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ABSTRACT 
Maurice Hasson and Rajendra Pandey have constructed wavelet function using Gaussian function and Maxican Hat 
function. Richardson extrapolation technique has been used in their constructions. There wavelet functions are 
applicable for computation of derivatives. In this paper, the authors have derived the discrete analogue of the wavelet 
function which can be applied to determine the first derivative of function. The discrete version is use full for better 
approximation of derivatives and the estimate of error can be analysed properly. 
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1. INTRODUCTION 
 
Maurice Hasson in 2006[4] constructed the wavelet by using Gaussian function with the help of it is second derivative 
and also discussed about discrete analogue of the wavelet. Furthermore continue this work R. Pandey [5] in 2012, 
constructed new wavelet by using first derivative of Gaussian function. 
 
In this paper we discuss discrete analogue by using first derivative of Gaussian function and prove some important 
result and also find more optimal value of step length by applying the idea of error estimate. This result is more optimal 
comparison of machine procedure. 
 
2. PRELIMINARIES 
 
In this paper we use the following notations for the Fourier transform f (ω) of a function f(x). 

𝑓𝑓(ω)=  ∫ 𝑓𝑓(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖∞
−∞ 𝑑𝑑𝑑𝑑  

and the inverse formula takes the form 
𝑓𝑓(𝑥𝑥) = 1

√2𝜋𝜋 ∫ 𝑓𝑓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖∞
−∞ 𝑑𝑑𝑑𝑑  

 
We begin with the function Ψ(x) which is the derivative of the Gaussian function.  

Ψ(x) = -x𝑒𝑒
−𝑥𝑥2

2  
It’s Fourier transform is    

𝑓𝑓(ω) = √2𝜋𝜋 (iω)𝑒𝑒
−𝜔𝜔2

2  
and                      

𝛹𝛹�1(x) =  𝛹𝛹
� (𝜔𝜔)
√2𝜋𝜋

 

𝛹𝛹�1(ω) = (iω)𝑒𝑒−
𝜔𝜔2

2  
𝛹𝛹�1(ω) = (iω)(1- 𝜔𝜔

2

2
+  𝜔𝜔

4

8
−  𝜔𝜔

8

48
… ….) 

∫ 𝑥𝑥𝛹𝛹1 (𝑥𝑥)∞
−∞ 𝑑𝑑𝑑𝑑 =  −1  

𝛹𝛹�1 �
𝜔𝜔
2
� = 𝑖𝑖𝑖𝑖

2
(1 − 𝜔𝜔2

2
+ 𝜔𝜔4

128
− 𝜔𝜔6

3072
… … … )  
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By using classical Richardson extrapolation  

𝛹𝛹�2(𝜔𝜔) =
𝛹𝛹�1(𝜔𝜔)−𝛹𝛹�1(𝜔𝜔2 )

−3
  

 
We have it Is inverse Fourier transform 

𝛹𝛹2(𝑥𝑥) =
𝛹𝛹1(𝑥𝑥) − 16𝛹𝛹1(2𝑥𝑥)

−3
 

 
The wavelet 𝛹𝛹2(𝑥𝑥) satisfying the following property 

∫ 𝑡𝑡𝑘𝑘𝛹𝛹2(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0, 𝑘𝑘 = 0,2,3,4∞
−∞                                                                                                            (1) 
∫ 𝑡𝑡𝛹𝛹2(𝑡𝑡)𝑑𝑑𝑑𝑑 = −1, 𝑘𝑘 = 1∞
−∞                                                                                                                    (2) 

 
3. CONSTRUCTION OF THE DISCRETE ANALOGUE OF THE WAVELET 𝜳𝜳𝟐𝟐(𝒙𝒙). 
 
This section is devoted in building the discrete analogue of the wavelet 𝛹𝛹2(𝑥𝑥). Our result deals with the discrete 
analogue which we call 𝑇𝑇2(𝑥𝑥, ℎ) of the wavelet 1

