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ABSTRACT

In this paper we can extend the well-known result Enestrom-Kakeya theorem by relaxing the hypothesis in several
ways and obtain zero-free regions for polynomials with special complex coefficients and there by present some
interesting generalizations and extensions of the Enestrom-Kakeya Theorem.
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1. INTRODUCTION

The well-known Results Enestrom-Kakeya theorem [2, 4] in theory of the distribution of zeros of polynomials is the
following.

Theorem 1.1: Let P(z) = X, a;z'be a polynomial of degree n such that0 < ay < a; < a, <, ..., < a, then all the
zeros of P(2) liein |z| <1.

Applying the above result to the polynomial z”P(%) we get the following result:

Theorem 1.2: If P(z) = Y™, a;z' be a polynomial of degree n such that0 < a, < a,_; < a,_; <, ..., < a, then P(z)
does not vanish in |z| < 1.

In the literature [1, 3, 5-9], there exist several extensions and generalizations of the Enestrom-Kakeya Theorem.
Recently B. A. Zargar [11] proved the following results:

Theorem 1.3: If P(z) =Y, a;z' be a polynomial of degree n such that forsome k >1,0 < a, < a,_1 < a, <, ..., <

a, then P(z) does not vanish in the disk |z| < Zkl—_l

Theorem 1.4: If P(2)= ¥, a;z' be a polynomial of degree such that for some real number p > 0
0<ajy<a;<a;s,..,<a,; <a,+p,then P(z) does not vanish in the disk |z| <
The following results due to P. Ramulu [10].

2(ap +P)_ao'

Theorem 1.5: Let P(z) = Y, a;z" be a polynomial of degree n with real coefficients such that for some k >1
p=20,a,#0a,—-p<a,415...<a,41 <ka, =2a,_12..,2a = a, then all the zeros of P(z) does not

vanish in the disk |z| < lao| .
2k(am +lam D—(ag+2|am |[+an)+an +2p
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Theorem 1.6: Let P(z) =Y, a;z" be a polynomial of degree n with real coefficients such that for some 0 < r < 1,
p=20,a,#0, a,+p=2a,12..,20ps1 27y <Ap_1 <, ..., < a; < ag then all the zeros of P(z) does not
vanish in the disk

laol

|Z| < ag+2|am | =27 (am +lam D+an +lan |+2p

In this paper we give generalizations of the above mentioned results. In fact, we prove the following results.
2. MAIN RESULTS

Theorem 2.1: Let P(z) =Y, a;z' be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that for some
k>1,{20,a,#0,a,—-¢<a,15,..,<ay1<ka, =2a,_12,..,2a; =ayandfor somet>1,n=0,
b, #0,b, —m<b,_1<,...,.< by <tb, =b,_q1=,..,2 by = by, then all the zeros of P(z) does not vanish in the
disk

ol
Z[k(laml + am) + t(lbml + bm) - |am| - |bm| + 5 +77] + |an| + |bn| - (aO + bO + an + bn)

|lz] <

Corollary 2.2: Let P(z) =X, a;z' be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that for
somek >1,§ >0,a,, #0, 0<a, - ¢§<a,1 <, .., < Apyq S kay, = ap_1 =,...,=a; = ay>0and t =17 =0,
b, #00<b,—n<b, 1<,..,.<byy <tby, =2b,,_1>,..,2b; =by >0, then all the zeros of P(z) does not
vanish in the disk

lao
2[(2k — Da,, + 2t — Db, + E+n] — (ag + by)’

|lz] <

Corollary 2.3: Let P(z) =Y, a;z be a polynomial of degree n with Re(a;) = a; and Im(e;) = b; such that for

somek>1,¢§ >0,a, #0, a, —¢<a, 1 <, ....,<api1 <ka, =Za,_1=,..,2a =ayand
b, <b, 1<,...<by1 <b, =b,_1=,..,2 by = by, then all the zeros of P(z) does not vanish in the disk
ol
|z|

< .
2[k(lap| + ap) + by = |lam| + &1+ lay| + |ba| = (ag + by + a, + by)

Corollary 2.4: Let P(z) = ¥" ,a;z" be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that
a, <0, 1<, <Apy1 <Ay = Ap_q =, ..., =20 = ag and for somet =1,n =0, b,, #0,b, —n<b,_;1 <,...,<
b, 1 <tb, 2b,_12,..,2 by = by, thenall the zeros of P(z) does not vanish in the disk
|exo
< 8
2[am + t(|by| + byn) = |by| + 1] + lay| + [by| = (ag + by + a, + by)

|z]

