MULTIPLICATIVE ABC, GA, AG, AUGMENTED AND HARMONIC STATUS INDICES
OF GRAPHS

V. R. KULLI*
Department of Mathematics,
Gulbarga University, Gulbarga - 585106, India.

(Received On: 07-12-19; Revised & Accepted On: 04-01-20)

ABSTRACT

In this study, we introduce the multiplicative atom bond connectivity status index, multiplicative geometric-arithmetic status index, multiplicative arithmetic-geometric status index, multiplicative augmented status index and multiplicative harmonic status index of a graph. We compute these multiplicative status indices for complete graphs, cycles, complete bipartite graphs, wheel graphs and friendship graphs.

Key words: Multiplicative ABC status index, multiplicative GA status index, multiplicative augmented status index, multiplicative harmonic status index, graph.

Mathematics Subjects Classification: 05C05, 05C07, 05C35, 05C90.

1. INTRODUCTION

Let $G= (V(G), E(G))$ be a simple, finite, connected graph. The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to u. The distance between two vertices u and v, denoted by $d(u, v)$, is the length of the shortest u-v path in a graph G. The status of a vertex u in G is defined as the sum of its distance from every other vertex in G and is denoted by $\sigma(u)$. For graph theoretic terminology, we refer [1].

A graph index is a numerical parameter mathematically derived from the graph structure. Several graph indices have their applications in various disciplines of Science and Technology, see [2, 3]. Many status indices of a graph such as harmonic status index [4], first and second status connectivity indices [5], first and second hyper status indices [6], multiplicative first and second status indices [7], multiplicative F-status index [8], multiplicative (a, b)-status index [9], first and second status coincides [10], geometric-arithmetic status index [11] studied in the literate of graph indices.

We introduce the multiplicative atom bond connectivity status index, multiplicative geometric-arithemetic status index, multiplicative arithmetic-geometric status index, multiplicative augmented status index, multiplicative harmonic status index of a graph as follows:

The multiplicative atom bond connectivity status index of a graph G is defined as

$$ABCSII(G) = \prod_{u \in E(G)} \frac{\sigma(u) + \sigma(v) - 2}{\sigma(u)\sigma(v)}.$$

The multiplicative geometric-arithmetic status index of a graph G is defined as

$$GASII(G) = \prod_{u \in E(G)} \frac{2\sqrt{\sigma(u)\sigma(v)}}{\sigma(u) + \sigma(v)}.$$

The multiplicative arithmetic-geometric status index of a graph G is defined as

$$AGSII(G) = \prod_{u \in E(G)} \frac{\sigma(u) + \sigma(v)}{2\sqrt{\sigma(u)\sigma(v)}}.$$

Corresponding Author: V. R. Kulli*
Department of Mathematics, Gulbarga University, Gulbarga - 585106, India.
The multiplicative augmented status index of a graph G is defined as
\[
ASIII(G) = \prod_{uv \in E(G)} \left(\frac{\sigma(u)\sigma(v)}{\sigma(u) + \sigma(v) - 2} \right)^3.
\]

The multiplicative harmonic status index of a graph G is defined as
\[
HSII(G) = \prod_{uv \in E(G)} \frac{2}{\sigma(u) + \sigma(v)}.
\]

Recently, some new multiplicative indices were studied, for example, in [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. In this paper, some new multiplicative status indices of complete graphs, wheel graphs friendship graphs are determined.