ℎ
𝛹𝛹2(𝑥𝑥

ℎ
). The properties of distributions and their fourier transform will 

be used in this section. The aim of building 𝑇𝑇2(𝑥𝑥, ℎ) is twofold. First is to analysis the error 
 ∫ 𝑓𝑓(𝑥𝑥 − 𝑡𝑡) 1

ℎ
𝛹𝛹2 �

𝑡𝑡
ℎ
� 𝑑𝑑𝑑𝑑 − 𝑓𝑓 ′(𝑥𝑥)∞

−∞  for a given value of the machine epsilon of the computer and the second is  

to compare the filtering feature of 1
ℎ
𝛹𝛹2(𝑡𝑡

ℎ
)with those of difference quotient. The process of building 𝑇𝑇2(𝑥𝑥, ℎ) is 

performed as follows. Let  
𝑇𝑇1(𝑥𝑥, ℎ) = 𝛿𝛿(𝑥𝑥+ℎ)

2
− 𝛿𝛿(𝑥𝑥−ℎ)

2
− 𝛿𝛿(𝑥𝑥)  

 
Here δ(x) is usual direct mass at 0. Then  

∫ 𝑓𝑓(𝑥𝑥 − 𝑡𝑡)𝑇𝑇1(𝑥𝑥, ℎ)𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥−ℎ)
2

− 𝑓𝑓(𝑥𝑥)∞
−∞   

Hence   
lim𝑛𝑛→∞ ∫

1
ℎ
𝑓𝑓(𝑥𝑥 − ℎ)𝑇𝑇1(𝑥𝑥, ℎ)𝑑𝑑𝑑𝑑 = 𝑓𝑓 ′(𝑡𝑡)∞

−∞   
We also have 

∫ 𝑡𝑡𝑘𝑘𝑇𝑇1(𝑡𝑡, 1)𝑑𝑑𝑑𝑑 = 0, 𝑘𝑘 = 0,2∞
−∞   
∫ 𝑡𝑡𝑇𝑇1(𝑡𝑡, 1)𝑑𝑑𝑑𝑑 = −1, 𝑘𝑘 = 1∞
−∞   

 
Here 𝑇𝑇1(𝑥𝑥, ℎ)is discrete analogue of the wavelet 1

ℎ
𝛹𝛹1(𝑥𝑥

ℎ
). Recall now that 

𝛹𝛹2(𝑥𝑥) = 𝛹𝛹1(𝑥𝑥)−16𝛹𝛹1(2𝑥𝑥)
−3

  

𝛿𝛿(𝑎𝑎𝑎𝑎) = 1
|𝑎𝑎|
𝛿𝛿(𝑥𝑥)  

 
 The distribution 𝑇𝑇2(𝑥𝑥, ℎ) is defind by  

𝑇𝑇2(𝑥𝑥) = 1
−3
�𝛿𝛿(𝑥𝑥+ℎ)

2
− 𝛿𝛿(𝑥𝑥−ℎ)

2
− 𝛿𝛿(𝑥𝑥)� + 16

3
[
𝛿𝛿�𝑥𝑥+ℎ

2�

4
−

𝛿𝛿�𝑥𝑥−ℎ2�

4
− 𝛿𝛿(𝑥𝑥)

2
]  

𝑇𝑇2(𝑥𝑥) = −𝛿𝛿(𝑥𝑥+ℎ)
6

+ 𝛿𝛿(𝑥𝑥−ℎ)
6

+ 𝛿𝛿(𝑥𝑥)
3

) +
16𝛿𝛿(𝑥𝑥+ℎ

2)

12
−

16𝛿𝛿(𝑥𝑥−ℎ2)

12
− 16𝛿𝛿(𝑥𝑥)