Corollary 2.5: Let P(z) =Y, a;z" be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that for
somek =21 ,§ >0, a, #0, a, -¢<a,1<,...,<apy <kap, =2a,_1>..,2a, =2a9and b, #0,b, —& <
b,_1 <, ..,<bys <kb, =b,_1=,..,= by = by, thenall the zeros of P(z) does not vanish in the disk

ol
2[k(lap| + by | + am + by) = lam| = byl + & + 0] + lan| + |by| — (ag + by + ay + by)

|z| <

Corollary 2.6: Let P(z) =" ,a;z' be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that for

some an S an—l S, ,S am+1 S am 2 am_1 =, ,2 al 2 ao and bn S bn—l S, ,S bm+1 S bm 2 bm—l 2, ,2
b, = by, then all the zeros of P(z) does not vanish in the disk
et |
|z] <

Z[am +bm] + |an| + |bn| - (ao +b0 + an +bn).

Corollary 2.7: Let P(z) =Y, a;z" be a polynomial of degree n with Re(a;) = a; and Im(e;) = b; such that for
some 0 < a, < (o] < .G =< A 41 < an, > Ay =, e, = a; > ay >0and 0< bn < bn—l < el < bm+1 < bm >
b, _1 =,..,= by = by > 0, then all the zeros of P(z) does not vanish in the disk

o

zl < .
120 < e + bl — (ag + bo)

Remark 2.8: By taking a; > 0 and b; > 0 fori = 0,1,2, ...,n, in Theorem 2.1, it reduces to Corollary 2.2.
Remark 2.9: By takingn = 0 and t = 1 in Theorem 2.1, it reduces to Corollary 2.3.

Remark 2.10: By taking § = 0 and k = 1 in Theorem 2.1, it reduces to Corollary 2.4
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Remark 2.11: By takingn = & and t = k in Theorem 2.1, it reduces to Corollary 2.5.
Remark 2.12: By takingn = & = 0and k =t = 1 in Theorem 2.1, it reduces to Corollary 2.6.

Remark 2.13: By takingn =¢§ =0,k =t=1and a; > 0,b; > 0 fori = 0,1,2,...,n, in Theorem 2.1, it reduces to
Corollary 2.7.

Remark 2.14: By taking b; = 0 and & = p in Theorem 1, it reduces to Theorem 1.5.

Theorem 2.15: Let P(z) =X, a;z' be a polynomial of degree n with Re(;) = a; and Im(a;) = b; such that for
some 0<7<1,k=21¢20, a,#0, a,+¢=2a,.12,..,2a,41 270y, <ap_1 <, ...,<a; <kay andfor
some0<u<1,t=1,n=0b, #0,b, +n=b,_1 =,....,2 b1 = by, < b, _1 <,..,< by <tby, then all the
zeros of P(z) does not vanish in the disk

|exo
k(lagl + ao) + t(lbol + by) + X + |ay| + |by| + a + by — (Iagl + [bol)’

|| <

where X = 2[|a,,| + |by | + & + 1 —t(lay| + a,,) — u(|by| + by)].

Corollary 2.16: Let P(z) =Y, a;z" be a polynomial of degree n with Re(a;) = a; and Im(e;) = b; such that for
some 0<7<1, k>21¢6=2 0, a,#0,0<a,+§=20a, 12,..,28,41270, <ap1S,...,<ay < kag >
Oand for someO0<u<1,t=>21,n=20, b, #0,0<b, +n=b,_1 2, ..,2bpy 2uby, <b,_1<,..,<b <
tby > 0, then all the zeros of P(z) does not vanish in the disk

o |

< :
121 2[kay + tby — ta,, — ub,, + a, + b, + & +nl + [ay, + b,, —ay — by]

Corollary 2.17: Let P(z) =X",a;z" be a polynomial of degree n with Re(a;) = a; and Im(e;) = b; such that for

some 0<7<1, k=21,¢20,a,#0,a,+8=2a,1>,..,208,41 270, <ap_1S,...,<a; <kagand for

someb, = b,_1 >,..,2 b,y 2 b, <b,_ 1 <,..,< b < by, then all the zeros of P(z) does not vanish in the disk
ol

k(|ao| + aO) + bO + 2[|am| + E _T(laml + am) - bm] + |an| + |bn| +a, + bn - |a0|'

|lz] <

Corollary 2.18: Let P(z) =Y, a;z" be a polynomial of degree n with Re(a;) = a; and Im(e;) = b; such that for
SOMea, = a, 1 =,..,2 AQpy1 20y <Ap_1 <, ., <a; <aggand forsome0<pu<1, t=1,n=0,b, #0,b, +
N=by_q 2,2 bp = uby, <b,_q<,..,< by <thy, then all the zeros of P(z) does not vanish in the disk