2. RESULTS FOR COMPLETE GRAPHS

Theorem 1: Let K_n be a complete graph with n vertices and $\frac{n(n-1)}{2}$ edges. Then

1. $ABCSII(K_n) = \left[\frac{2n - 4}{(n-1)^2} \right]^{\frac{n(n-1)}{4}}.$
2. $GASII(K_n) = 1.$
3. $AGSII(K_n) = 1.$
4. $ASIII(K_n) = \left(\frac{n - 1}{2n - 4} \right)^{\frac{3}{2}n(n-1)}.$
5. $HSII(K_n) = \left(\frac{1}{n-1} \right)^{\frac{(n-1)}{2}}.$

Proof: For any vertex u in K_n, $\sigma(u) = n - 1$. Therefore

1. $ABCSII(K_n) = \prod_{uv \in E(K_n)} \left(\frac{\sigma(u) + \sigma(v) - 2}{\sigma(u) + \sigma(v)} \right)^{\frac{1}{2}n(n-1)} = \left[\frac{n-1+n-1-2}{(n-1)(n-1)} \right]^{\frac{1}{2}n(n-1)} = \left[\frac{2n-4}{(n-1)^2} \right]^{\frac{1}{4}n(n-1)}.$
2. $GASII(K_n) = \prod_{uv \in E(K_n)} \frac{\sigma(u) + \sigma(v)}{2\sqrt{\sigma(u)\sigma(v)}} = \left(\frac{n-1+n-1}{2\sqrt{(n-1)(n-1)}} \right)^{\frac{n(n-1)}{2}} = 1.$
3. $AGSII(K_n) = \prod_{uv \in E(K_n)} \frac{2\sqrt{\sigma(u)\sigma(v)}}{\sigma(u) + \sigma(v)} = \left(\frac{2\sqrt{(n-1)(n-1)}}{n-1+n-1} \right)^{\frac{n(n-1)}{2}} = 1.$
4. $ASIII(K_n) = \prod_{uv \in E(K_n)} \left(\frac{\sigma(u)\sigma(v)}{\sigma(u) + \sigma(v) - 2} \right)^{\frac{3}{2}n(n-1)} = \left(\frac{n-1(n-1)}{n-1+n-1-2} \right)^{\frac{3}{2}n(n-1)} = \left(\frac{(n-1)^2}{2n-4} \right)^{\frac{3}{2}n(n-1)}.$
5. $HSII(K_n) = \prod_{uv \in E(K_n)} \frac{2}{\sigma(u) + \sigma(v)} = \left(\frac{2}{n-1+n-1} \right)^{\frac{1}{2}n(n-1)} = \left(\frac{1}{n-1} \right)^{\frac{(n-1)}{2}}.$

3. RESULTS FOR COMPLETE BIPARTITE GRAPHS

Theorem 2: Let $K_{p,q}$ be a complete bipartite graph with $p+q$ vertices and pq edges. Then

1. $ABCSII(K_{p,q}) = \left[\frac{3(p+q)-6}{2(p^2+q^2)-6(p+q)+5pq+4} \right]^{\frac{1}{2pq}}.$
2. $GASII(K_{p,q}) = \left(\frac{2\sqrt{2(p^2+q^2)-6(p+q)+5pq+4}}{3(p+q)-4} \right)^{pq}.$
\[
AGHII(K_{p,q}) = \frac{3(p+q)-4}{2\sqrt{2(p^2+q^2)}-6(p+q)+5pq+4}.
\]

\[
ASHII(K_{p,q}) = \left(\frac{2(p^2+q^2)-6(p+q)+5pq+4}{3(p+q)}\right)^{pq}.
\]

\[
HSII(K_{p,q}) = \left(\frac{2}{3(p+q)-4}\right)^{pq}.
\]

Proof: The vertex set of \(K_{p,q}\) can be partitioned into two independent sets \(V_1\) and \(V_2\) such that \(u \in V_1\) and \(v \in V_2\) for every edge \(uv\) in \(K_{p,q}\). Thus \(d_G(u) = q\), \(d_G(v) = p\). Then \(\sigma(u) = q + 2(p - 1)\) and \(\sigma(v) = p + 2(q - 1)\). Therefore

\[
ABCII(K_{p,q}) = \sqrt{\frac{\sigma(u) + \sigma(v) - 2}{\sigma(u)\sigma(v)}} = \left[\frac{3(p+q)-6}{2\sqrt{(p^2+q^2)}-6(p+q)+5pq+4}\right]^{\frac{1}{2pq}}.
\]

