International Journal of Mathematical Archive-2(10), 2011, Page: 1849-1853

Available online through www.ijma.info ISSN 2229-5046

ON $f_{\lambda, \mu}(2 v+3, \pm 1)$-STRUCTURE MANIFOLDS

${ }^{1}$ Shadab Ahmad Khan* and ${ }^{2}$ Ram Nivas
${ }^{1}$ Assistant Professor, Deptt. of Mathematics, Integral University, Lucknow, India
${ }^{2}$ Ex. HOD, Deptt. of Mathematics, University of Lucknow, India
E-mail: sakhan.lko@gmail.com

(Received on: 23-09-11; Accepted on: 10-10-11)

Abstract

The idea of f-structure on a differentiable manifold was initiated and developed by Yano [6], Ishihara [1], Andreaou [2] and others. In the present paper, we have defined a structure $f_{\lambda, \mu}(2 v+3, \pm 1)$ of rank r on a manifold with a tensor field f of type $(1,1)$ satisfying $\left(f^{2 v+3}-\lambda^{2} f\right)\left(f^{2 v+3}+\mu^{2} f\right)=0$ Some results on this structure have been proved in this paper.

(1.1) PRELIMINARIES:

Let M^{n} be an n -dimensional differentiable manifold of class C^{∞} and of rank r and $\mathrm{f}(\neq 0)$ be a tensor field of type $(1,1)$, such that

$$
\begin{equation*}
\left(f^{2 v+3}-\lambda^{2} f\right)\left(f^{2 v+3}+\mu^{2} f\right)=0 \tag{1.1.1}
\end{equation*}
$$

where $f^{2 v+2} \neq \lambda^{2}, f^{2 v+2} \neq-\mu^{2} ; \lambda, \mu \in R^{+}, \lambda \neq \mu$ and rank of
$f=\frac{1}{2}\left(\operatorname{rank} f^{2 v+2}+\operatorname{dim} M^{n}\right)=r=$ constant.
Let us define tensor fields ' l ' and ' m ' of type $(1,1)$ on M^{n}, by

$$
\begin{equation*}
l=-\frac{f^{2 v+2}-\lambda^{2}}{\mu^{2}+\lambda^{2}}, \quad m=\frac{f^{2 v+2}+\mu^{2}}{\lambda^{2}+\mu^{2}} \tag{1.1.2}
\end{equation*}
$$

We have the following theorem:
Theorem 1.1.1: Let M^{n} be an $f_{\lambda, \mu}(2 \nu+3, \pm 1)$-structure manifold, then

$$
\begin{equation*}
l+m=I, l^{2}=l, m^{2}=m, l m=m l=0 \tag{1.1.3}
\end{equation*}
$$

Proof: In view of the equations (1.1.1) and (1.1.2), the proof of the theorem follows in obvious manner.

Thus, the operators l and m when applied to tangent space of M^{n} at a point are complementary projection operators. Thus there exist complementary distributions L and M corresponding to projection operators l and m respectively. Let us call such a structure as then -structure of rank r.

*Corresponding author: *Dr. Shadab Ahmad Khan, *E-mail: sakhan.lko@gmail.com

${ }^{1}$ Shadab Ahmad Khan* and ${ }^{2}$ Ram Nivas / ON $f_{\lambda, \mu}(2 v+3, \pm 1)$-STRUCTURE MANIFOLDS//IJMA-2(10), Oct.-2011, Page: 1849-1853

For the manifold M^{n} equipped with $f_{\lambda, \mu}(2 \nu+3, \pm 1)$-structure of rank r , we have the following theorem:
Theorem 1.1.2: On an $f \lambda, \mu(2 \nu+3, \pm 1)$-structure manifold, we have

$$
\begin{align*}
& f l=-\frac{f^{2 v+3}-f \lambda^{2}}{\lambda^{2}+\mu^{2}}, \quad f m=\frac{f^{2 v+3}+f \mu^{2}}{\lambda^{2}+\mu^{2}} \tag{1.1.4}\\
& f^{2 v+2} l=-\mu^{2} l, \quad f^{2 v+2} m=\lambda^{2} m \tag{1.1.5}\\
& m-l=\frac{2 f^{2 v+2}-\lambda^{2}-\mu^{2}}{\lambda^{2}+\mu^{2}} \tag{1.1.6}
\end{align*}
$$

Proof: In view of the equations (1.1.1), (1.1.2) and (1.1.3), the proof of the theorem follows immediately.

