝑙𝑙(𝑛𝑛) ≥
𝑛𝑛2 − 𝑛𝑛(𝑙𝑙 − 2)

𝑙𝑙 + 1
                                                                                          (2.1) 

 
In order to find an upper bound for 𝐷𝐷𝑙𝑙(𝑛𝑛), the concept of paths is being used [1]. 
 
We consider the lattice points of an array to be synonymous with the vertices of a graph as shown in Figure 2. 
 
Let 𝑣𝑣𝑖𝑖𝑖𝑖  denote the lattice points of the array. Since we are dealing with positive diagonals only, then any l-diagonal can 
be understood as a path having𝑙𝑙edges and 𝑙𝑙 + 1 vertices. As shown in Figure 1, 𝑃𝑃𝑟𝑟  and 𝑃𝑃𝑟𝑟′ are paths of length 𝑘𝑘 − 𝑟𝑟, 
where 2 ≤ 𝑟𝑟 ≤ 𝑘𝑘 and 𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑟𝑟′ when 𝑟𝑟 = 0. In order to obtainan𝑙𝑙-diagonal in the path 𝑃𝑃𝑟𝑟 , we need to find a sub-path 
𝑃𝑃𝑙𝑙+1 of 𝑃𝑃𝑟𝑟 . Similarly with path 𝑃𝑃𝑟𝑟′. 
 
From the figure, we observe the following: 

• 𝑃𝑃𝑟𝑟 = �𝑣𝑣𝑝𝑝 ,𝑘𝑘−𝑞𝑞−𝑝𝑝+1� 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘, 1 ≤ 𝑞𝑞 ≤ 𝑘𝑘 − 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 − 𝑞𝑞 − 𝑝𝑝 + 1 > 0. 
• 𝑃𝑃𝑟𝑟′ = �𝑣𝑣𝑟𝑟+1,𝑘𝑘−𝑝𝑝+1� 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘 − 1, 1 ≤ 𝑟𝑟 ≤ 𝑘𝑘 − 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 − 𝑝𝑝 + 1 > 0. 

Thus, as can be seen in Figure 2, an n-array can be represented by a 𝑘𝑘 × 𝑘𝑘matrix, where 𝑘𝑘 = 𝑛𝑛 + 1. 

 
 

Figure-2: Lattice points of an n-array. 
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We shall prove a Lemma that will assist us in obtaining our main aim. 
 
Lemma 1: For every positive integer 𝑘𝑘 ≥ 2, let 𝑃𝑃𝑘𝑘  be a path with k vertices. Then, the maximum number of subpaths of 
length 𝑙𝑙 in 𝑃𝑃𝑘𝑘 , 𝑖𝑖. 𝑒𝑒. ,𝑚𝑚𝑙𝑙(𝑃𝑃𝑘𝑘) = � 𝑘𝑘

𝑙𝑙+1
� 

 
Proof: First, we find the number of subpaths 𝑃𝑃′of length 𝑙𝑙 in 𝑃𝑃𝑘𝑘 , whereevery 𝑃𝑃′is at a distance one. Let 𝑞𝑞 denote this 
number. 
 
Case-1: When 𝑙𝑙 = 𝑘𝑘 − 1(i.e., length of the subpath is equal to length of the path). 
 
Since the total number of vertices in 𝑃𝑃𝑙𝑙  is 𝑙𝑙, so the length of 𝑃𝑃𝑙𝑙  is 𝑙𝑙 − 1 = 𝑘𝑘. 
 
Clearly, we have exactly one subpath 𝑃𝑃𝑙𝑙   in 𝑃𝑃𝑘𝑘 , which gives 

𝑞𝑞 = 1                                                                                                                                   (2.2) 
Now,  

�
𝑘𝑘

𝑙𝑙 + 1
� = �

𝑘𝑘
𝑘𝑘 − 1 + 1

� = ⌊1⌋ = 1                                                                                  (2.3) 
 
From (2.2) and (2.3), we have 

𝑞𝑞 = �
𝑘𝑘

𝑙𝑙 + 1
� 

 
Case-2: When 𝑙𝑙 < 𝑘𝑘 − 1(i.e., length of the subpath is less than length of the path). 
 
Every subpath 𝑃𝑃𝑙𝑙  involves 𝑙𝑙 + 1 vertices. 
 