6
  

 
By using the analogue result for 𝑇𝑇2(𝑥𝑥, ℎ) that we also have  

∫ 𝑡𝑡𝑘𝑘𝑇𝑇2(𝑡𝑡, 1)𝑑𝑑𝑑𝑑 = 0, 𝑘𝑘 = 0,2,3,4∞
−∞   

and 
∫ 𝑡𝑡𝑇𝑇2(𝑡𝑡, 1)𝑑𝑑𝑑𝑑 = −1, 𝑘𝑘 = 1∞
−∞   

and 
lim𝑛𝑛→∞ ∫

1
ℎ

∞
−∞ 𝑓𝑓(𝑥𝑥 − ℎ)𝑇𝑇2(𝑡𝑡, ℎ)𝑑𝑑𝑑𝑑 = 𝑓𝑓 ′(𝑥𝑥)  

  
Theorem1:    

limℎ→0 ∫
1
ℎ
𝑇𝑇2(𝑥𝑥, ℎ)𝑑𝑑𝑑𝑑 = lim𝑛𝑛→∞

1
ℎ
�1
ℎ
𝛹𝛹2 �

𝑥𝑥
ℎ
�� = 𝛿𝛿 ′(𝑥𝑥)∞

−∞                                                                     (3) 
In the sence of distribution. Here δ’(x) is the distribution. 

< 𝛿𝛿 ′(𝑥𝑥),𝜌𝜌(𝑥𝑥) >= 𝜌𝜌′(0) for ρ belongs to S. 
∫ 1

ℎ
∞
−∞ 𝑓𝑓(𝑥𝑥 − 𝑡𝑡)𝑇𝑇2(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑓𝑓 ′(𝑥𝑥) = 𝐶𝐶1𝑓𝑓5(𝑥𝑥)ℎ4 + 𝐶𝐶2𝑓𝑓7(𝑥𝑥)ℎ6 + 𝑂𝑂(ℎ8)                                             (4) 

𝐶𝐶1 = 1
5!∫ 𝑡𝑡5𝑇𝑇2(𝑡𝑡, 1)𝑑𝑑𝑑𝑑∞

−∞                                                                                                                         (5) 

𝐶𝐶2 = 1
7!∫ 𝑡𝑡7𝑇𝑇2(𝑡𝑡, 1)𝑑𝑑𝑑𝑑∞

−∞                                                                                                                         (6) 
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  𝑓𝑓 ′(𝑥𝑥) is approximated with 𝑓𝑓𝑝𝑝𝑝𝑝 (𝑥𝑥, ℎ) where  

𝑓𝑓𝑝𝑝𝑝𝑝 (𝑥𝑥, ℎ) =
𝑤𝑤1𝑓𝑓1(𝑥𝑥 ,ℎ)+𝑤𝑤2𝑓𝑓1(𝑥𝑥 ,ℎ2)

ℎ
                                                                                                               (7) 

Here 

𝑓𝑓1(𝑥𝑥, ℎ) =
𝑓𝑓(𝑥𝑥 + ℎ) + 𝑓𝑓(𝑥𝑥 − ℎ)

2
− 𝑓𝑓(𝑥𝑥) 

𝑤𝑤1 = −1
3

 and  𝑤𝑤2 = 16
3

 recall that the machine epsilon 𝜀𝜀, 𝜀𝜀𝑚𝑚  of a computer is the smallest positive floating point number. 
Such that 1 + 𝜀𝜀𝑚𝑚 > 1  when a number x entered as of the order 𝑥𝑥𝜀𝜀𝑚𝑚  is absolute error. The error occurring in 𝑓𝑓(𝑥𝑥) is 
 |𝑒𝑒| ≈ |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)| by the mean value theorem. This is also a bound for the error in 𝑓𝑓(𝑥𝑥 + ℎ) because ℎis small.An error 
occurs also when we enterℎ. However, 1

ℎ(1+𝜀𝜀𝑚𝑚 )
= 1

ℎ
(1 − 𝜀𝜀𝑚𝑚 )−1 = 1

ℎ
(1 − 𝜀𝜀𝑚𝑚 + 𝑂𝑂(𝜀𝜀𝑚𝑚2) ≈ 1

ℎ
 Hence the absolute value of 

the round off error, 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , in calculating the difference quotient 𝑓𝑓(𝑥𝑥−ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

 is bounded by |𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | ≤  2|𝑒𝑒|
ℎ
≈ 2|𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚

