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ABSTRACT  
In this manuscript we introduce PART II some applications of Kalangi non-associated Γ-semi sub near-field space of a 
Γ-near-field space over near-field, quasi non associative Γ-semi sub near-field space, K-quasi N -Γ-semi sub near-field 
space, quasi ideals, etc and concepts like PART II some applications of Kalangi quasi bipotent elements and several 
analogous properties done in case of Γ-near-field spaces.  
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SECTION 1: Introduction and Preliminaries on Part II some applications of Kalangi non-associative Γ-semi sub     
near-field space of a Γ-near-field space over near-field. 
 
In this paper we together introduced a maiden effort to bring the two probable existing applications in PART II some 
applications of Kalangi non-associative Γ-semi sub near-field spaces of a Γ-near-field space over near-field.  
 
We are not widely speaking about the applications of Kalangi non-associative Γ-semi sub near-field spaces of a Γ-near-
field space we only discuss here the two applications one in automatons and the other in the construction of error 
correcting codes. 
 
Here we recall the basic notions of an automaton, semi – automaton, Kalangi automaton and group automaton and give 
some interesting illustrations of them.  
 
Basics on automaton and on semi – automaton.  
 
We just recall the definitions of automaton, semi-automaton, Kalangi automaton, Kalangi semi-automaton and group 
semi-automaton and finally the concept of syntactic Γ-semi sub near-field spaces of a Γ-near-field space over near-
field. We illustrate them with explicit examples so that it would become easy when we introduce the Kalangi 
equivalence of syntactic Γ-semi sub near-field spaces of a Γ-near-field space over near-field and its probable 
application to group semi – automaton. As it is we deals with application all basic relevant information are recalled. 
 
Definition 1.1: Semi-automaton. A semi-automaton is a triple T = (N, B, δ) consisting of two non-empty Γ-semi sub 
near-field spaces N and B and a function δ : N × B → N , N is called the Γ-semi sub near-field space of states, B the 
input alphabet and δ the next state function of T. 
 
Definition 1.2: Automaton. An automaton is a quintuple B = (N, B, C, δ, λ) where (N, B, δ) is a semi-automaton, C is 
a non-empty Γ-semi sub near-field space called the output alphabet and λ : N × B → C is the output function. 
 
Note 1.3: A semi automaton is finite if all Γ-semi sub near-field spaces N, B and C are finite. Here several types of 
automaton are studied.  
 
Note 1.4: We usually describe the semi automaton only by tables or by graphs. 
 
Now we describe description of automaton: 
Let B = {b1, b2, ...., bn}, C = {c1, c2, ...., cn} and N = {n1, n2, ...., nn} where B is the input alphabet, C is the output 
alphabet and N is the Γ-semi sub near-field space of states. We describe δ the next state function from N × B → N by 
the following table. 
 
Input Table: 
 

δ           b1    ............  ...................  .............. ........    .................... ............       ............ bn 

n1 
. 
. 
. 
 

nk 
 

          δ( n1, b1) .................................................................... ........    .................... δ( n1, b1) 
                 . 
                 . 
                 . 
 

           δ( nk, b1) .................................................................... ........    .................... δ( nk, bk 

Where δ (ni, bj) ∈ N). 
 
The output table in case of automaton is given by λ where, λ : N × B → C where C is the output alphabet is given by 
the following output table. 
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Output Table: 
 

λ                b1    ............  ...................  .............. ........    .................... ............       ............ bn 

n1 
. 
. 
. 
 

nk 
 

           λ( n1, b1) .................................................................... ........    .................... λ( n1, b1) 
                 . 
                 . 
                 . 
 

           λ( nk, b1) .................................................................... ........    .................... λ( nk, bk) 

 

Where λ (ni, bi) ∈ C. 
 
Definition 1.5: State graph. The graphical representation which is called a state graph are drawn by taking the Γ-semi 
sub near-field space of states n1, n2, ....,nk as “discs”. 

bi 

 
 
 
 
if δ (nr, bi) = ns. In case of an automaton, we have λ(nr, bi) = ns also as the output function so that the state graph in this 
case is  

bi ; λ( nr, bi ) 
 
 
 
 
We illustrate by the following example the parity check automaton by both the tables and state graphs. 
 