\[
\prod_{uv \in E(K_{p,q})} \frac{2\sqrt{\sigma(u)\sigma(v)}}{\sigma(u) + \sigma(v)}^{pq}.
\]

\[
AGSII(K_{p,q}) = \left(\frac{q + 2p - 2 + p + 2q - 2}{2\sqrt{(q + 2p - 2)(p + 2q - 2)}}\right)^{pq}.
\]

\[
\prod_{uv \in E(K_{p,q})} \left(\frac{\sigma(u)\sigma(v)}{\sigma(u) + \sigma(v) - 2}\right)^3^{pq}.
\]

\[
ASHII(K_{p,q}) = \left(\frac{(q + 2p - 2)(q + 2p - 2)}{q + 2p - 2 + p + 2q - 2}\right)^{3pq}.
\]

\[
ASII(K_{p,q}) = \left(\frac{2(p^2+q^2)-6(p+q)+5pq+4}{3(p+q)-6}\right)^{3pq}.
\]

\[
\prod_{uv \in E(K_{p,q})} \frac{2}{\sigma(u) + \sigma(v)} = \left(\frac{2}{q + 2p - 2 + p + 2q - 2}\right)^{pq}.
\]

\[
\left(\frac{2}{3(p+q)-4}\right)^{pq}.
\]
4. RESULTS FOR CYCLES

Theorem 3: Let \(C_n \) be a cycle with \(n \) vertices and \(n \) edges. Then

(1) \(\text{ABC} \text{SII}(C_n) = \left(\frac{8(n^2 - 4)}{n^4}\right)^\frac{n}{2} \), if \(n \) is even,
 \[= \left(\frac{8(n^2 - 5)}{(n^2 - 1)^2}\right)^\frac{n}{2} \], if \(n \) is odd.

(2) \(\text{GAS} \text{SII}(C_n) = 1 \), if \(n \) is even,
 \[= 1 \], if \(n \) is odd.

(3) \(\text{AGS} \text{SII}(C_n) = 1 \), if \(n \) is even,
 \[= 1 \], if \(n \) is odd.

(4) \(\text{ASIII} \text{SII}(C_n) = \left(\frac{n^4}{8(n^2 - 4)}\right)^{\frac{3n}{2}} \), if \(n \) is even,
 \[= \left(\frac{(n^2 - 1)^2}{8(n^2 - 5)}\right)^{\frac{3n}{2}} \], if \(n \) is odd.

(5) \(\text{HSII} \text{SII}(C_n) = \left(\frac{4}{n^2}\right)^n \), if \(n \) is even,
 \[= \left(\frac{4}{n^2 - 1}\right)^n \], if \(n \) is odd.

Proof:

Case-1: Suppose \(n \) is even. Then \(\sigma(u) = \frac{n^2}{4} \) for any vertex \(u \) in \(C_n \). Thus

(1) \(\text{ABC} \text{SII}(C_n) = \prod_{u \in V(C_n)} \sqrt{\frac{\sigma(u) + \sigma(v) - 2}{\sigma(u) \sigma(v)}} = \left[\frac{n^2}{4} + \frac{n^2}{4} - 2}{\frac{n^2 \times n^2}{4 \times 4}}\right]^{\frac{n}{2}} = \left(\frac{8(n^2 - 4)}{n^4}\right)^{\frac{n}{2}} . \)

(2) \(\text{GAS} \text{SII}(C_n) = \prod_{u \in V(C_n)} 2\sqrt{\frac{\sigma(u)}{\sigma(u) + \sigma(v)}} = \left[2 \sqrt{\frac{n^2 \times n^2}{4 \times 4}}\right]^{\frac{n}{2}} = 1 . \)