ℎ
   

the truncation error 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    is 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ℎ𝑓𝑓 ′′(𝜉𝜉)
2

   where 𝑥𝑥 < 𝜉𝜉 < 𝑥𝑥 + ℎ , (𝑖𝑖𝑖𝑖 ℎ 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
|𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 | ≤ |𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | + |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | 

 
We conclude that the optimal step size h can be obtain by minimizing  

|𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | + |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | ≤ 2�𝑥𝑥𝑓𝑓 ′(𝑥𝑥)�𝜀𝜀𝑚𝑚
|ℎ|

+ ℎ𝑓𝑓 ′′(𝑥𝑥)
2

  
 
We consider the approximation of 𝑓𝑓 ′(𝑥𝑥) by  𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥−ℎ)

2ℎ
   is similar as above and |𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | ≤ |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚

ℎ
    

 
Where the truncation error  |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | ≤ |𝑓𝑓3(𝑥𝑥)|ℎ2

6
  as before the truncation error  

|𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | + |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | ≤ |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)𝜀𝜀𝑚𝑚 |
|ℎ |

+ ℎ2𝑓𝑓3(𝑥𝑥)|
6

  

hence in the case of approximation 𝑓𝑓(𝑥𝑥−ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

  the optimal   h that we find is �𝑐𝑐1𝜀𝜀𝑚𝑚   and optimal error is �𝑑𝑑1𝜀𝜀𝑚𝑚  ,  

where as in the case 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥−ℎ)
2ℎ

 the optimal h is (𝑐𝑐2𝜀𝜀𝑚𝑚)
3
2   is (𝑑𝑑2𝜀𝜀𝑚𝑚 2)

3
2    where 𝑐𝑐1  and 𝑐𝑐2 ,𝑑𝑑1 and 𝑑𝑑2 are constant. 

 
Proof: As in the case of difference quotient 

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

   and    𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥−ℎ)
2ℎ

 
We assume because h is small, that |𝑒𝑒| ≈ |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚  beside being a bound for the error in 𝑓𝑓(𝑥𝑥) is also a bound for the 
error in 𝑓𝑓(𝑥𝑥 + ℎ), 𝑓𝑓(𝑥𝑥 − ℎ), 𝑓𝑓 �𝑥𝑥 + ℎ

2
� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑥𝑥 − ℎ

2
) .  it followes that the  absolute value of the round off error 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 

in calculating the difference  quotient  𝑓𝑓𝑝𝑝𝑝𝑝 (𝑥𝑥, ℎ) is given by (7) is bounded by  

|𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | ≤ 2|𝑒𝑒|
ℎ2  ≈ 2(1+16)

3
(|𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚

ℎ2 )  
 
The value of 𝐶𝐶1  ginen in (5). It is easily to found to be   

𝐶𝐶1 = 1
5!

1
3

[1 − 1
22]  

Hence truncation error |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | = 1
5!

1
3

3
4
ℎ2|𝑓𝑓5(𝑥𝑥)|   

 
For the total error  |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 | ≤ |𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | + |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | 
 
The optimal step size h can be obtained by minimizing h. 

|𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | + |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | = 2(1+16)
3

�𝑥𝑥𝑓𝑓 ′(𝑥𝑥)�𝜀𝜀
ℎ2 + 1

5!
ℎ4|𝑓𝑓5(𝑥𝑥)|

4
  

Or                        |𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | + |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | = 11.333333 |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀
ℎ2 + 0.002083333ℎ2|𝑓𝑓5(𝑥𝑥)|  

|𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 | + |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | = 11.333333 |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀
ℎ2 + 2.083333ℎ210−3|𝑓𝑓5(𝑥𝑥)|  

  
The optimal step size can be obtain by minimizing (for h) 