ol

lz] < :
f(|b0| +b0) + 2[|bm| +n—ay _”(lbml +bm)] + |an| + |bn| +a, +bn - |b0|

Corollary 2.19: Let P(z) =Y",a;z" be a polynomial of degree n with Re(a;) = a; and Im(e;) = b; such that for
some 0<7<1, k=21,£&20,a,#0,a,+{=2a,1>,..,20,41 270, <ap_1 <,..,<a; <kagand for
some b, #0,b, +&=b,_1 =,...,2 by 2Th,, < b, _1 <,...,< by < kby, then all the zeros of P(z) does not
vanish in the disk

ol

|z] < )
k(lagl + |bo| + ag + by) + la,| + |b,| + a, + b, — (lag| + |bo|)

where X; = 2[la,,| + |b,,| + 26 —1(la,, | + ay, + |by | + by)].

Corollary 2.20: Let P(z) =Y ,a;z" be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that for

some , a, =0, 12,2041 28y <Ay S, ., <ay <ag andfor some b, =2b, 1>,..,2 b1 = b, <
b, _1 <, ...,< by < by, then all the zeros of P(z) does not vanish in the disk
et |
|| <

(laol + 1bol + ag + bo) = (@m + bp) + lan| + |y + @y + by — (lagl + 1bo )’

Corollary 2.21: Let P(z) = Y™ , a;z' be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that

0<a,20,12,.,2Ap41 20, <1<, ..,501<a;>0 and 0<b,=2b,_12,..,2by4y1=b, <
b,_1<,...,< by < by >0, thenall the zeros of P(z) does not vanish in the disk
|exo
|lz] <

(aO + bO) - (am + bm) + |an| + |bn| + Z(an + bn.
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Remark 2.22: By taking a; > 0 and b; > 0 fori = 0,1,2, ...,n, in Theorem 2, it reduces to Corollary 2.16.
Remark 2.23: By takingn = 0 and t = u = 1 in Theorem 2.15, it reduces to Corollary 2.17.

Remark 2.24: By taking § = 0 and k = t = 1 in Theorem 2.15, it reduces to Corollary 2.18.

Remark 2.25: By takingn = ¢ ,u = 7 and t = k in Theorem 2.15, it reduces to Corollary 2.19.

Remark 2.26: By takingn = ¢ =0and u =7 =k =t = 1 in Theorem 2.15, it reduces to Corollary 2.20.

Remark 2.27: By takingn =¢=0andu=t1=k=t=1anda; > 0,b; >0 fori =0,1,2, ...,n, in Theorem 2.15,
itreduces to Corollary 2.21.

Remark 2.28: By taking b; = 0, T = r and ¢ = p in Theorem 2.15, it reduces toTheorem 1.6.

Theorem 2.29: Let P(z) =X, a;z' be a polynomial of degree n with Re(;) = a; and Im(a;) = b; such that for
somek 21, >0,a,, #0, a,-¢(<a, 1 <, ...,<apy1 <ka, =2a,-12,..,2a, 2apand for some 0 <u<1,
t=1,n=0,b, #0,b, +n=b,_1>,..,2 by 1 = ub, <b,_;<,..,<b; <tby, then all the zeros of P(z) does
not vanish in the disk

o]
t(lbo| + bo) + (ag + |bo|) + X, + |a,| + |b,| — @, +b,’
where XZ = Z[k(laml + am) - |am| + |bm| - #(lbml + bm) + f + T]]

|z] <

Theorem 2.30: Let P(z) =Y, a;z" be a polynomial of degree n with Re(a;) = a; and Im(a;) = b; such that for
some 0<7<1, k=21,£&20,a,#0,a,+{=2a,_1>,..,20,41 270, <ap_1 <,...,<a; <kagand for
somet 21,7 =0, b,, #0,b, — N <b, 1 <,..,< by <tb, = b, _1=,..,2b; = by, then all the zeros of P(z)
does not vanish in the disk

o

|z] < ,
k(lagl +ag) — (lag| + by) + X3 + a, — b, + |a,| + |b,|

where X3 = 2[|ay,| — by, | — u(lan| + an) + t(b, | + by) + &+ 7).

