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ABSTRACT 
A topological index or a graph index is a numerical parameter mathematically derived from the graph structure. In 
this study, we define the multiplicative vertex status index, multiplicative modified vertex status index, multiplicative    
F-status index, general multiplicative vertex status index of a graph and compute exact formulas for some standard 
graphs and friendship graphs.  
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1. INTRODUCTION 
 
In this paper, we consider only a finite, simple, connected graph G with vertex set V(G) and edge set E(G). The degree 
dG(v) of a vertex v is the number of vertices adjacent to v. The distance between any two vertices u and v is the length 
of the shortest path joining u and v and is denoted by d(u, v). The status of a vertex u is defined as the sum of its 
distance from every other vertex in G and is denoted by σ(u). We refer [1] for undefined term and notation. 
 
Topological indices or graph indices have found some applications in chemical documentation, isomer discrimination, 
QSAR/QSPR study, see [2, 3]. 
 
For more about graph indices one can refer [4]. Some different graph indices can be found in [5, 6, 7, 8, 9, 10, 11]. 
 
In [12], Kulli introduced the multiplicative first and second status indices, defined as  
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We now propose the following multiplicative status indices. 
 

The multiplicative vertex status index of a graph G is defined as ( ) ( )
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The multiplicative total status index of a graph G is defined as ( ) ( )
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The multiplicative modified vertex status index of a graph G is defined as ( )
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The multiplicative status inverse is defined as ( )
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The multiplicative status zeroth order index of a graph G is defined as ( )
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The multiplicative F-status index of a graph G is defined as ( ) ( )
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The general multiplicative vertex status index of G is defined as ( ) ( )
( )

,σ
∈

= ∏ aa
v

u V G

S II G u where a is a real number. 

 
Some of the research work on status indices can be found in [13, 14, 15, 16, 17, 18]. Recently, some multiplicative 
indices were studied, for example, in [19, 20, 21, 22, 23, 24. 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. 
 
In this paper, the multiplicative vertex status index, multiplicative modified vertex status index, multiplicative F-status 
index, general multiplicative vertex status index of some standard graphs are computed. 
 
2. RESULTS FOR COMPLETE GRAPHS 
 
Theorem 1: If Kn is a complete graph with n vertices, then the general multiplicative vertex status index of Kn is 

( ) ( )1 .= − ana
v nS II K n           (1) 

 
Proof: Let Kn be a complete graph with n vertices. Then σ(u) = n – 1 for every vertex u of Kn. Therefore 
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We obtain the following results by using Theorem 1. 
 
Corollary 1.1: If Kn is a complete graph with n vertices, then 
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Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (1), we get the desired results. 
 
3. RESULTS FOR CYCLES 
 
Theorem 2: Let Cn be a cycle with n vertices. Then the general multiplicative vertex status index of Cn is  
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Proof: Let Cn be a cycle with n vertices. 

Case-1: Suppose n is even. For every vertex u in Cn, ( )
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Case-2: Suppose n is odd. Then ( )
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We establish the following results by Theorem 2. 
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Corollary 2.1: Let Cn be a cycle with n vertices. Then 
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Proof: Put a = 2, 1, –2, –1, –½, 3 in equations (2) and (3), we get the desired results. 
 
4. RESULTS FOR COMPLETE BIPARTITE GRAPHS 
 
Let Kp,q be a complete bipartite graph. Then it has p+q vertices and pq edges. In Kp,q, there are two types of status 
vertices as given in Table 1. 
 

σ(u) \ u ∈  E(Kp,q) p + 2 (q – 1) q + 2(p – 1) 
Number of vertices q p 

Table-1: Status vertex partition of Kp,q 
 
Theorem 3: The general multiplicative vertex status index of Kp,q is 
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Proof: Let Kp,q be a complete bipartite graph. By definition, we have  
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By using Table 1, we deduce  
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From Theorem 3, we establish the following results. 
 
Corollary 3.1: Let Kp,q be a complete bipartite graph. Then 
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Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (4), we obtain the desired results. 
 
5. RESULTS FOR WHEEL GRAPHS 
 
A wheel graph, denoted by Wn, is the join of Cn and K1. A wheel graph W4 is shown in Figure 1. 
 

 
Figure-1: Wheel graph W4 

 
Clearly, a wheel graph Wn has n+1 vertices and 2n edges. This graph has two types of status vertices as given in       
Table 2. 
 

σ(u) \ u ∈  V(Wn) n 2n – 3 
Number of vertices 1 n 

Table-2: Status vertex partition of Wn 
 
Theorem 4: The general multiplicative vertex status index of a wheel graph Wn is  
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Proof: By definition and by using Table 2, we deduce  
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From Theorem 4, we obtain the following results. 
 
Corollary 4.1: Let Wn be a wheel graph with n+1 vertices and 2n edges. Then 
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Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (5), we get the desired results. 
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6. RESULTS FOR FRIENDSHIP GRAPHS 
 
A friendship graph, denoted by Fn, is the graph obtained by taking n ≥ 2 copies of C3 with vertex in common. The 
friendship graph F4 is shown in Figure 2. 

 
Figure-2: Friendship graph F4 

 
Clearly, a friendship graph Fn has 2n + 1 vertices and 3n edges. This graph has two types of status vertices as given in 
Table 3. 
 

σ(u) \ u ∈  V(Fn) 2n 4n – 3 
Number of vertices 1 2n 

Table-3: Status vertex partition of Fn 
 
Theorem 5: The general multiplicative vertex status index of a friendship graph Fn is  
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Proof: By definition and using Table 3, we derive  
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We establish the following results from Theorem 5. 
 
Corollary 5.1: Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then  
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Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (6), we obtain the required results. 
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