Therefore, number of subpaths 𝑃𝑃𝑙𝑙  is equal to the number of vertices in 𝑃𝑃𝑘𝑘  divided by the number of vertices in each 𝑃𝑃𝑘𝑘 , 
𝑖𝑖. 𝑒𝑒. , 𝑞𝑞 = 𝑘𝑘

𝑙𝑙+1
 

 
By Euclidean Algorithm, 

𝑘𝑘 = (𝑙𝑙 + 1)𝑞𝑞 + 𝑟𝑟,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 ≤ 𝑟𝑟 < 𝑙𝑙 + 1 
Case-2.1: If 𝑟𝑟 = 0, then 

𝑘𝑘 = (𝑙𝑙 + 1)𝑞𝑞 ⟹
𝑘𝑘

𝑙𝑙 + 1
= 𝑞𝑞 

Case-2.2: If 𝑟𝑟 ≠ 0, then 
𝑘𝑘 = (𝑙𝑙 + 1)𝑞𝑞 + 𝑟𝑟 

⟹
𝑘𝑘

𝑙𝑙 + 1
= 𝑞𝑞 +

𝑟𝑟
𝑙𝑙 + 1

 
Since 𝑟𝑟 < 𝑙𝑙 + 1, we have, 

𝑟𝑟
𝑙𝑙 + 1

< 1 
 
Therefore, from Case 1 and Case 2, the number of subpaths 𝑃𝑃′ where every subpath is at a distance 1 is, 

𝑞𝑞 = �
𝑘𝑘

𝑙𝑙 + 1
� 

 
Now we claim that the maximum number of subpaths 𝑃𝑃′occur when every subpath is at a distance one and this will 
conclude our proof. 
 
On the contrary, suppose that the maximum number of subpaths occur in such a way that some subpaths are not at a 
distance one. 
 
We first consider the case where 𝑘𝑘 = (𝑙𝑙 + 1)𝑞𝑞 
 
In this case, if two subpaths 𝑃𝑃𝑘𝑘  are not at a distance one, then the number of subpaths 𝑃𝑃𝑘𝑘  will be at least 1 less than 𝑞𝑞, 
i.e., atleast � 𝑘𝑘

𝑙𝑙+1
� − 1 

 
This is a contradiction since number of subpaths where every edge is at a distance 1 is 

�
𝑘𝑘

𝑙𝑙 + 1
� > �

𝑘𝑘
𝑙𝑙 + 1

� − 1 
 



Marbarisha M. Kharkongor*1 and Joseph Varghese Kureethara2/  

Maximum Number of Non-Intersecting Diagonals in Square Arrays / IJMA- 11(2), Feb.-2020. 

© 2020, IJMA. All Rights Reserved                                                                                                                                                                         17 

 
Next, we consider the case where𝑘𝑘 = (𝑙𝑙 + 1)𝑞𝑞 + 𝑟𝑟 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 < 𝑟𝑟 < 𝑙𝑙 + 1 
 
If the number of vertices which are not in any of the subpaths 𝑃𝑃′is greater than 𝑟𝑟, then the number of subpaths will be at 
least 1 less than 𝑘𝑘, i.e., � 𝑘𝑘

𝑙𝑙+1
� − 1 

 
This is again a contradiction as in the above case. 
 
If the number of vertices which are not in any of the subpaths 𝑃𝑃′is lessthan or equal to 𝑟𝑟, then the number of subpaths 
will be � 𝑘𝑘

𝑙𝑙+1
� 

 
This is the same as 𝑞𝑞, where every subpath 𝑃𝑃′is at a distance one. 
 
Therefore, the claim holds, and hence the result. 

 
Applying Lemma 1 to each of the paths 𝑃𝑃𝑟𝑟and 𝑃𝑃𝑟𝑟′for every 𝑟𝑟 = 2,3,4, … , 𝑘𝑘, we will get the maximum number of non-
intersecting 𝑙𝑙-diagonals for each of the paths. Any arrangement of the 𝑙𝑙-diagonals in each path 𝑃𝑃𝑟𝑟  and 𝑃𝑃𝑟𝑟′ will never 
exceed 𝑚𝑚𝑙𝑙(𝑃𝑃𝑟𝑟) and 𝑚𝑚𝑙𝑙(𝑃𝑃𝑟𝑟′) respectively for all r. 
 