(3) \(\text{AGS} \text{SII}(C_n) = \prod_{u \in V(C_n)} \frac{\sigma(u) + \sigma(v)}{2\sqrt{\sigma(u) \sigma(v)}} = \left[\frac{n^2 + n^2}{4 + 4}\right]^{\frac{n}{2}} = 1 . \)

(4) \(\text{ASIII} \text{SII}(C_n) = \prod_{u \in V(C_n)} \left(\frac{\sigma(u) \sigma(v)}{\sigma(u) + \sigma(v) - 2}\right)^3 = \left[\frac{n^2 \times n^2}{4 + 4} - 2}{\frac{n^2 + n^2}{4 \times 4}}\right]^{3n} = \left(\frac{8(n^2 - 4)}{n^2 - 5}\right)^{3n} . \)

(5) \(\text{HSII} \text{SII}(C_n) = \prod_{u \in V(C_n)} \frac{2}{\sigma(u) + \sigma(v)} = \left[\frac{2}{\frac{n^2}{4} + \frac{n^2}{4}}\right]^{n} = \left(\frac{4}{n^2}\right)^n . \)
Case-2: Suppose n is odd. Then $\sigma(u) = \frac{n^2 - 1}{4}$ for any vertex u in C_n. Therefore

(1) $ABCSII (C_n) = \prod_{u \in E(C_n)} \sqrt{\frac{\sigma(u) + \sigma(v) - 2}{\sigma(u)\sigma(v)}} = \frac{n^2 - 1 + n^2 - 1 - 2}{4} = \left(\frac{n^2 - 5}{(n^2 - 1)}\right)^{\frac{n}{2}}.$

(2) $GASII (C_n) = \prod_{u \in E(C_n)} \frac{2\sqrt{\sigma(u)\sigma(v)}}{\sigma(u) + \sigma(v)} = \frac{2\sqrt{\frac{n^2 - 1 \times n^2 - 1}{4}}}{n^2 - 1 + n^2 - 1} = \lim_{n \to \infty} \frac{n}{4} = 1.$

(3) $AGSII (C_n) = \prod_{u \in E(C_n)} \frac{\sigma(u) + \sigma(v)}{2\sqrt{\sigma(u)\sigma(v)}} = \frac{\frac{n^2 - 1 + n^2 - 1}{4}}{2\sqrt{\frac{n^2 - 1 \times n^2 - 1}{4}}} = 1.$

(4) $ASIII (C_n) = \prod_{u \in E(C_n)} \left(\frac{\sigma(u)\sigma(v)}{\sigma(u) + \sigma(v) - 2}\right)^3 = \left[\frac{n^2 - 1 \times n^2 - 1}{4}\right]^{\frac{3n}{4}} = \left[\frac{n^2 - 1}{8(n^2 - 5)}\right]^n.$

(5) $HSII (C_n) = \prod_{u \in E(C_n)} \frac{2}{\sigma(u) + \sigma(v)} = \left(\frac{2}{\frac{n^2 - 1 + n^2 - 1}{4}}\right)^n = \left(\frac{4}{n^2 - 1}\right)^n.$

5. RESULT FOR WHEEL GRAPHS

A wheel graph W_n is the join of C_n and K_1. A graph W_n has $n + 1$ vertices and $2n$ edges. A graph W_n is presented in Figure 1.

![Figure 1: Wheel graph W_n](image)

In W_n, there are two types of edges as given in Table 1.

<table>
<thead>
<tr>
<th>$d_{w_n}(u), d_{w_n}(v)$ \ $uv \in E(W_n)$</th>
<th>$d_{w_n}(u), d_{w_n}(v)$ \ $uv \in E(W_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges n</td>
<td>Number of edges n</td>
</tr>
</tbody>
</table>

Table-1: Edge partition of W_n

Therefore, there are two types of status edges in W_n as given in Table 2.