(1.2) $f_{\lambda, \mu}(2 v+3, \pm 1)$-STRUCTURE IN LOCAL COORDINATES:

We now introduce a local coordinate system in the manifold M^{n} represented by $\mathrm{f}_{j}^{i}, l_{j}^{i}, m_{j}^{i}$ in local components of tensors f, l and m respectively. We also introduce in M^{n} a positive definite Riemannian metric by taking r mutually orthogonal unit vectors $\mathrm{v}_{a}^{j}(a, b, c, \ldots . .=1,2,3, \ldots ., r)$ in L and (n-r) mutually orthogonal unit vectors $\mathrm{v}_{A}^{j}(A, B, C, \ldots .=r+1, r+2, \ldots \ldots, n)$ in M , and then we have

$$
\begin{align*}
& l_{j}^{i} \mathrm{v}_{b}^{j}=\mathrm{v}_{b}^{i}, l_{j}^{i} \mathrm{v}_{B}^{j}=0 \tag{1.2.1}\\
& m_{j}^{i} \mathrm{v}_{b}^{j}=0, m_{j}^{i} \mathrm{v}_{B}^{j}=\mathrm{v}_{B}^{i}
\end{align*}
$$

Let $\left(s_{j}^{a}, s_{j}^{A}\right)$ represents the matrix inverse of $\left(\mathrm{v}_{b}^{j}, \mathrm{v}_{B}^{j}\right)$, then s_{j}^{a} and s_{j}^{A} are both components of linearly independent covariant vectors and satisfy the relations

$$
\begin{align*}
& s_{j}^{a} \mathrm{v}_{b}^{j}=\delta_{b}^{a}, s_{j}^{a} \mathrm{v}_{B}^{j}=0 \\
& s_{j}^{A} \mathrm{v}_{b}^{j}=0, s_{j}^{A} \mathrm{v}_{B}^{j}=\delta_{B}^{A} \tag{1.2.2}
\end{align*}
$$

and

$$
\begin{equation*}
s_{j}^{a} \mathrm{v}_{a}^{i}+s_{j}^{A} \mathrm{v}_{A}^{i}=\delta_{j}^{i} \tag{1.2.3}
\end{equation*}
$$

δ_{j}^{i} being the Kronecker delta.
If we put

$$
\begin{equation*}
g_{k j}=s_{k}^{a} s_{j}^{a}+s_{k}^{A} s_{j}^{A} \tag{1.2.4}
\end{equation*}
$$

then $g_{k j}$ is globally well defined positive Riemannian metric such that

$$
s_{k}^{a}=g_{k j} \mathrm{v}_{a}^{j}, s_{k}^{A}=g_{k j} \mathrm{v}_{A}^{j}
$$

In view of the equations (1.2.1) and (1.2.2), we get

$$
\begin{align*}
& \left(l_{j}^{i} \mathrm{~s}_{i}^{a}\right) \mathrm{v}_{b}^{j}=\delta_{b}^{a},\left(l_{j}^{i} \mathrm{~s}_{i}^{a}\right) \mathrm{v}_{B}^{j}=0 \\
& \left(m_{j}^{i} \mathrm{~s}_{i}^{A}\right) \mathrm{v}_{b}^{j}=0,\left(m_{j}^{i} \mathrm{~s}_{i}^{A}\right) \mathrm{v}_{B}^{j}=\delta_{B}^{A} \tag{1.2.5}
\end{align*}
$$

${ }^{1}$ Shadab Ahmad Khan* and ${ }^{2}$ Ram Nivas / on $f_{\lambda, \mu}(2 v+3, \pm 1)$-STRUCTURE MANIFOLDS//IJMA-2(10), Oct.-2011, Page: 1849-1853
Thus we have,

$$
l_{j}^{i} \mathrm{~s}_{i}^{a}=s_{j}^{a}, m_{j}^{i} \mathrm{~s}_{i}^{A}=\mathrm{s}_{j}^{A}
$$

(1.2.6)

$$
l_{j}^{i} \mathrm{~s}_{i}^{A}=0, m_{j}^{i} \mathrm{~s}_{i}^{a}=0
$$

Using $l_{j}^{i} \mathrm{v}_{a}^{j}=\mathrm{v}_{a}^{i}$ in equation (1.2.6), we have

$$
l_{k}^{i} \mathrm{~s}_{j}^{a} \mathrm{v}_{a}^{k}=\mathrm{s}_{j}^{a} \mathrm{v}_{a}^{i}, l_{k}^{i}\left(\delta_{\mathrm{j}}^{\mathrm{k}}-\mathrm{s}_{j}^{A} \mathrm{v}_{A}^{k}\right)=\mathrm{s}_{j}^{a} \mathrm{v}_{a}^{i}
$$