Triangular Inequality of real numbers states that for any real number𝑥𝑥 and 𝑦𝑦, we have 

|𝑥𝑥| + |𝑦𝑦| ≤ |𝑥𝑥 + 𝑦𝑦| 
 
But if 𝑥𝑥 and 𝑦𝑦are non-negative, we have, 

|𝑥𝑥| + |𝑦𝑦| = |𝑥𝑥 + 𝑦𝑦|                                                                                                           (2.4) 
 
Since the number of diagonals is a non-negative number then by (2.4), the sum of the number of diagonals in each path 
is equal to the total number of diagonals in all the paths. Since number of 𝑙𝑙-diagonals in each path 𝑃𝑃𝑟𝑟  and 𝑃𝑃𝑟𝑟′ will never 
exceed 𝑚𝑚𝑙𝑙(𝑃𝑃𝑟𝑟) and 𝑚𝑚𝑙𝑙(𝑃𝑃𝑟𝑟′) respectively, for all 𝑟𝑟, therefore, thenumber of 𝑙𝑙-diagonals in all the paths will not exceed 
the sum of 𝑚𝑚𝑙𝑙(𝑃𝑃𝑟𝑟) and 𝑚𝑚𝑙𝑙(𝑃𝑃𝑟𝑟′) for all 𝑟𝑟. This will give an upper bound for the maximum number of non-intersecting              
𝑙𝑙-diagonals in an 𝑛𝑛-array. 
 
Lemma 2: 𝐷𝐷1(𝑛𝑛) = 𝑛𝑛2+𝑛𝑛

2
, where 𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 2). 

 
Proof: By a result [3], for any n-square matrix where 𝑛𝑛 is even, we have, 𝐷𝐷1(𝑛𝑛) = 𝐿𝐿1(𝑛𝑛) 
 
Therefore, using Theorem 1, we have, 

      𝐷𝐷1(𝑛𝑛) =
𝑛𝑛2 − 𝑛𝑛(1 − 2)

1 + 1
 

⟹𝐷𝐷1(𝑛𝑛) =
𝑛𝑛2 + 𝑛𝑛

2
 

 
Lemma 3: 𝐷𝐷2(𝑛𝑛) ≤ 𝑛𝑛2

3
, where 𝑛𝑛 is a positive integer and 𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 3). 

 
Proof: Let 𝑀𝑀 denote the number of non-intersecting 2-diagonals in any arrangement in an 𝑛𝑛array. This array can be 
represented as a 𝑘𝑘 × 𝑘𝑘 matrix, where 𝑘𝑘 = 𝑛𝑛 + 1. 
 
Now, 𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 3) ⟹ 𝑛𝑛 = 3𝑎𝑎, where 𝑎𝑎 is a positive integer. By Lemma1, we have, 
 

𝑀𝑀 ≤ �
𝑘𝑘
3
� + 2 �

𝑘𝑘 − 1
3

� + 2 �
𝑘𝑘 − 2

3
� + 2 �

𝑘𝑘 − 3
3

� + ⋯+ 2 �
4
3
� + 2 �

3
3
� + 2 �

2
3
�                                      (2.5) 

 
Each term inside the floor function on the right hand side of (2.5) can be represented as �𝑘𝑘−𝑥𝑥

3
� ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 = 1,2,3, … , 𝑘𝑘 − 2. 

 
We have the following cases: 
 
Case-1: When 𝑥𝑥 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 3) ⟹ 𝑥𝑥 = 3𝑧𝑧, where 𝑧𝑧 is a positive integer. 
Then, 

�
𝑘𝑘 − 𝑥𝑥

3
� = �

3𝑎𝑎 + 1 − 3𝑧𝑧
3

� = �(𝑎𝑎 − 𝑧𝑧) +
1
3
� = 𝑎𝑎 − 𝑧𝑧 
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Case-2: When 𝑥𝑥 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 3) ⟹ 𝑥𝑥 = 3𝑧𝑧 + 1, where 𝑧𝑧 is a positive integer. 
Then, 

�
𝑘𝑘 − 𝑥𝑥

3
� = �

3𝑎𝑎 + 1 − 3𝑧𝑧 − 1
3

� = ⌊(𝑎𝑎 − 𝑧𝑧)⌋ = 𝑎𝑎 − 𝑧𝑧 
 
Case-3: When 𝑥𝑥 ≡ 2 (𝑚𝑚𝑚𝑚𝑚𝑚 3) ⟹ 𝑥𝑥 = 3𝑧𝑧 + 2, where 𝑧𝑧 is a positive integer. 
Then, 