3. Proofs of the Theorems

Proof of the Theorem 2.1:

LetP(2)= apz" + a1 2" 1+ -+ @y 2"+ a2 a1 2™ e gz +
Let Consider the polynomial J(z) = z”P(%)

And R(z) = (z-1)J(2) so that

ThenR(2) = (z-1)(apz™ + a1 z" P + -+ @p_12™ ' + @ 2™ + 12"+ a1z + ay)
= oz —{(ag — )z" + (@ — @)2" T+t (Ao — @) 2T (@ — Apg)Z" T
+ta—a)z+a,}
= oz —{(ay — a)z" + (@, — a)2" 7+ (Apoy — Q)2 T+ (@ — Apg)Z" T
+oot (@1 — @)z + @y }=i{(by — b)z" + (by — b)z" ' + o+ (Byy_y — by )2
+(bm - bm+1)Zn_m +t (bn—l - bn)Z + bn}

Also if |z| > 1 then —— < for i = 0,1,2,...,n — 1. Now

|z]
R(2)| = laollz]"*! = [{lag — aqllz]" + la; — az||z]* ™" + -+ |@m—1 = an 12| + @y — @y ||2]" + -
+lay_1 — ayllzl + |a, [} + {lby — by l|z]" + |by — by ||2]" ™ + -+ + |byy_y — by |]2]"
+ b = byyallzl™ + - + |by—1 — byllz| + by, [}]

IR@)| = lagllz|™** = { lag — arlz]* + lay = apl|2]" ™" + -+ |apm 4
= apn[lz" Tt | = @ l|2"T e tlagg — agllz] + lan] )

© 2020, IJMA. All Rights Reserved 10
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n 1 |a0_a1| |a1_a2| |am—1_am| |am _am+1|
= laoll2" 171 = o= {(la = ar] + = P o
[an—2 — an_al  lanq —ayl  |ay| b —b |bp — b1|  |by — by
272 it ) TPl 7
|bm—1 - bml |bm - bm+1| |bn—2 - bn—ll |bn—1 - bnl + |bn|
21 PR 2] TR
1
> |apllz|" |zl ——{(lap — a1 | + lay — ap| + -+ + |ap 1 — kay, +ka, — ayl

|l
+ |am _kam +kam - am+1| + ot |an—2 - an—ll + |an—1 _§+§_ anl + |an|)
+ (Ibg — by| + |by = by| + -+ + |byy—1 — thy + thy — by | + |byy — thyy + thyy, — by
+ ot |bn—2 _bn—ll + |bn—1 -n+n- bnl + |bn|)}]

1
> |aol|z|"*[|z] —m{((al —ag) +(az —ay) + (a3 —az) + -+ (kay — an—1) + 2(k — 1)|a,|
+ (kam - am+1) + et (an—Z - an—l) + (an—l + i - an) + & + |an|) + ((bl - bO)
+ (by = b1) + (b3 = by) + -+ + (thy, — byu—1) + 2(t = ) |by | + (b — bipy1) + -
+ (bn2 = by—1) + (by_1 + 1 —by) + 10+ |by)}]

> |aollz|"*[|z] - ﬁ{Z[k(laml + @) + t(|bn | + b)) = lam | = |by| + & + 1]
+lay| + |by| = (ag + by + an + by)}]

>0
if |Z| > ﬁ{z[k(laml + am) + t(lbml + bm) - |am| - |bm| + E +77] + |an| + |bn| - (aO + bO + an + bn)}

This shows that all the zeros of R(z) whose modulus is greater than 1 lie in the closed disk
|Z| < ﬁ{z[k(laml + am) + t(lbml + bm) - |am| - |bm| + E + 77] + |an| + |bn| - (aO + bO + an + bn)}

But those zeros of R(z) whose modulus is less than or equal to 1 already lie in the above disk.
Therefore, it follows that all the zeros of R(z) and hence J(z) lie in
|z| < ﬁ{Z[k(IamI + @) + t(|by | + b)) = lan | = |by| + & + 1] + lay| + [by| = (ag + by + ay + by)}.
Since P(z) = z"J(i) it follows, by replacing z byi ,
Then all the zeros of P(z) lie in

ol
z| = .
| | Z[k(lam|+am)+t(|bm|+bm)_|am|_|bm|+€+n]+|an|+|bn|_(a0+b0+an +bn)

Hence P(z) does not vanish in the disk
< laol
2[k(lam| + an) + t(bp| + by) = lag| — byl + & + 0] + lay| + 1by] — (ag + by + an + by)

|z

This completes the proof of the Theorem 2.1.

Proof of the Theorem 2.15: Proof of the Theorem 2.15 is similar to that the proof of Theorem 2.1.

Proof of the Theorem 2.29: Proof of the Theorem 2.29 is similar to that the proof of Theorem 2.1.

Proof of the Theorem 2.30: Proof of the Theorem 2.30.is similar to that the proof of Theorem 2.1.
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