Example 1.6: Parity check automaton. Let N = N = {n0, n1}, B = C = {0, 1} and  

011

100

10

nnn
nnn

δ
 

 

10
10
10

1

0

n
n
λ

 

 
The state graph of this automaton  
       (1, 1) 
 
    (0,0)            (0,0) 
 
       (1, 1) 
 
This automaton has limitations for a given input it can give an output. It can not do any sequential operations so using 
free Γ-semi sub near-field spaces an automaton which can perform sequence of operations acting on sequence of 
elements. To achieve this we define the following: 
 
Definition 1.7: B = free Γ-semi sub near-field space generated by the input alphabets B together with the empty 
sequence Λ. 
 

Definition 1.8: C = free Γ-semi sub near-field space generated by the output alphabets C together with the empty 
sequence Λ. 
 
Clearly the number of states N in a machine cannot be adjusted as it is constructed or designed with a fixed number of 
states. 
 
 

nr 
ns 

nr 
ns 

n0 n1 
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We extend the next state function δ and the output function λ : N × B → N × B  by defining for n ∈ N and b1, b2, ....., 

br ∈ B  where δ : N × B → N and δ : N × B  → N by  

δ  (n, Λ) = n 

δ  (n, b1) = δ (n, b1) 

δ  (n, b1 b2) = δ (δ  (n, b1), b2) 
   . 
   . 
   . 

δ  (n, b1 b2...bn)   = δ (δ  (n, b1 b2...bn-1), bn) 
 
And  

 λ : N × B → C by λ : N × B  → C  defined or extended by  

λ  (n, Λ)   = Λ 

λ  (n, b1)   = λ (n, b1) 

λ  (n, b1 b2)   = λ(n, b1) λ (δ (n, b1), b2) 
   . 
   . 
   . 

λ  (n, b1 b2...bn)   = λ(n, b1) λ (δ (n, b1), b2...bn-1, bn). 
 

In this way we obtain functions,δ : N × B  → N and λ : N × B  → C .  
 
Thus the semi automaton T = (N, B, δ) is generalized to new semi automaton T = (N, B , δ ).  
 

Similarly, the automaton B = (N, B, C, δ, λ) is generalized to the new automaton B  = (N, B , C , δ , λ ).  
 
We can describe the operation by  

n1 = n 
n2 = δ (n1, b1) 

n3 = δ  (δ (n1, b1), b2) 
    = δ (n2, b2)  
. 
. 
. 

The sectional graph of automaton is : 
 
     b1         b2 
          br-1      br    
 
        
 
 
    λ (n1, b1 )   λ (n2, b2 )    ......                                    λ (nr, br )         
 
Now using the concept of semi automaton and automaton we define the concept of Kalangi semi-automaton and 
Kalangi automaton as follows: 
 

Definition 1.9: Kalangi semi automaton. λk = (N, B , δ ) is said to be a Kalangi semi – automaton if B  = <B> is the 

free groupoid generated B with Λ the empty sequence adjoined with it and sδ  is the function from N × tB  → N. thus 

the Kalangi semi – automaton (K semi-automaton) contains γ = (N, tB , sδ ) as a new semi – automaton which is a 
proper substructure of γk. 
 
 

n1 n2 
nr nr+1 
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Note 1.10: equivalently we define K-semi-automaton as one which has a new semi automaton as a substructure. 
 
Note 1.11: Clearly, the K-semi automaton is generalized structure that the new semi-automaton as all free Kalangi       
Γ-semi sub near-field spaces of a Γ-near-field space over near-field are in B  is the free groupoid generated by B. 
 

Definition 1.12: Kalangi sub semi-automaton. kY ' = (N1, kB , '
kδ ) is called the Kalangi subsemi - automaton (K-

subsemi – automaton) of kY = (N2, kB , '
kδ ) denoted by kY '   ⊆ kY  if N1 ⊂ N2 and '

kδ is the restriction of kδ  on 

N1 × kB  and kY '  has a proper subset K  ⊂ kY '  such that K  is a new semi automaton. 
 
Example 1.13:  Let N = N4 = (2, 2) and B = N3 (1, 2) we define δ (n, b) = n* b (mod 4) ‘ * ’ as in N. The table for the 
semi-automaton is given by  

2023
0202
2021
0200
210δ

 

The graph for it is  
 
 
 
 
 
 
 

 

 
 
Thus this has Kalangi subsemi-automaton Γ-semi sub near-field space N1 given by N1 = (0, 2) states. 
 