�
𝑘𝑘 − 𝑥𝑥

3
� = �

3𝑎𝑎 + 1 − 3𝑧𝑧 − 2
3

� = �(𝑎𝑎 − 𝑧𝑧) −
1
3
� = 𝑎𝑎 − 𝑧𝑧 − 1 

 
Therefore, we have the following, 
When 𝑧𝑧 = 0, 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 3𝑧𝑧 = 0 ⟹ 𝑥𝑥 = 0 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

𝑘𝑘
3
� = 𝑎𝑎 − 0 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 3𝑧𝑧 + 1 = 1 ⟹ 𝑥𝑥 = 1 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

𝑘𝑘 − 1
3

� = 𝑎𝑎 − 0 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3, 3𝑧𝑧 + 2 = 2 ⟹ 𝑥𝑥 = 2 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

𝑘𝑘 − 2
3

� = 𝑎𝑎 − 0 − 1 

When 𝑧𝑧 = 1, 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 3𝑧𝑧 = 3 ⟹ 𝑥𝑥 = 3 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

𝑘𝑘 − 3
3

� = 𝑎𝑎 − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 3𝑧𝑧 + 1 = 4 ⟹ 𝑥𝑥 = 4 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

𝑘𝑘 − 4
3

� = 𝑎𝑎 − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3, 3𝑧𝑧 + 2 = 5 ⟹ 𝑥𝑥 = 5 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

𝑘𝑘 − 5
3

� = 𝑎𝑎 − 1 − 1 

⋮ 
⋮ 
⋮ 
⋮ 
When 𝑧𝑧 = 𝑘𝑘

3
− 2 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 3𝑧𝑧 = 𝑘𝑘 − 6 ⟹ 𝑥𝑥 = 𝑘𝑘 − 6 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

6
3
� = 𝑎𝑎 − �

𝑘𝑘
3
− 2� − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 3𝑧𝑧 + 1 = 𝑘𝑘 − 5 ⟹ 𝑥𝑥 = 𝑘𝑘 − 5 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

5
3
� = 𝑎𝑎 − �

𝑘𝑘
3
− 2� 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3, 3𝑧𝑧 + 2 = 𝑘𝑘 − 4 ⟹ 𝑥𝑥 = 𝑘𝑘 − 4 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

4
3
� = 𝑎𝑎 − �

𝑘𝑘
3
− 2� 

When 𝑧𝑧 = 𝑘𝑘
3
− 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 3𝑧𝑧 = 𝑘𝑘 − 3 ⟹ 𝑥𝑥 = 𝑘𝑘 − 3 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

3
3
� = 𝑎𝑎 − �

𝑘𝑘
3
− 1� − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 3𝑧𝑧 + 1 = 𝑘𝑘 − 2 ⟹ 𝑥𝑥 = 𝑘𝑘 − 2 ⟹ �
𝑘𝑘 − 𝑥𝑥

3
� = �

2
3
� = 𝑎𝑎 − �

𝑘𝑘
3
− 1� 

 
Substituting in (2.5), we get, 

𝑀𝑀 ≤ (𝑎𝑎 − 0) + 2(𝑎𝑎 − 0) + 2(𝑎𝑎 − 0 − 1) + 2(𝑎𝑎 − 1) + 2(𝑎𝑎 − 1) + 2(𝑎𝑎 − 1 − 1) + ⋯+ 2�𝑎𝑎 − �
𝑘𝑘
3
− 2��

+ 2�𝑎𝑎 − �
𝑘𝑘
3
− 2�� + 2 �𝑎𝑎 − �

𝑘𝑘
3
− 2� − 1� + 2�𝑎𝑎 − �

𝑘𝑘
3
− 1�� + 2�𝑎𝑎 − �

𝑘𝑘
3
− 1�� 

= 9𝑎𝑎 + 2 −
4
3
𝑘𝑘 + 4�4(𝑎𝑎 − 𝑡𝑡) +

𝑘𝑘
3−2

𝑡𝑡=1

�2(𝑎𝑎 − 𝑡𝑡 − 1)

𝑘𝑘
3−2

𝑡𝑡=1

 

