
International Journal of Mathematical Archive-11(4), 2020, 42-45 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 11(4), April-2020                                                                                                                 42 

 
PART I KALANGI NON-ASSOCIATIVE Γ-SEMI SUB NEAR-FIELD SPACE  

OF A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD  
 

SRI. KALANGI HARISCHANDRA PRASAD*1 

Author cum research Scholar, 
Associate Professor, Department of Science & Humanities, 

Sai Tirumala NVR College of Engineering  
Jonnalagadda, Narasaraopeta, Guntur District, Andhra Pradesh. INDIA. 

 
DR T V PRADEEP KUMAR2 

Assistant Professor of Mathematics, 
A N U College of Engineering & Technology, 

Department of Mathematics, Acharya Nagarjuna University 
Nambur, Nagarjuna Nagar 522 510. Guntur District. Andhra Pradesh. INDIA. 

 
 DR N V NAGENDRAM3 

Professor of Mathematics, 
Kakinada Institute of Technology & Science (K.I.T.S.), 
Department of Humanities & Science (Mathematics) 

Tirupathi (Vill.) Peddapuram (M), Divili 533 433 
East Godavari District. Andhra Pradesh. INDIA. 

 
(Received On: 28-02-20; Revised & Accepted On: 20-03-20) 

 
 

ABSTRACT 
In this manuscript we introduce new notions on PART I Kalangi non-associated Γ-semi sub near-field space of a        
Γ-near-field space over near-field, quasi non associative Γ-semi sub near-field space, K-quasi N -Γ-semi sub near-field 
space, quasi ideals, etc and concepts like PART I Kalangi quasi bipotent elements and several analogous properties 
done in case of Γ-near-field spaces.  
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SECTION 1: INTRODUCTION AND PRELIMINARIES 
 
In this paper we together introduced several concepts and new notions in PART I Kalangi non-associative Γ-semi sub 
near-field space of a Γ-near-field space over near-field like quasi non associative Γ-semi sub near-field space, K-quasi 
N -Γ-semi sub near-field space, quasi ideals, etc and concepts like PART I Kalinga quasi bipotent elements and several 
analogous properties done in case of Γ-near-field spaces. 
 
Definition 1.1: Let N be a K-quasi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field 
an element x is said to be quasi central if xy = yx for all y ∈ M; M ⊆ N is a Γ-near-field (or M ⊂ N and M is a Γ-semi 
near-field space). 
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Definition 1.2: Let N be a K-quasi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field 
we say N is said to be Kalinga quasi non-associative sub-directly irreducible Γ-semi sub near-field space (K-quasi sub-
directly irreducible non-associative Γ-semi sub near-field space) if the intersection of all non zero K-quasi ideals of N 
is non-zero. 
 
Definition 1.3:  Let N be a K-quasi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field 
we say N is said to have Kalinga quasi intersection of factors property (K-quasi IFP) if a, b ∈ N, ab = 0 implies          
amb = 0 where m ∈ M, M ⊂ N and M is a near-field ( or m ∈ M, M ⊂ N, M is a non-associative Γ-semi sub near-field 
space. 
 
Note 1.4: We can take a (nb) = (an) b in all cases it should vanish that is anb = 0. 
 
Now we define the concept of Kalangi quasi divisibility and Kalangi divisibility. 
 
Definition 1.5: Let N be a non-associative K-Γ-semi sub near-field space of a Γ-near-field space over near-field we say 
N is Kalangi weakly divisible (K-weakly divisible) if for all x, y ∈ N there exists a z ∈ P ; P ⊂ N where P is an 
associative Γ-semi sub near-field space of a Γ-near-field space over near-field or P is  a near-field such that xz = y or   
zx = y. 
 
Definition 1.6: Let N be a non-associative K-Γ-semi near-field space of a Γ-near-field space over near-field we say N 
is Kalangi weakly divisible (K-weakly divisible) if for all x, y ∈ N there exists a z ∈ P; P ⊂ N where P is an associative 
Γ-semi near-field space of a Γ-near-field space over near-field or P is a near-field such that xz = y or zx = y. 