<table>
<thead>
<tr>
<th>$\sigma(u), \sigma(v)$ \ $uv \in E(W_n)$</th>
<th>$\sigma(u), \sigma(v)$ \ $uv \in E(W_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges n</td>
<td>Number of edges n</td>
</tr>
</tbody>
</table>

Table-2: Status edge partition of W_n
Theorem 4: Let W_n be a wheel graph with $n+1$ vertices and $2n$ edges. Then

1. \[\text{ABCSII} (W_n) = \left(\frac{2 \sqrt{n^2 - 2}}{2n - 3} \right)^n \times \left(\frac{3n - 5}{n(2n - 3)} \right)^{\frac{n}{2}}. \]

2. \[\text{GASII} (W_n) = \left(\frac{2 \sqrt{a^2 + b^2}}{3n - 3} \right)^n. \]

3. \[\text{AGSII} (W_n) = \left(\frac{3n - 3}{2 \sqrt{n(2n - 3)}} \right)^n. \]

4. \[\text{ASII} (W_n) = \left(\frac{(2n - 3)^2}{4(n - 2)} \right)^{\frac{3n}{2}} \times \left(\frac{n(2n - 3)}{3n - 5} \right)^{\frac{n}{2}}. \]

5. \[\text{HSII} (W_n) = \left(\frac{1}{2n - 3} \right)^n \times \left(\frac{2}{3n - 3} \right)^n. \]

Proof: By definitions and by using Table 2, we obtain

1. \[\text{ABCSII} (W_n) = \prod_{u \in E(W_n)} \frac{\sigma(u) + \sigma(v) - 2}{\sigma(u) \sigma(v)} = \left(\frac{2n - 3 + 2n - 3 - 2}{(2n - 3)(2n - 3)} \right)^n \times \left(\frac{n + 2n - 3 - 2}{n(2n - 3)} \right)^{\frac{n}{2}} \]

2. \[\text{GASII} (W_n) = \prod_{u \in E(W_n)} \frac{2 \sqrt{\sigma(u) \sigma(v)}}{\sigma(u) \sigma(v)} = \left(\frac{2 \sqrt{(2n - 3)(2n - 3)}}{2n - 3 + 2n - 3} \right)^n \times \left(\frac{2 \sqrt{n(2n - 3)}}{n + 2n - 3} \right)^n \]

3. \[\text{AGSII} (W_n) = \prod_{u \in E(W_n)} \frac{\sigma(u) + \sigma(v)}{2 \sqrt{\sigma(u) \sigma(v)}} = \left(\frac{2n - 3 + 2n - 3}{2 \sqrt{(2n - 3)(2n - 3)}} \right)^n \times \left(\frac{n + 2n - 3}{2 \sqrt{n(2n - 3)}} \right)^n \]

4. \[\text{ASII} (W_n) = \prod_{u \in E(W_n)} \left(\frac{\sigma(u) \sigma(v)}{\sigma(u) + \sigma(v) - 2} \right)^{\frac{3n}{2}} \times \left(\frac{n(2n - 3)}{3n - 5} \right)^{\frac{n}{2}} \]

5. \[\text{HSII} (W_n) = \prod_{u \in E(W_n)} \frac{2}{\sigma(u) + \sigma(v)} = \left(\frac{2}{2n - 3 + 2n - 3} \right)^n \times \left(\frac{2}{n + 2n - 3} \right)^n \]

4. RESULTS FOR FRIENDSHIP GRAPHS

A friendship graph F_n is the graph obtained by taking $n \geq 2$ copies of C_3 with vertex in common. A graph F_4 is shown in Figure 2.
A graph F_n has $2n+1$ vertices and $3n$ edges. In F_n, there are two types of edges as follows:

$$E_1 = \{uv \in (F_n) \mid d_{F_n}(u) = d_{F_n}(v) = 2\}, \quad |E_1| = n.$$

$$E_2 = \{uv \in (F_n) \mid d_{F_n}(u) = 2, d_{F_n}(v) = 2n\}, \quad |E_1| = 2n.$$

Therefore, there are two types of status edges in F_n as given in Table 3.