= 9𝑎𝑎 + 2 −
4
3
𝑘𝑘 + 2(𝑎𝑎 − 1) �

𝑘𝑘
3
− 2� −

2
2
�
𝑘𝑘
3
− 2� �

𝑘𝑘
3
− 1� + 4𝑎𝑎 �

𝑘𝑘
3
− 2� −

4
2
�
𝑘𝑘
3
− 2� �

𝑘𝑘
3
− 1� 

= 9𝑎𝑎 + 2 −
4
3
𝑘𝑘 + �

𝑘𝑘
3
− 2��2(𝑎𝑎 − 1) − �

𝑘𝑘
3
− 1� + 4𝑎𝑎 − �

𝑘𝑘
3
− 1�� 

=
1
3

[27𝑎𝑎 + 64𝑘𝑘 + (𝑘𝑘 − 6)(6𝑎𝑎 − 𝑘𝑘 + 1)] 
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Substituting the values of 𝑎𝑎 and 𝑘𝑘 in terms of 𝑛𝑛, we get 

=
1
3

[5𝑛𝑛 + 2 + (𝑛𝑛 − 5)𝑛𝑛] 

=
1
3

(𝑛𝑛2 + 2) 
Thus, 

𝑀𝑀 ≤
𝑛𝑛2 + 2

3
                                                                                                                       (2.6) 

However, the number of non-intersecting 𝑙𝑙-diagonals is always a non-negative integer. Therefore, we have (2.6) as 

𝑀𝑀 ≤ �
𝑛𝑛2 + 2

3
� = �

𝑛𝑛2

3
+

2
3
� =

𝑛𝑛2

3
 

Since 3 is a factor of 𝑛𝑛. 
 
Therefore, 

𝐷𝐷2(𝑛𝑛) ≤
𝑛𝑛2

3
 

 
Lemma 4: 𝐷𝐷𝟑𝟑(𝑛𝑛) ≤ 𝑛𝑛2−𝑛𝑛

4
, where 𝑛𝑛 is a positive integer and 𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 4). 

 
Proof: Let 𝑀𝑀 denote the number of non-intersecting 3-diagonals in any arrangement in an 𝑛𝑛 array. This array can be 
represented as a 𝑘𝑘 × 𝑘𝑘 matrix, where 𝑘𝑘 = 𝑛𝑛 + 1. 
 
Now, 𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 4) ⟹ 𝑛𝑛 = 4𝑎𝑎, where 𝑎𝑎 is a positive integer. 
 
Using Lemma 1, we have, 

𝑀𝑀 ≤ �
𝑘𝑘
4
� + 2 �

𝑘𝑘 − 1
4

� + 2 �
𝑘𝑘 − 2

4
� + 2 �

𝑘𝑘 − 3
4

� + ⋯+ 2 �
4
4
� + 2 �

3
4
� + 2 �

2
4
�                                      (2.7) 

 
Each term inside the floor function on the right hand side of (2.7) can be represented as �𝑘𝑘−𝑥𝑥

4
�,  

where 𝑥𝑥 = 1,2,3, . . . , 𝑘𝑘 − 2. 
 
We have the following cases: 
Case-1: When 𝑥𝑥 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 4) ⟹ 𝑥𝑥 = 4𝑧𝑧, where 𝑧𝑧 is a positive integer. 
Then, 

�
𝑘𝑘 − 𝑥𝑥

4
� = �

4𝑎𝑎 + 1 − 4𝑧𝑧
4

� = �(𝑎𝑎 − 𝑧𝑧) +
1
4
� = 𝑎𝑎 − 𝑧𝑧 

 
Case-2: When 𝑥𝑥 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 4) ⟹ 𝑥𝑥 = 4𝑧𝑧 + 1, where 𝑧𝑧 is a positive integer. 
Then, 

�
𝑘𝑘 − 𝑥𝑥

4
� = �

4𝑎𝑎 + 1 − 4𝑧𝑧 − 1
4

� = ⌊(𝑎𝑎 − 𝑧𝑧)⌋ = 𝑎𝑎 − 𝑧𝑧 
 
Case-3: When 𝑥𝑥 ≡ 2 (𝑚𝑚𝑚𝑚𝑚𝑚 4) ⟹ 𝑥𝑥 = 4𝑧𝑧 + 2,where 𝑧𝑧 is a positive integer. 
Then, 