 
Definition 1.7:  Let N be a K-quasi Γ-semi sub near-field space (K-quasi Γ-semi near-field space) of a Γ-near-field 
space over near-field. We say N is Kalinga quasi weakly divisible (K-quasi weakly divisible) if for all x, y ∈ N there 
exists z ∈ M; M is a Γ-semi near-field space ⊂ N (Ma is a Γ-semi near-field space M ⊂ N) such that xz = y or yz = x. 
 
Definition 1.8: Let N be a K-Γ-semi sub near-field space (K-Γ- semi near-field spaces) we say N is said to be a 
Kalinga strongly prime (K-strongly prime) I if for each a ∈ N \ {0} there exists a finite K-Γ-semi sub near-field space F 
such that a Fx ≠ 0 for all x ∈ P \ {0} P ⊂ N ; P is a associative Γ-semi sub near-field space / P is a associative Γ-semi 
near-field space. 
 
In case N is  K-Γ-semi sub near-field space II (III or IV) we say N is a Kalangi strong prime II (III or IV) (K-strong 
prime II(III or IV) if for each a ∈ N \ {0} there exists a finite K--Γ- semi near-field space F such that a Fx ≠ 0 for all     
x ∈ P \ {0} , P ⊂ N ; P is a associative Γ- semi near-field space/ P is associative -Γ- semi near-field space. 
 
Definition 1.9: Let N be a non associative right near-field space and A an K-ideal or a K-left ideal of N. we define 
three properties as follows 
(i) A is kalangi equi-prime (K-equi-prime) if for any a, x, y ∈ N such that a (nx) – a(ny) ∈ A  ∀ n ∈ N or  

(an) x – (an) y  ∈ Y we have a ∈ A or x – y ∈ A. 
(ii) A is Kalangi strongly semi prime (K-strongly semi prime) if for each a finite subset F of N such that if x, y ∈ N 

and (af) x – (af) y ∈ A or 
        a (fx) – a (fy) ∈ A or 
       (af) x – a (fy) ∈ A or 
       A (fx) – (af) y ∈ A     for all f ∈ F and x – y ∈ A. 

(iii) A is Kalangi completely equi prime (K-completely equi prime) if a ∈ N \ A and ax – ay ∈ A imply x – y ∈ A. 
 
Definition 1.10: Let Q be a non empty subset of a K-right Γ-semi sub near-field space of a Γ-near-field space over 
near-field N which is non-associative. Define left and right Kalangi polar subsets (K-polar subsets) of N by  

SL(Q) = 
}0)(

0)(/{
QinqallforQxN

orNQxx
=
=

  and SR(Q) = 
}0)(

0)(/{
QinqallforNyq

oryqNy
=
=

   

Suppose, SQL (N) is the set of Q-left polar subsets of N and SQR(N) is the set of Q-right polar subsets of N one need  to 
test whether SQL(N) and SQR(N) are complete bounded lattices. 
 
Definition 1.11: I,II and III three levels of Kalangi Γ-semi sub pseudo near-field space(K-Γ-SSPNFS). Let Q be a 
Γ-semi sub pseudo near-field space (Γ-SSPNFS)  of a Γ-near-field space over near-field N we say Q is a Kalangi         
Γ-SSPNFS I (K-(Γ-SSPNFS I)  if Q has a proper subset T ⊂ Q such that T is a Γ-semi sub near-field space. Kalangi     
Γ-semi sub pseudo near-field space II (K-Γ-SSPNFS II)  if Q has proper subset M ⊂ Q such that M is a Γ-semi sub 
near-field space. Kalangi Γ-semi sub pseudo near-field space III (K-Γ-SSPNFS III)   if Q has a proper W ⊂ Q  
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such   (W, ⊕, ⊗ ) is a Γ-semi near-field space. Thus we have three levels (I, II and III levels) of K-Γ-SSPNFS near-
field spaces over a near-field N. A Kalangi Γ-SSPNFS Γ-semi near-field space (K-Γ-SSPNFS) is defined as a proper 
subset U of Q such that (U, ⊕, ⊗ ) is a K-Γ-SSPNFS Γ-semi near-field space. 
 