Hence

$$
\begin{equation*}
l_{j}^{i}=\mathrm{s}_{j}^{a} \mathrm{v}_{a}^{i} \tag{1.2.7}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
m_{j}^{i}=\mathrm{s}_{j}^{B} \mathrm{v}_{B}^{i} \tag{1.2.8}
\end{equation*}
$$

Let us now put

$$
\begin{equation*}
l_{k j}=l_{k}^{r} g_{r j} \quad \text { and } \quad m_{k j}=m_{k}^{r} g_{r j} \tag{1.2.9}
\end{equation*}
$$

In view of the equations (1.2.4), (1.2.7) and (1.2.8), we have

$$
\begin{equation*}
l_{k j}=\mathrm{s}_{k}^{a} \mathrm{~s}_{j}^{a}, \quad m_{k j}=\mathrm{s}_{k}^{A} \mathrm{~s}_{j}^{A} \tag{1.2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{k j}=l_{j k}, \quad m_{k j}=m_{j k} \tag{1.2.11}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
l_{j k}+m_{j k}=g_{j k} \tag{1.2.12}
\end{equation*}
$$

The following equations can be proved easily:
(i) $l_{k}^{r} l_{j}^{p} \mathrm{~g}_{\mathrm{rp}}=l_{\mathrm{kj}}$
(ii) $l_{k}^{r} m_{j}^{p} \mathrm{~g}_{\mathrm{rp}}=0$
(1.2.13)
and
(iii) $\quad m_{k}^{r} m_{j}^{p} \mathrm{~g}_{\mathrm{rp}}=m_{\mathrm{kj}}$

For any two vectors X and Y with components X^{i} and Y^{i}, let us put

$$
\begin{align*}
& m(\mathrm{X}, \mathrm{Y})=m_{r p} \mathrm{X}^{\mathrm{r}} \mathrm{Y}^{\mathrm{p}} \\
& \text { and } \tag{1.2.14}\\
& g(\mathrm{X}, \mathrm{Y})=g_{r p} \mathrm{X}^{\mathrm{r}} \mathrm{X}^{\mathrm{p}}
\end{align*}
$$

$$
\begin{equation*}
\tilde{g}(\mathrm{X}, \mathrm{Y})=\frac{1}{2} \frac{1}{(v+1)}\left[g(\mathrm{X}, \mathrm{Y})+g(\mathrm{fX}, \mathrm{fY})+g\left(\mathrm{f}^{2} \mathrm{X}, \mathrm{f}^{2} \mathrm{Y}\right)+\ldots \ldots .+g\left(\mathrm{f}^{2 v+1} \mathrm{X}, \mathrm{f}^{2 v+1} \mathrm{Y}\right)+m(\mathrm{X}, \mathrm{Y})\right] \tag{1.2.15}
\end{equation*}
$$

Thus we have
$m\left(\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{A}}\right)=g\left(\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{A}}\right)=g\left(\mathrm{fv}_{\mathrm{A}}, \mathrm{fv}_{\mathrm{A}}\right)=g\left(\mathrm{f}^{2} \mathrm{v}_{\mathrm{A}}, \mathrm{f}^{2} \mathrm{v}_{\mathrm{A}}\right)=\ldots \ldots=g\left(\mathrm{f}^{2 v+1} \mathrm{v}_{\mathrm{A}}, \mathrm{f}^{2 v+1} \mathrm{v}_{\mathrm{A}}\right)=0$
and
${ }^{1}$ Shadab Ahmad Khan* and ${ }^{2}$ Ram Nivas / ON $f_{\lambda, \mu}(2 v+3, \pm 1)$-STRUCTURE MANIFOLDS//IJMA- 2(10),
Oct.-2011, Page: 1849-1853
$\tilde{g}\left(\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{A}}\right)=\frac{1}{2} \frac{1}{(v+1)}\left[g\left(\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{A}}\right)+g\left(\mathrm{fv}_{\mathrm{A}}, \mathrm{fv}_{\mathrm{A}}\right)+g\left(\mathrm{f}^{2} \mathrm{v}_{\mathrm{A}}, \mathrm{f}^{2} \mathrm{v}_{\mathrm{A}}\right)+\ldots \ldots+g\left(\mathrm{f}^{2 v+1} \mathrm{v}_{\mathrm{A}}, \mathrm{f}^{2 v+1} \mathrm{v}_{\mathrm{A}}\right)+m\left(\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{A}}\right)\right]$
$=0$

By virtue of the fact that the distributions L and M are orthogonal with respect to the Riemannian metric g, the distributions L and M are orthogonal with respect to \tilde{g} also. Hence, we have the following theorem:

Theorem 1.2.1: Let M^{n} be an n-dimensional differentiable manifold equipped with $f_{\lambda, \mu}(2 \nu+3, \pm 1)$ - structure of rank r. Then there exist complementary distributions L and M and a positive definite Riemannian metric \tilde{g} with respect to which distributions are orthogonal.