11.333333�𝑥𝑥𝑓𝑓 ′(𝑥𝑥)�𝜀𝜀𝑚𝑚
𝑑𝑑
𝑑𝑑ℎ

(ℎ2) + 2.083333 × 10−3|𝑓𝑓5(𝑥𝑥)| 𝑑𝑑
𝑑𝑑ℎ
ℎ4  

ℎ6 = 11.333333 ×103|𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚
2×2.083333 |𝑓𝑓5(𝑥𝑥)|

     and  ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑂𝑂(�𝜀𝜀𝑚𝑚6 )  

ℎ = �5440 .0007104 |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚
2|𝑓𝑓5(𝑥𝑥)|

6
  

ℎ = 4.193724�|𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚
2|𝑓𝑓5(𝑥𝑥)|

6
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Assuming that           

�|𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚
2|𝑓𝑓5(𝑥𝑥)|

 
6

 ≈ 1  

 
we see that,  With 𝜀𝜀𝑚𝑚 = 2−52    

�𝜀𝜀𝑚𝑚6 = 0.002461 
ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 0.002461 × 4.193724 
ℎ0𝑝𝑝𝑝𝑝 = 0.010321 

 
The optimal value of the error 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜  obtained by using ℎ = ℎ𝑜𝑜𝑜𝑜𝑜𝑜  is then 

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 11.333333 |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚
4.193724 𝑥𝑥

  

𝑥𝑥 = �𝑥𝑥2

2

6
  

 
4. THE FILTERING CHARACTERISTICS OF 𝑻𝑻𝟐𝟐(𝒙𝒙,𝒉𝒉) COMPARED TO THOSE OF 𝟏𝟏

𝒉𝒉
𝜳𝜳𝟐𝟐 �

𝒙𝒙
𝒉𝒉
�. 

 
The error in approximating 𝑓𝑓 ′(𝑥𝑥) by ∫ 1

ℎ
𝑓𝑓(𝑥𝑥 − ℎ)𝑇𝑇2(𝑥𝑥, ℎ)𝑑𝑑𝑑𝑑 ∞

−∞ and wavelet 1
ℎ
𝛹𝛹2(𝑥𝑥

ℎ
) is gives us the same error estimate 

The 𝑇𝑇2(𝑥𝑥, ℎ) has no filtering characteristics. Indeed it is fourier transform 
𝑇𝑇�(𝜔𝜔) = ∑ 𝑎𝑎𝑘𝑘 �𝑒𝑒𝑖𝑖2

−𝑘𝑘ℎ𝜔𝜔 + 𝑒𝑒−𝑖𝑖2−𝑘𝑘ℎ𝜔𝜔� + 𝐶𝐶1
0   

has no decay. The wavelet 1
ℎ
𝛹𝛹2(𝑥𝑥

ℎ
) is very effective band pass filter. 

 
5. THE ERROR ESTIMATE 𝟏𝟏

𝒉𝒉 ∫
𝟏𝟏
𝒉𝒉
𝒇𝒇(𝒙𝒙 − 𝒉𝒉)𝜳𝜳𝟐𝟐(𝒕𝒕

𝒉𝒉
)∞

−∞ 𝒅𝒅𝒅𝒅 IN THE PRESENCE OF 𝜺𝜺𝒎𝒎. 
 
Theorem 2:  ∫ 1

ℎ
𝑓𝑓(𝑥𝑥 − ℎ)𝛹𝛹2(𝑡𝑡

ℎ
)∞

−∞ 𝑑𝑑𝑑𝑑 − 𝑓𝑓 ′(𝑥𝑥) = 𝐶𝐶1 − 𝑓𝑓 ′(𝑥𝑥) = 𝐶𝐶1𝑓𝑓5(𝑥𝑥)ℎ4 + 𝐶𝐶2𝑓𝑓7(𝑥𝑥)ℎ6 + 𝑂𝑂(ℎ8) 
 