Definition 1.12: Let (Q, ⊕, ⊗ ) be a Γ-semi sub pseudo near-field space (Γ-SSPNFS) of a Γ-near-field space over near-
field. A proper subset I of Q is called a Kalangi Γ-semi sub pseudo near-field space ideal (K-Γ-SSPNFS-ideal) if  

a. for all p, q ∈ I, p ⊕ q ∈ I 
b. 0 ∈ I 
c. for all p ∈ I and r ∈ P we have p ⊗ r or r ⊗ p ∈ I. 
d. I is a K-Γ-SSPNFS , Γ-semi near-field space. 

 
Definition 1.13: Let (N, ⊕, ⊗ ) be a quasi Γ-semi sub pseudo near-field space (Γ-SSPNFS)  of a Γ-near-field space 
over near-field. M is said to be a Kalangi quasi Γ-semi sub pseudo near-field space (K-Γ-SSPNFS) if and only if M is a 
K-Γ-SSPNFS Γ-semi near-field space. 
 
Definition 1.14: Let (N, ⊕, ⊗ ) and (N1 , ⊕, ⊗ ) be any two K-Γ-semi sub pseudo near-field spaces (Γ-SSPNFS)  of a 
Γ-near-field space over near-field. We say a map φ is a Kalangi  Γ-semi sub pseudo near-field space–homomorphism     
I (II or III) (K--Γ-SSPNFS homomorphism I, II or III)  if φ : L → L1 where L ⊂ N and L1 ⊂ N1 are -Γ-semi sub pseudo 
near-field spaces (or Γ-semi near-field space or Γ-semi near-field space) respectively and φ is a Γ-semi near-field space  
homomorphism from L to L1 (or near-field homomorphism from L to L1 or semi near-field space  homomorphism from 
L to L1). φ need not be defined on the entire set N and N| it is sufficient if it is well defined on L to L1. 
 
SECTION 2:  MAIN RESULT ON KALANGI -QUASI GAMMA SEMI PSEUDO SUB NEAR-FIELD SPACES 
OF A GAMMA NEAR-FIELD SPACE OVER A NEAR-FIELD. 
 
In this section, author present theorem as main result on Kalangi quasi Gamma semi pseudo sub near-field spaces of a 
Gamma near-field space over a near-field. 
 
Now we proceed on to define Kalangi right quasi regular element. We just recall that an element x ∈ N , N is a Gamma 
semi pseudo sub near-field space said to be the right quasi regular if there exist y ∈ N such that x ° y = x + y – xy = 0 
and left quasi regular if there exist y| ∈ N such that y| ° x = 0 = y| + x – y|x. 
The study of the quasi regular concept happens to be an interesting study in case of near-field spaces and semi near-
field spaces.  
Quasi regular if it is right and left quasi regular simultaneously. We say an element x ∈ N is Kalangi right quasi regular 
(K-right quasi regular) if there exist y and z ∈ N such that x ° y = x + y – xy, x ° z = x + z – xz = 0  
but y ° z = y + z – yz ≠ 0 and z °  y = y + z – zy ≠ 0. 
 
Similarly we define Kalangi left quasi regular (K-left quasi regular) and x will be Kalangi quasi regular (K-quasi 
regular) if it is simultaneously K-right quasi regular and K-left quasi regular, that is of Kalangi quasi Gamma semi 
pseudo sub near-field spaces of a Gamma near-field space over a near-field. 
 
If we define K-non-associative Γ-semi pseudo sub near-field space of a Γ-near-field space over near-field (K-quasi      
Γ-semi pseudo sub near-field space) N then we have main interesting result out of several results below. 
 