Further, by virtue of equations (1.2.9), (1.2.11) and (1.2.12) it is easy to verify that

$$
\begin{aligned}
& g\left(\mathrm{fv}_{\mathrm{a}}, \mathrm{fv}_{\mathrm{b}}\right)=l_{r p} \mathrm{f}_{\mathrm{h}}^{\mathrm{r}} \mathrm{f}_{\mathrm{j}}^{\mathrm{p}} \mathrm{v}_{\mathrm{a}}^{\mathrm{h}} \mathrm{v}_{\mathrm{b}}^{\mathrm{j}} \\
& g\left(\mathrm{f}_{\mathrm{a}}, \mathrm{fv}_{\mathrm{b}}\right)+m\left(\mathrm{f}_{\mathrm{a}}, \mathrm{fv}_{\mathrm{b}}\right)=g_{r p} \mathrm{f}_{\mathrm{h}}^{\mathrm{r}} \mathrm{f}_{\mathrm{j}}^{\mathrm{p}} \mathrm{v}_{\mathrm{a}}^{\mathrm{h}} \mathrm{v}_{\mathrm{b}}^{\mathrm{j}} \\
& g\left(\mathrm{f}^{2} \mathrm{v}_{\mathrm{a}}, \mathrm{f}^{2} \mathrm{v}_{\mathrm{b}}\right)=g_{r p} \mathrm{v}_{\mathrm{a}}^{\mathrm{r}} \mathrm{v}_{\mathrm{b}}^{\mathrm{p}}
\end{aligned}
$$

These relations lead to the following:

$$
\begin{equation*}
\tilde{g}(\mathrm{fX}, \mathrm{fY})=g(\mathrm{X}, \mathrm{Y}) ; \text { for all } \mathrm{X}, \mathrm{Y} \text { in } \mathrm{L} . \tag{1.2.16}
\end{equation*}
$$

Let M_{1} be a space such that $X \in M_{1}, f(X)=\lambda X$ and let M_{2} be the distribution orthogonal to M_{1} in M with respect to \tilde{g}. We choose an orthogonal basis $\mathrm{u}_{\mathrm{n}-\mathrm{r}+1}, \ldots \ldots \ldots \ldots, \mathrm{u}_{2(\mathrm{n}-\mathrm{r})}$ with respect to \tilde{g} for M_{2}. Further, let $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \ldots \ldots, \mathrm{e}_{2 \mathrm{r}-\mathrm{n}}$ be an orthogonal basis for L with respect to \tilde{g}. Using \tilde{g}, we can define a Riemannian metric g on M^{n} by

$$
\begin{aligned}
& g\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{k}}\right)=\tilde{g}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{k}}\right) \\
& g\left(\mathrm{e}_{\mathrm{i}}, \mathrm{u}_{\alpha}\right)=\tilde{g}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{u}_{\alpha}\right) \\
& g\left(\mathrm{u}_{\alpha}, \mathrm{u}_{\beta}\right)=\tilde{g}\left(\mathrm{u}_{\alpha}, \mathrm{u}_{\beta}\right) \\
& g\left(\mathrm{e}_{i}, \mathrm{f}\left(\mathrm{u}_{\alpha}\right)\right)=\tilde{g}\left(\mathrm{e}_{i}, \mathrm{f}\left(\mathrm{u}_{\alpha}\right)\right) \\
& g\left(\mathrm{f}\left(\mathrm{u}_{\alpha}\right), \mathrm{u}_{\beta}\right)=0 \\
& g\left(\mathrm{f}\left(\mathrm{u}_{\alpha}\right), \mathrm{f}\left(\mathrm{u}_{\beta}\right)\right)=\delta_{\alpha \beta}
\end{aligned}
$$

where,

$$
1 \leq i, k \leq 2 \mathrm{r}-\mathrm{n}, \quad \mathrm{n}-\mathrm{r}+1 \leq \alpha, \beta \leq 2 n-r
$$

then g is well defined because if $\tilde{\mathrm{u}}_{\mathrm{n}-\mathrm{r}+1}, \ldots \ldots \ldots \ldots, \tilde{\mathrm{u}}_{2(\mathrm{n}-\mathrm{r})}$ is another orthonormal basis for M_{2}, then for $\tilde{\mathrm{u}}_{\alpha}=z_{\alpha}^{\beta} \mathrm{u}_{\beta}$, we have