�
𝑘𝑘 − 𝑥𝑥

4
� = �

4𝑎𝑎 + 1 − 4𝑧𝑧 − 2
4

� = �(𝑎𝑎 − 𝑧𝑧) −
1
4
� = 𝑎𝑎 − 𝑧𝑧 − 1 

 
Case-4: When𝑥𝑥 ≡ 3 (𝑚𝑚𝑚𝑚𝑚𝑚 4) ⟹ 𝑥𝑥 = 4𝑧𝑧 + 3, where 𝑧𝑧 is a positive integer. 
Then, 

�
𝑘𝑘 − 𝑥𝑥

4
� = �

4𝑎𝑎 + 1 − 4𝑧𝑧 − 3
4

� = �(𝑎𝑎 − 𝑧𝑧) −
1
2
� = 𝑎𝑎 − 𝑧𝑧 − 1 

 
Therefore, we have the following: 
When 𝑧𝑧 = 0, 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 4𝑧𝑧 = 0 ⟹ 𝑥𝑥 = 0 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘
4
� = 𝑎𝑎 − 0 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 4𝑧𝑧 + 1 = 1 ⟹ 𝑥𝑥 = 1 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘 − 1
4

� = 𝑎𝑎 − 0 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3, 4𝑧𝑧 + 2 = 2 ⟹ 𝑥𝑥 = 2 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘 − 2
4

� = 𝑎𝑎 − 0 − 1 
 



Marbarisha M. Kharkongor*1 and Joseph Varghese Kureethara2/  

Maximum Number of Non-Intersecting Diagonals in Square Arrays / IJMA- 11(2), Feb.-2020. 

© 2020, IJMA. All Rights Reserved                                                                                                                                                                         20 

 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 4, 4𝑧𝑧 + 3 = 3 ⟹ 𝑥𝑥 = 3 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘 − 3
4

� = 𝑎𝑎 − 0 − 1 

When 𝑧𝑧 = 1, 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 4𝑧𝑧 = 4 ⟹ 𝑥𝑥 = 4 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘 − 4
4

� = 𝑎𝑎 − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 4𝑧𝑧 + 1 = 5 ⟹ 𝑥𝑥 = 5 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘 − 5
4

� = 𝑎𝑎 − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3, 4𝑧𝑧 + 2 = 6 ⟹ 𝑥𝑥 = 6 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘 − 6
4

� = 𝑎𝑎— 1 − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 4, 4𝑧𝑧 + 3 = 7 ⟹ 𝑥𝑥 = 7 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

𝑘𝑘 − 7
4

� = 𝑎𝑎 − 1 − 1 

⋮ 
⋮ 
⋮ 
When 𝑧𝑧 = 𝑘𝑘

4
− 2; 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 4𝑧𝑧 = 𝑘𝑘 − 8 ⟹ 𝑥𝑥 = 𝑘𝑘 − 8 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

8
4
� = 𝑎𝑎 − �

𝑘𝑘
4
− 2� 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 4𝑧𝑧 + 1 = 𝑘𝑘 − 7 ⟹ 𝑥𝑥 = 𝑘𝑘 − 7 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

7
4
� = 𝑎𝑎 − �

𝑘𝑘
4
− 2� 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3, 4𝑧𝑧 + 2 = 𝑘𝑘 − 6 ⟹ 𝑥𝑥 = 𝑘𝑘 − 6 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

6
4
� = 𝑎𝑎 − �

𝑘𝑘
4
− 2� − 1 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 4, 4𝑧𝑧 + 3 = 𝑘𝑘 − 5 ⟹ 𝑥𝑥 = 𝑘𝑘 − 5 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

5
4
� = 𝑎𝑎 − �

𝑘𝑘
4
− 2� − 1 

When 𝑧𝑧 = 𝑘𝑘
4
− 1; 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1, 4𝑧𝑧 = 𝑘𝑘 − 4 ⟹ 𝑥𝑥 = 𝑘𝑘 − 4 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

4
4
� = 𝑎𝑎 − �

𝑘𝑘
4
− 2� 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2, 4𝑧𝑧 + 2 = 𝑘𝑘 − 3 ⟹ 𝑥𝑥 = 𝑘𝑘 − 3 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

3
4
� = 𝑎𝑎 − �

𝑘𝑘
4
− 2� 

𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3, 4𝑧𝑧 + 3 = 𝑘𝑘 − 2 ⟹ 𝑥𝑥 = 𝑘𝑘 − 2 ⟹ �
𝑘𝑘 − 𝑥𝑥