Lemma 1: let ε, δ > 0 Then there exist η that |ℎ| < 𝜂𝜂 

∫ 1
ℎ
�𝛹𝛹2 �

𝑡𝑡
ℎ
�� 𝑑𝑑𝑑𝑑 < 𝜀𝜀|𝑡𝑡|>𝛿𝛿   

 
Proof of theorem: Let a function of t and for fixed x, we have  

�(𝑥𝑥 − 𝑡𝑡)𝑓𝑓 ′(𝑥𝑥 − 𝑡𝑡)� ≤ 𝑀𝑀 
 
If  f belongs to the class S the round off error due to the presence of 𝜀𝜀𝑚𝑚 , in computing 𝑓𝑓(𝑥𝑥 − 𝑡𝑡), is bounded  by 
|(𝑥𝑥 − 𝑡𝑡)𝑓𝑓′(𝑥𝑥 − 𝑡𝑡)|𝜀𝜀𝑚𝑚 . Hence the round off error 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  , in computing ∫ 1

ℎ
𝑓𝑓(𝑥𝑥 − ℎ)𝛹𝛹2(𝑡𝑡

ℎ
)∞

−∞ 𝑑𝑑𝑑𝑑 is bounded by  

∫ 1
ℎ
�𝑓𝑓 ′(𝑥𝑥 − ℎ)�(𝑥𝑥 − ℎ)𝜀𝜀𝑚𝑚𝛹𝛹2 �

𝑡𝑡
ℎ
� |𝑑𝑑𝑑𝑑∞

−∞    
 
For 𝜀𝜀, 𝛿𝛿 > 0, let 𝜂𝜂 > 0  as given by lemma1. 
 
Hence w for |ℎ| < 𝜂𝜂 it follows that for the error 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  we have  

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ ∫ 1
ℎ
�𝑓𝑓 ′(𝑥𝑥 − ℎ)(𝑥𝑥 − ℎ)𝜀𝜀𝑚𝑚𝛹𝛹2 �

𝑡𝑡
ℎ
�� 𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑚𝑚|𝑡𝑡|<𝛿𝛿   

 
Because 𝜀𝜀 can be chosen so small, we have 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ |𝑥𝑥𝑥𝑥 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚 ∫ |𝛹𝛹2(𝑡𝑡)|𝑑𝑑𝑑𝑑∞
−∞   

 
In view of  
∫ �𝛹𝛹2 �

𝑡𝑡
ℎ
�� 𝑑𝑑𝑑𝑑|𝑡𝑡|<𝛿𝛿 < ∫ 1

ℎ
�𝛹𝛹2 �

𝑡𝑡
ℎ
�� 𝑑𝑑𝑑𝑑 = ∫ |𝛹𝛹2(𝑡𝑡)|𝑑𝑑𝑑𝑑∞

−∞
∞
−∞   

 
Hence the round off error 𝐸𝐸, due to the precence of 𝜀𝜀𝑚𝑚 , in computing  

1
ℎ2 �

1
ℎ
𝑓𝑓(𝑥𝑥 − ℎ)𝛹𝛹2 �

𝑡𝑡
ℎ
� 𝑑𝑑𝑑𝑑 

∞

−∞

 

Is 𝐸𝐸 ≤ |𝑥𝑥𝑓𝑓 ′(𝑥𝑥)|𝜀𝜀𝑚𝑚
ℎ2 ∫ |𝛹𝛹2(𝑡𝑡)|𝑑𝑑𝑑𝑑∞

−∞                                                                                                              (8) 
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The truncation error in               

1
ℎ ∫

1
ℎ
𝑓𝑓(𝑥𝑥 − ℎ)𝛹𝛹2 �

𝑡𝑡
ℎ
� 𝑑𝑑𝑑𝑑 − 𝑓𝑓 ′(𝑥𝑥)∞

−∞  is 
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶1𝑓𝑓5(𝑥𝑥)ℎ4 + 𝐶𝐶2𝑓𝑓7(𝑥𝑥)ℎ6 + 𝑂𝑂(ℎ8)                                                                                       (9) 

 
Hence theorem 2 follows from (8) and (9) 
 
6. CONCLUSION 
 
By applying the idea of error estimation of discrete analogue, error is precisely minimized for ℎ = 0.010254.  This 
result is more optimal for error approximation of machine procedure. 
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