<table>
<thead>
<tr>
<th>$\sigma(u), \sigma(v) \setminus uv \in E(F_n)$</th>
<th>$(4n - 2, 4n - 2)$</th>
<th>$(2n, 4n - 2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>n</td>
<td>$2n$</td>
</tr>
</tbody>
</table>

Theorem 5: Let F_n be a friendship graph with $2n+1$ vertices and $3n$ edges. Then

1. $ABCSII(F_n) = \left(\frac{8n - 6}{(4n - 2)^2} \right)^{\frac{n}{2}} \times \left(\frac{3n - 2}{n(4n - 2)} \right)^n.$
2. $GASII(F_n) = \left(\frac{\sqrt{2n(4n - 2)}}{3n - 1} \right)^{2n}.$
3. $AGSII(F_n) = \left(\frac{3n - 1}{\sqrt{2n(4n - 2)}} \right)^{2n}.$
4. $ASIII(F_n) = \left(\frac{(4n - 2)^2}{8n - 6} \right)^{3n} \times \left(\frac{n(4n - 2)}{3n - 2} \right)^{6n}.$
5. $HSII(F_n) = \left(\frac{1}{4n - 2} \right)^n \times \left(\frac{1}{3n - 1} \right)^{2n}.$

Proof: by using definitions and Table 3, we deduce

1. $ABCSII(F_n) = \prod_{uv \in E(F_n)} \sqrt{\frac{\sigma(u) + \sigma(v) - 2}{\sigma(u)\sigma(v)}} = \left(\frac{4n - 2 + 4n - 2 - 2}{(4n - 2)(4n - 2)} \right)^{\frac{1}{2^n}} \times \left(\frac{2n + 4n - 2 - 2}{2n(4n - 2)} \right)^{\frac{1}{2^{2n}}}$

$= \left(\frac{8n - 6}{(4n - 2)^2} \right)^{\frac{n}{2}} \times \left(\frac{3n - 2}{n(4n - 2)} \right)^n.$

2. $GASII(F_n) = \prod_{uv \in E(F_n)} \frac{2\sqrt{\sigma(u)\sigma(v)}}{\sigma(u) + \sigma(v)} = \left(\frac{2\sqrt{(4n - 2)(4n - 2)}}{4n - 2 + 4n - 2} \right)^n \times \left(\frac{2\sqrt{2n(4n - 2)}}{2n + 4n - 2} \right)^{2n}$

$= \left(\frac{\sqrt{2n(4n - 2)}}{3n - 1} \right)^{2n}.$

3. $AGSII(F_n) = \prod_{uv \in E(F_n)} \frac{\sigma(u) + \sigma(v)}{2\sqrt{\sigma(u)\sigma(v)}} = \left(\frac{4n - 2 + 4n - 2}{2\sqrt{(4n - 2)(4n - 2)}} \right)^n \times \left(\frac{2n + 4n - 2}{2\sqrt{2n(4n - 2)}} \right)^{2n}$

$= \left(\frac{3n - 1}{\sqrt{2n(4n - 2)}} \right)^{2n}.$
\[
S_{III}(F_a) = \prod_{uv \in E(F_a)} \left(\frac{\sigma(u) \sigma(v)}{\sigma(u) + \sigma(v) - 2} \right)^3 = \left(\frac{(4n-2)(4n-2)}{4n-2 + 4n-2} \right)^n \times \left(\frac{2n(4n-2)}{2n + 4n-2} \right)^6n
\]

\[
S_{II}(F_a) = \prod_{uv \in E(F_a)} \left(\frac{2}{\sigma(u) + \sigma(v)} \right) = \left(\frac{2}{4n-2 + 4n-2} \right)^n \times \left(\frac{2}{2n + 4n-2} \right)^2n
\]

\[
= \left(\frac{1}{3n-1} \right)^2n
\]

REFERENCES

9. V.R. Kulli, Computation of multiplicative \((a, b)\)-status index of certain graphs, submitted.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]