$$
\begin{aligned}
\tilde{g}\left(\tilde{\mathrm{u}}_{\alpha}, \tilde{\mathrm{u}}_{\gamma}\right) & =\tilde{g}\left(\mathrm{z}_{\alpha}^{\beta} \mathrm{u}_{\beta, \mathrm{z}}^{\varepsilon} \mathrm{u}_{\varepsilon}\right) \\
& =\mathrm{z}_{\alpha}^{\beta} \mathrm{z}_{\gamma}^{\varepsilon} \delta_{\beta \varepsilon} \\
& =\mathrm{z}_{\alpha}^{\beta} \mathrm{z}_{\gamma}^{\beta} \\
& =\delta_{\alpha \gamma}
\end{aligned}
$$

and, $\quad g\left(\mathrm{f}\left(\tilde{\mathrm{u}}_{\alpha}\right), \mathrm{f}\left(\tilde{\mathrm{u}}_{\gamma}\right)\right)=g\left(z_{\alpha}^{\beta} \mathrm{f}\left(\mathrm{u}_{\beta}\right), z_{\gamma}^{\varepsilon} \mathrm{f}\left(\mathrm{u}_{\varepsilon}\right)\right)$

$$
\begin{aligned}
& { }^{1} \text { Shadab Ahmad Khan* and }{ }^{2} \text { Ram Nivas / ON } f_{\lambda, \mu}(2 \nu+3, \pm 1) \text {-STRUCTURE MANIFOLDS//IJMA- 2(10), } \\
& \qquad \begin{aligned}
& \text { Oct.-2011, Page: 1849-1853 } \\
& =z_{\alpha}^{\beta} z_{\gamma} \varepsilon g\left(\mathrm{f}^{\prime}\left(\mathrm{u}_{\beta}\right), \mathrm{f}\left(\mathrm{u}_{\varepsilon}\right)\right) \\
& =z_{\alpha}^{\beta} z_{\gamma}^{\beta} \\
& =\delta_{\alpha \gamma}
\end{aligned}
\end{aligned}
$$

This signifies that there is a Riemannian metric g with respect to which L, M_{1}, M_{2} are mutually orthogonal and

$$
\begin{array}{lll}
g(\mathrm{fX}, \mathrm{fY})=-\mu^{2} \mathrm{f} & ; & \text { for all } \mathrm{X}, \mathrm{Y} \text { in } \mathrm{L} \\
g(\mathrm{fX}, \mathrm{fY})=\lambda^{2} \mathrm{f} & ; & \text { for all } \mathrm{X}, \mathrm{Y} \text { in } \mathrm{M}
\end{array}
$$

Thus, we have:

Theorem 1.2.2: Let M^{n} be an n-dimensional differentiable manifold with $f_{\lambda, \mu}(2 \nu+3, \pm 1)$-structure of rank r. Then there exists complementary distribution L of dimension (2r-n) and distribution M of dimension 2(n-r) and a positive definite Riemannian metric g with respect to which L and M are orthogonal and furthermore

$$
\begin{aligned}
& g(\mathrm{fX}, \mathrm{fY})=-\mu^{2} \mathrm{f} \quad ; \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{~L} \\
& g(\mathrm{fX}, \mathrm{fY})=\lambda^{2} \mathrm{f} \quad ; \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{~L}
\end{aligned}
$$

REFERENCES:

[1] Ishihara, S. and Yano, K., 1963, On integrability conditions of a structure satisfying $f^{3}+f=0$. Quaterly J. Math., Vol. 15, pp. 207-222.
[2] Andreou, F. Gouli, 1982, On a structure defined by a tensor field satisfying $\mathrm{f}^{5}+\mathrm{f}=0$. Tensor, N. S., Vol. 29, pp. 249-254.
[3] Andreou, F. Gouli, 1983, On integrability conditions of a structure f satisfying $\mathrm{f}^{5}+\mathrm{f}=0$. Tensor, N. S., Vol. 40, pp. 27-31.
[4] Lovejoy S. Das, 1996, On a structure satisfying $F^{K}-(-1)^{K+1} F=0$. International J. of Math. and Math. Sciences, Vol. 19, no.1, pp.125-130.
[5] Yano, K., Houch, C. S. and Chen, B. Y., 1972, Structure defined by a tensor field φ of type (1, 1) satisfying $\varphi^{4} \pm \varphi^{2}=0$. Tensor, N. S., Vol. 23, pp. 81-87.
[6] Yano, K., 1963, On a structure defined by a tensor field of type (1, 1) satisfying $f^{3}+f=0$. Tensor, N. S., Vol. 14, pp. 99-109.

