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ABSTRACT

In this paper, we study some separation axioms namely, SG-T,-space, SG -T; -space and SG -T,-space and their
properties. We also obtain some of their characterizations.
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1. INTRODUCTION

In the year 1987, [1] P.Bhattacharya and B.K.Lahiri introduced and studied SG-closed and SG-open sets respectively.
In this paper we define and study the properties of a new topological axioms called SG-T,-space, SG-T; — space,
SG-T,-space.

Il. PRELIMINARIES

Throughout this paper space (X, t) and (Y, o) (or simply X and Y) always denote topological space on which no
separation axioms are assumed unless explicitly stated. For a subset A of a space X, CI(A), Int(A), A°P-CI(A) and
P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X
respectively.

Definition 2.1: A subset A of a topological space (X, 1) is called
1. Semi Generalised Closed Set [1] if Scl(A) cU whenever AcU and U is Semi-open in X
2. Apre generalized pre regular oeakly closed set (briefly pgpro-closed set) if pCI(A) [3] whenever AcU and U
is rga-open in (X, 1).
3. Asubset A of a topological space (X, 1) is called pre generalized pre regular weakly open (briefly pgpro-open)
[4] setin X if A®is pgpro-closed in X.

Defintion 3: Amap f: (X, 7) -» (Y, o) is called
(i) SG-continuous map [2] if f* (v) is SG closed in (X,7) for every closed V in (Y, o).
(i) SG-irresolute map [2] if f~(v) is SG closed in (X,T) for every SG-closed V in (Y, o).
(iii) SG-closed map [2] if f~*(v) is SG closed in (X,7) for every closed V in (Y, o).
(iv) SG-open map [2] if f(v) is SG closed in (X,7) for every closed V in (Y, o).

4. SEMI GENERALISED SPACE:

Definition 4.4.1: A topological space (X, t) is called SG -T,-space if for any pair of distinct points x, y of (X,t) there
exists an SG-open set G suchthatx e G,y ¢ Gorx € G,y € G.

Example 4.4.2: Let X = {a, b}, t = {p,{b}, X}. Then (X, 7) is SG-T,- space, since for any pair of distinct points a, b
of (X,7) there exists an SG-T, open set{b} such that a ¢{b}, b e{b}.
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Remark 4.4.3: Every SG-space is SG-T,-space.
Theorem 4.4.4: Every subspace of a SG-T,-space is SG-T,-space.

Proof: Let (X,7) be a SG -T,-space and (Y,t,) be a subspace of (X,r). Let Y, and Y, be two distinct points of (Y,zy).
Since (Y,ty) is subspace of (X,7),Y; and Y are also distinct points of (X,7). As (X,7) is SG-T,-space, there exists an
SG-open set G such that Y,€G, Y.¢G. Then YNG is SG-open in (Y,t,) containing but Y, not Y, Hence (Y,zy) is
SG-T,-space.

Theorem 4.4.5: Let f: (X,7) -» (Y, p) be an injection, SG-irresolute map. If (Y,u) is SG-Ty-space, then (X,7) is
SG-T,-space.

Proof: Suppose (Y, ) is SG-T,-space. Let a and b be two distinct points in(X,).As f is an injection f(a) and f(b) are
distinct points in (Y,u). Since(Y,u) is SG-T,-space, there exists an SG-open set G in (Y,u) such that f(a) € G and
f(b)eG. As f is SG-irresolute, f(G) is SG-open set in (X,7) such that a€ f *(G) and bgf (G). Hence (X,7) is
SG-T,-space.

Theorem 4.4.6: If (X,7) is SG-T,-space, Tsg-space and (Y, t,) is SG-closed subspace of (X,r), then (Y,z,) s
SG-T,-Space.

Proof: Let (X,r) be SG-T,-space, Tss-space and (Y,zy) is SG-closed subspace of (X,r). Let a and b be two distinct
points of Y. Since Y is subspace of (X,t), a and b are distinct points of (X,7). As (X,7) is SG-T, -space, there exists an
SG-open set G such that aeG and bgG. Again since (X,t) is TSG-space, G is open in (X,t).Then YNGis open. So YNG
is SG-open such that aeYNG and b¢YNG. Hence (Y,zy) is SG-T-space.

Theorem 4.4.7: Let f: (X,7) -» (Y, u) be bijective SG-open map from a SG-T, Space (X,t) onto a topological space
(Y,7y). If (X,7) is Tss-space, then (Y, u) is SG-T, Space.