4
� = �

2
4
� = 𝑎𝑎 − �

𝑘𝑘
4
− 2� − 1 

 
Substituting in (2.7) we get, 
𝑀𝑀 ≤ (𝑎𝑎 − 0) + 2(𝑎𝑎 − 0) + 2(𝑎𝑎 − 0 − 1) + 2(𝑎𝑎 − 0 − 1) + 2(𝑎𝑎 − 1) + 2(𝑎𝑎 − 1) + 2(𝑎𝑎 − 1 − 1) + 2(𝑎𝑎 − 1 − 1)

+ ⋯+ 2�𝑎𝑎 − �
𝑘𝑘
4
− 2�� + 2�𝑎𝑎 − �

𝑘𝑘
4
− 2�� + 2 �𝑎𝑎 − �

𝑘𝑘
4
− 2� − 1� + 2 �𝑎𝑎 − �

𝑘𝑘
4
− 2� − 1�

+ 2�𝑎𝑎 − �
𝑘𝑘
4
− 1�� + 2�𝑎𝑎 − �

𝑘𝑘
4
− 1�� + 2 �𝑎𝑎 − �

𝑘𝑘
4
− 1� − 1� 

= 13𝑎𝑎 −
3
2
𝑘𝑘 + �4(𝑎𝑎 − 𝑡𝑡) + 4�4(𝑎𝑎 − 𝑡𝑡 − 1)

𝑘𝑘
3−2

𝑡𝑡=1

𝑘𝑘
3−2

𝑡𝑡=1

 

= 13𝑎𝑎 −
3
2
𝑘𝑘 + 4𝑎𝑎 �

𝑘𝑘
4
− 2� −

4
2
�
𝑘𝑘
4
− 2� �

𝑘𝑘
4
− 1� + 4(𝑎𝑎 − 1) �

𝑘𝑘
4
− 2� −

4
2
�
𝑘𝑘
4
− 2� �

𝑘𝑘
4
− 1� 

= 13𝑎𝑎 −
3
2
𝑘𝑘 + �

𝑘𝑘
4
− 2� �4𝑎𝑎 − 2 �

𝑘𝑘
4
− 1� + 4(𝑎𝑎 − 1) − �

𝑘𝑘
4
− 1�� 

=
1
4

[52𝑎𝑎 − 6𝑘𝑘 + (𝑘𝑘 − 8)(8𝑎𝑎 − 𝑘𝑘)] 
 
Substituting the value of 𝑎𝑎 and 𝑘𝑘 in terms of 𝑛𝑛, we get, 

=
1
4

[7𝑛𝑛 − 6 − (𝑛𝑛 − 7)(𝑛𝑛 − 1)] 

=
1
4

(𝑛𝑛2 − 𝑛𝑛 + 1) 
Thus,  

𝑀𝑀 ≤
1
4

(𝑛𝑛2 − 𝑛𝑛 + 1)                                                                                                         (2.8) 
However, the number of non-intersecting 𝑙𝑙-diagonals is always a non-negative integer. Therefore, we have (2.8) as 

𝑀𝑀 ≤ �
1
4

(𝑛𝑛2 − 𝑛𝑛 + 1)� = �
𝑛𝑛2 − 𝑛𝑛

4
−

1
4
� =

𝑛𝑛2 − 𝑛𝑛
4
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Since 4 is a factor of 𝑛𝑛. 
 
Therefore, 

𝐷𝐷3(𝑛𝑛) ≤
𝑛𝑛2 − 𝑛𝑛

4
 

From Lemma 2, Lemma 3 and Lemma 4, we observe that the results follow the same pattern and hence we can get a 
general result, 

𝐷𝐷𝑙𝑙(𝑛𝑛) ≤
𝑛𝑛2 − 𝑛𝑛(𝑙𝑙 − 2)

𝑙𝑙 + 1
                                                                                                (2.9) 

From (2.1) and (2.9), we have 

𝐷𝐷𝑙𝑙(𝑛𝑛) =
𝑛𝑛2 − 𝑛𝑛(𝑙𝑙 − 2)

𝑙𝑙 + 1
 

 
3. CONCLUSION 
 
In this paper, we have derived a formula for the maximum number of non-intersecting diagonals in an 𝑛𝑛 × 𝑛𝑛 array, for 
any arbitrary length l of the diagonal and for𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙 + 1)). In the process of deriving this formula, a result for 
the maximum number of independent subpaths in a given path has also been obtained. This result was used to assist in 
attaining the desired formula. 
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