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ABSTRACT 
In this manuscript we introduce new notions on Kalangi non-associated Γ-semi sub near-field space of a Γ-near-field 
space over near-field, quasi non associative Γ-semi sub near-field space, K-quasi N -Γ-semi sub near-field space, quasi 
ideals, etc and concepts like Kalangi quasi bipotent elements and several analogous properties done in case of Γ-near-
field spaces.  
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field space, quasi non-associative Γ-semi near-field space. 
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SECTION 1: INTRODUCTION AND PRELIMINARIES 
 
In this paper we together introduced several concepts and new notions in Kalangi non-associative Γ-semi sub near-field 
space of a Γ-near-field space over near-field like quasi non associative Γ-semi sub near-field space, K-quasi N -Γ-semi 
sub near-field space, quasi ideals, etc and concepts like Kalinga quasi bipotent elements and several analogous 
properties done in case of Γ-near-field spaces. 
 
Definition 1.1: Let N be a Non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field we say 
N is a Kalangi quasi non-associative Γ-semi sub near-field space (K-quasi non-associative Γ-semi sub near-field space) 
if N has a proper subset which is a near-field under the operations of N.  
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Definition 1.2: Let N be a non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field we say N 
is a Kalinga quasi non-associative Γ-semi sub near-field space (K-quasi non-associative Γ-semi sub near-field space) if 
N has a proper subset P such that P is a Γ-semi near-field space. 
 
Example 1.3:  Let N = Z8 × Z12 be the K-mixed direct product of a near-field and a Γ-semi sub near-field space where 
Z8 is the near-field of integers modulo 8 and Z12 is a Γ-semi near-field space under the operation ‘×’ and ‘.’. M be any 
groupoid with unit. NM is the groupoid Γ-semi near-field space which is a K-quasi non-associative Γ-semi sub near-
field space of a Γ-near-field space over near-field. 
 
Example 1.4: Let N = Z0  × Z8 where Z0 = Z+ ∪ {0} is a Γ-semi sub near-field space and Z8 is a Γ-semi sub near-field 
space be the K-mixed direct product of a Γ-near-field space and a Γ-semi sub near-field space of a Γ-near-field space 
over near-field. Clearly, NM is a K-quasi Γ-semi sub near-field space where M is any groupoid with identity. Thus the 
concept of K-mixed direct product has helped us to construct non-trivial and non-abstract examples of such structures. 
Now for these K-quasi Γ-semi sub near-field spaces and K-quasi Γ-semi near-field spaces we can define in an 
analogous way concept of K-quasi ideals, K-quasi Γ-semi sub near-field space and K-quasi N-subgroup. 
 
Definition 1.5: Let (N, +,  .) be a K-quasi Γ-semi sub near-field space of a Γ-near-field space over near-field. We call a 
non-empty Γ-semi sub near-field space I  to be a Kalangi quasi left ideal (K-quasi left ideals) in N if  
(i) (I, +) is a K- Γ-semi sub near-field space  
(ii) n(n| + i ) +nn| ∈ I and n, n| ∈ P; P is a Γ-semi sub near-field space of a Γ-near-field space over near-field in N.   

we say I is a K-quasi ideal if IP ⊆ I. 
 
Definition 1.6: Let (N, +,  .) be a K-quasi Γ-semi sub near-field space of a Γ-near-field space over near-field. We call a 
non-empty Γ-semi sub near-field space I to be a Kalangi quasi left ideal (K-quasi left ideals) in N if  
(i) (I, +) is a subgroup. 
(ii) n(n| + i ) +nn| ∈ I and i ∈ I, n, n| ∈ R; R⊆ N and R is a ring. We say I is a K- quasi ideal if I is a K-quasi left ideal 

of N and IR ⊆ I. 
 

Definition 1.7:  Let N be a K-quasi Γ-semi sub near-field space (K-quasi Γ-semi near-field space) of a Γ-near-field 
space over near-field. We say N is Kalinga quasi bipotent (K-quasi bipotent) if Pa = Pa2 where P ⊂ N and P is a near-
ring (P ⊂ N and P is a semi near-ring) for every a in N. 
 
Definition 1.8: Let N be a K-quasi Γ-semi sub near-field space (K-quasi Γ- semi near-field space) N is said to be a 
Kalinga quasi k-Γ-semi sub near-field space if a ∈ Pa for each a in N where P is a proper subset N which is a near-field 
( P ⊂ N and P is a Γ-semi sub near-field space). 
 
Definition 1.9: Let N be a K-quasi Γ-semi sub near-field space of a Γ-near-field space over near-field (K-quasi Γ-semi 
sub near-field space) N is said to be Kalinga quasi regular (K-quasi regular) if for each a in N there exists x in                
P ; P ⊂ N, P is a near-field (P ⊂ N and P is a near-field space)  such that a = a(xa) = (ax)a. 
 
Definition 1.10: A K-quasi Γ-semi sub near-field space of a Γ-near-field space over near-field (K-quasi Γ-semi sub 
near-field space) N is called Kalangi quasi irreducible (K-quasi irreducible) (Kalangi quasi simple) if it contains only 
the trivial K-quasi N-sub near-field spaces (K quasi N-Γ-semi sub near-field spaces). 
 
SECTION 2:  MAIN RESULT ON KALANGI GAMMA SEMI SUB NEAR-FIELD SPACES OF A GAMMA 
NEAR-FIELD SPACE OVER A NEAR-FIELD. 
 
In this section, author present theorem as main result on Kalangi Gamma semi sub near-field spaces of a Gamma near-
field space over a near-field. 
 
The study of the quasi regular concept happens to be an interesting study in case of near-field spaces and semi near-
field spaces. We leave the reader to obtain results and define K-quasi regular elements in non-associative Gamma semi 
sub near-field spaces of a Gamma near-field space over a near-field. As the definition of K-quasi regularity does not 
involve any associative or non-associative elements. This study is a routine and the reader is expected to obtain some 
interesting results about them. 
 
If we define K-non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field (K-quasi Γ-semi sub 
near-field space) N then we have several interesting results. 
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Theorem 2.1: Let N be a K-Γ-semi sub near-field space of a Γ-near-field space over near-field (K-quasi Γ-semi sub 
near-field space) having a proper subset P of N to be a commutative near-field space with unit and of a characteristic 0. 
L any loop of finite order. Then the near loop near-field space NL has a right quasi regular element  
x = ∑ αi mi ( mi ∈ L) αi ∈ P ⊂ N is right quasi regular then ∑ αi ≠ 1. 
 
Proof: Let y = ∑ βi hj where βi ∈ P and hj ∈ L be the right quasi inverse of x then  

 x + y – xy = 0 i.e., ∑ αi mi + ∑ βi hj  - (xy) = 0. 
 
Equating the coefficients of the like terms and adding these coefficients we get  

∑ αi + ∑ βi - ∑ αi ∑ βi = 0. Or ∑ αi = ∑ βi - ∑ αi ∑ βi = ∑ βi (∑ αi – 1).  
 
Now if ∑ αi = 1 then ∑ αi   = 0 a contradiction. Hence ∑ αi ≠ 0. This completes the proof of the theorem. 
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