Proof: Let a and b be two distinct points of (Y,t,). Since f is bijective, there exist two distinct points e and d of (X,7)
such that f(c) = a and f(d) = b. As(X,t) is SG-T, Space, there exists a SG-open set G such that c € G and d ¢ G. Since
(X,T) is Tsg-space, G is open in (X,t). Then f(G) is SG-open in (Y, w), since f is SG-open, such that a € f(G) and
b ¢ f(G). Hence (Y,zy) is SG-To-space.

Definition 4.4.8: A topological space (X,t) is said to be SG-T;-space if for any pair of distinct points a and b of (X,7)
there exist SG-open sets G and H suchthatae G,b¢ Ganda ¢ H, b e H.

Example 4.4.9: Let X = {a, b} and 7 = {@, {a}, X}. Then (X,7) is a topological space. Here a and b are two distinct
points of (X,t), then there exist SG-open sets {a}, {b} such that a € {a}, b ¢ {a} and a ¢{b}, be{b}.Therefore (X,7) is
SG-Tyspace.

Theorem 4.4.10: If (X,7) is SG-T,-space, then (X,7) is SG-T,-space.

Proof: Let (X,t) be aSG-T;-space. Let a and b be two distinct points of (X,t). Since (X,t) is SG-T;-space, there exist
SG-open sets G and H such thata € G, b ¢ G and a € H, beH. Hence we have a € G, b ¢ G. Therefore (X,7) is SG-T,-
space. The converse of the above theorem need not be true as seen from the following example.

Example 4.4.11: Let X = {a, b} and 7 = {¢, {b}, X}. Then (X,7) is SG-T,-space but not SG-T;-space. For any two
distinct points a, b of X and an SG-open set {b} such that a ¢ {b}, b € {b} but then there is no SG-open set G with
aeG,begGfora=h.

Theorem 4.4.12: If f: (X,7) -» (Y,7,) is a bijective SG-open map from a SG-T;-space and Tss-space (X,r) on to a
topological space (Y,z,), then (Y,t,) is SG-T;-space.

Proof: Let (X,t) be a SG-T;-space and Tsg-space. Let a and b be two distinct points of (Y,t,). Since f is bijective there
exist distinct points ¢ and d of (X,7) such that f(c) = a and f(d) = b. Since (X,t) is SG-T,-space there exist SG-open sets
G and Hsuchthatc € G,d ¢ G and ¢ € H, d € H. Since (X,t) is Tsg-space, G and H are open sets in (X,7) also f is
SG-open f(G) and f(H) are SG-open sets such that a = f (c) € f(G), b = f(d) & f(G) and a= f(c) ¢ f(H), b = f(d) € f(H).
Hence (Y,t,) is SG-T;-space.
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Theorem 4.4.13: If (X,7) is SG T, space and Tsg-space, Y is a subspace of (X,7), then Y is SG T, space.

Proof: Let (X,t) be a SG T space and Tsg-space. Let Y be a subspace of (X,7). Let a and b be two distract points of Y.
Since YcX, a and b are also distinct points of X. Since (X,t) is SG-T;-space, there exist SG-open sets G and H such
thatae G,b ¢ Gandaé¢ H, b € H. Again since (X,t) is Tsg-space, G and H are open sets in (X,t), then YNG and YNH
are open sets so SG-open sets of Y such thata € YNG, bgYNG and a ¢ YNH, b € YNnH. Hence Y is SG T; space.

Theorem 4.4.14: If: (X,7) -» (Y,1y) is injective SG-irresolute map from a topological space (X,t) into SG-T;-space
(Y,7y), then (X,t) is SG-T, - space.

Proof: Let a and b be two distinct points of (X,t). Since f is injective, f(a) and f(b) are distinct points of (Y,z). Since
(Y,ty) is SG-T; space there exist SG-open sets G and H such that f(a) €G, f(b) €G and f(a) & H, f(b) € H.Since f is
SG- irresolute, f *(G) and f (H) are SG-open sets in (X,7) such that a€ ' (G), b & f }(G) and a & f'(H), bef ~*(H).
Hence (X,t) is SG-T,space.

Definition 4.4.15: A topological space (X,t). is said to be SG-T,- space(or Tsg-Hausdorff space) if for every pair of
distinct points X, y of X there exist Tsg-open sets M and N such that xéN, yeM and NnM = @.

Example 4.4.16: Let X = {a, b}, 7 = {0, {2}, {b}, X}. Then (X,7) is topological space. Then (X,t) is SG-T,-space.
Tss-0pen sets are @, {a}, {b},and X. Let a and b be a pair of distinct points of X, then there exist Tsg - open sets {a}
and {b} such that ae{a}, be{b} and {a}n{b} = @. Hence (X,7) is SG-T,-space.