Theorem 2.1: Let N be a Kalangi quasi -Γ-semi pseudo sub near-field space of a Γ-near-field space over near-field (K-
quasi Γ-semi pseudo sub near-field space) having a proper subset P of N to be a commutative near-field space with unit 
and of a characteristic 0. L any loop of finite order. Then the near loop near-field space NL has a right quasi regular 
element x = ∑ αi mi (mi ∈ L) αi ∈ P ⊂ N is right quasi regular then ∑ αi ≠ 1. 
 
Proof: Let y = ∑ βi hj where βi ∈ P and hj ∈ L be the right quasi inverse of x then x + y – xy = 0  
i.e., ∑ αi mi + ∑ βi hj  - (xy) = 0. 
 
Equating the coefficients of the like terms and adding these coefficients we get,     
∑ αi + ∑ βi - ∑ αi ∑ βi = 0. Or ∑ αi = ∑ βi - ∑ αi ∑ βi = ∑ βi (∑ αi – 1). Now if ∑ αi = 1 then ∑ αi   = 0 a contradiction. 
Hence ∑ αi ≠ 0. This completes the proof of the theorem. 
 
Example 2.2: Let L be any finite loop. N = Z9 × Z7 be K-mixed direct product of the Kalangi quasi -Γ-semi pseudo sub 
near-field space of a Γ-near-field space over near-field (K-quasi Γ-semi pseudo sub near-field space) Z9 and the prime 
field of characterize 7, Z7, N is K- quasi -Γ-semi pseudo sub near-field space. NL is the near loop near-field of the loop 
L over the near-field space N. If x ∈ S (J (Z7L)). 
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Definition 2.3: Let N = N1 × N2 where N1 is a Kalangi quasi -Γ-semi pseudo sub near-field space of a Γ-near-field 
space over near-field (K-quasi Γ-semi pseudo sub near-field space) of characterize 0 and N2 is any quasi -Γ-semi 
pseudo sub near-field space of a Γ-near-field space over near-field.  NL be the near loop quasi -Γ-semi pseudo sub 
near-field space of a Γ-near-field space over near-field of the loop L over the  quasi -Γ-semi pseudo sub near-field 
space of a Γ-near-field space N.  
 
Definition 2.4: QJ(Q) said to be the Kalangi Jacobson radical (K-Jacpbson radical) of NL if Q ⊂ NL is a non 
associative quasi -Γ-semi pseudo sub near-field space of a Γ-near-field space and J(Q) denoted the usual Jacobson 
radical of the non-associative quasi -Γ-semi pseudo sub near-field space of a Γ-near-field space Q. 
 
Example 2.5:  Let N = Z × Z18  be the mixed direct product of the Kalangi quasi -Γ-semi pseudo sub near-field space of 
a Γ-near-field space over near-field (K-quasi Γ-semi pseudo sub near-field space) Z and the -Γ-semi pseudo sub near-
field space Z18 L any finite loop, NL the near loop of the loop L over the Kalangi quasi -Γ-semi pseudo sub near-field 
space N. clearly ZL ⊂ NL  and ZL is a non-associative Kalangi quasi -Γ-semi pseudo sub near-field space N.               
If x= ∑ αi hi ∈ ZL such that ∑ αi ≠ 0 then x ∉ QJ(ZL). It is left for the scholar or reader to verify , as the conclusion 
derived is straightforward. 
 
Theorem 2.6: Let N = Z2 × Z15 where Z2 is the prime Kalangi quasi -Γ-semi pseudo sub near-field space of a Γ-near-
field space over near-field (K-quasi Γ-semi pseudo sub near-field space) of characterize two and Z15 is a -Γ-semi 
pseudo sub near-field space of a Γ-near-field space over near-field. Let L be any loop. NL be the near loop Kalangi 
quasi -Γ-semi pseudo sub near-field space. If x ∈ Z2 L × {0} ⊂ (Z2 × Z15); L is right quasi regular Kalangi quasi -        
Γ-semi pseudo sub near-field space then | supp x | is an even number. 
 
Proof: The proof is obvious and easily obtained by simple calculations. 
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