Theorem 4.4.17: Every SG-T,- space is SG T,space.

Proof: Let (X,7) be a SG-T,- space. Let x and y be two distinct points in X. Since (X,t) is SG-T,- space, there exist
disjoint Tsg-open sets U and V such that xeU, and y € V. This implies, x e U,y ¢ Uand x € V, y & V. Hence (X,7) is
SG-T,- space.

Theorem 4.4.18: If (X,7) is SG-T,-space, Tsg- space and (Y,t,) is subspace of (X,7), then (Y,t,) is also SG-T,-space.

Proof: Let (X,7), be a SG-T, - space and let Y be a subset of X. Let x and y be any two distinct points in Y. Since
YcX, x and y are also distinct points of X. Since (X,7) is SG-T, - space, there exist disjoint Tsg-open sets G and H
which are also disjoint open sets, since (X,t) is Tss - space. So GNY andHNY are open sets and so Tsg- open sets in
(Y,ry). Also xeG, x eYimplies xeGNV and yeH and yeY this implies yeYnH, since GNH = @, we have
(YNG)N(YNH) = @. Thus GNY and HNY are disjointTsg-open sets in Y such that xeGnY, yeHNY and
(YNG)N(Yn H)= @. Hence (Y,t,) is SG-T, - space.

Theorem 4.4.19: Let (X,t), be a topological space. Then (X,7), is SG-T,- space if and only if the intersection of all
Tss-closed neighbourhood of each point of X is singleton.

Proof: Suppose (X,1), is SG-T,.space. Let x and y be any two distinct points of X. Since X is SG-T,-space, there exist
open sets G and H such that xeG, yeH and GnH = @. Since GNH = @. implies XxeGcX-H. So X-H is Tss-closed
neighbourhood of x, which does not contain y. Thus y does not belong to the intersection of all Tss-closed
neighbourhood of x. Since y is arbitrary, the intersection of all Tsg-closed neighbourhoods of x is the singleton {x}.

Conversely, let (x) be the intersection of all Tsg-closed neighbourhoods of an arbitrary point xeX. Let y be any point of
Xdifferent from x. Since y does not belong to the intersection, there exists aTsg-closed neighbourhood N of x such that
yé&N. Since N isTsg-neighbourhood of X, there exists an Tsg-open set G such x G X. Thus G and X - N are Tgg-open
sets such that xcG, yeX-N andGn(X - N) = @. Hence (X,7) is SG-T,-space.

Theorem 4.4.20: Let f: (X,7), -» (Y,7y) be a bijective SG-open map. If (X,7) is SG-T,- space and Tgg space, then
(Y,t) is also SG-T,- space.

Proof: Let (X,7), is SG-T,- space and Tsg- space. Let y; and y, be two distinct points of Y. Since f is bijective map,
there exist distinct points x; and x, of Xsuch that f(x;) = y; and f(x;) = y.. Since (X,t) is SG-T,- space, there exist
SG-open sets G and H such that X;€G, X,eH and GNH =@. Since (X,7) is Tss- space, G and H are open sets, then f(G)
and f(H) are SG- open sets of(Y,r,) , since f is pprw-open, such that y, = f(x;) € f(G), y. = f(xp) € f(H) and
f(G)nf(H) = @. Therefore we have f(G)nf(H) = f(GNH) =@. Hence (Y,t,) is SGT,-space.
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Theorem 4.4.21: Let (X,r) be a topological space and let (Y,r,) be a SG-T,-space. Let f: (X,7)—>(Y,7y) be an
injective SG-irresolute map. Then (X,t) is SG-T,-space.

Proof: Let X; and X; be any two distinct points of X. Since f is injective, x;#x, implies f(x;) # f(x,).Let y; = f(xy),
y2 = f(x) so that x; = f ™ (y1), X2 = f (y2). Then y;, y2€Y such that y,# ys. Since (Y,ty) is SG-To-space there exist
Tss-0pen sets G and H such that y;€G, y,€ G and GNH =@ . As f isTsg-irresolute £1(G) and f ~* (H) are Tss-open sets
of (X,7). Now f YG) nf (H) = f %G nH) = f (@) = @ and y,€G implies f 1(y,) € f ~*(G) impliesX,€f (G), y.€ H
implies f (y,) € f (H) implies x,€ f (H).Thus for every pair of distinct points x,, x, of X there exist disjoint Tsg-open
sets f (G) and f (H) such that X,ef (G), x,€f*(H). Hence (X,7) is SG-T,-space.
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