Note 1.14: A machine equipped with this K-semi automaton Γ-semi sub near-field space   can use any new automaton 
as per need. Now proceed on to recall the definition of group semi-automaton. 
 

Definition 1.15: Kalangi automaton. kM = ( N, kB , kC , kδ , kλ ) is defined to be a Kalangi automaton (K-

automaton) if M  = (N, kB , kC , kδ , kλ ) is the new automaton and kB , kC , the Kalangi free groupoids so 

that M  = (N, kB , kC , kδ , kλ ) is the new automaton got from M, and M  is strictly contained in kM . 
 
Note 1.16: Thus K-automaton enables us to adjoin some more elements which is present in B and freely generated by 
B, as a free groupoid, that will be the case when the compositions may not be associative.  
 
Secondly, by using K-automaton we can couple several automaton as  

N = N1 ∪ N2 ∪ N3 ∪ .... ∪ Nn 

B = B1 ∪ B2 ∪ B3 ∪ .... ∪ Bn 
C = C1 ∪ C2 ∪ C3 ∪ .... ∪ Cn 

δ  = δ1 ∪  δ2 ∪ δ3 ∪ ....  ∪ δn and  λ = λ1 ∪  λ2 ∪ λ3 ∪ ....  ∪ λn 
 
Where the union of λi ∪  λj and  δi ∪ δj denote only extension maps as “ ∪ “ has no meaning in the composition of 

maps, where Mi = (Ni, Bi, Ci, δi, δj) for i = 1,2,3,..., n and M  = 1M ∪ 2M ∪ 3M ∪ ..... ∪ nM . Now kM = 

( N, kB , kC , kδ , kλ ) is the K-automaton. 
 
 
 
 

0 

3 2 

1 
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Example 1.17: Let N = N4 (3, 2), B = C = N5 (2, 3) M = (N, B, C, δ, λ) is a K-automaton defined by the following 
tables where δ (n, b)  = n * b (mod 4) and λ (n, b)  = n * b (mod 5). 

 
We obtain the following graph: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus we see this automaton has two Kalangi subautomatons given by the states {0, 2} and {1, 3} as above. 

Definition 1.18: Kalangi sub-automaton. kM
′

= ( 1N , kB , k
C , kδ , kλ ) is called Kalangi sub automaton (K-

sub automaton) if kM  = (N2, kB , kC , kδ , kλ ) denoted by kM
′

 ⊆ kM  if N1 ⊆ N2 and kδ
′

and kλ
′

 

are the restrictions of kδ  and kλ respectively on N1 × kB  and has proper Γ-semi sub near-field space U  ⊆ 

kM
′

such that U  is a new Kalangi automaton (K- automaton). 
 
SECTION 2: Basics on Kalangi automaton homomorphism, epi-morphism or isomorphism  and on semi – 
automaton  Part II some applications of Kalangi non-associative Γ-semi sub   near-field space of a Γ-near-field 
space over near-field. 
 
Here in section 2, we recall the basic notions of Kalangi automaton homomorphism, epi-morphism or isomorphism  
and on semi – automaton and give some interesting illustrations of them.  
 

Definition 2.1: Kalangi automaton homomorphism. Let 1M and 2M  be any two K-automaton where  

1M = ( 1N , 1B , 1C , 1δ , 1λ ) and 2M = (N2, kB , kC , kδ , kλ ). A map φ : 1M → 2M  is a Kalangi 
automaton homomorphism (K-automaton-homomorphism) 
if φ is restricted from 1M =( 1N , B1, C1, δ1, λ1) to 2M =( 2N , B2, C2, δ2, λ2) denoted by φr is an automaton 

homomorphism from 1M  to 2M . φ is called a Kalangi monomorphism ( epi-morphism or isomorphism) if there is an 

isomorphism φr  from 1M  to 2M . 
 

Definition 2.2 The direct product of the automaton. Let 1M and 2M  be two K-automatons of Kalangi non-

associative Γ-semi sub near-field space of a Γ-near-field space over near-field where 1M = ( 1N , 

kB , kC , kδ , kλ ) and 2M = (N2, kB , kC , kδ , kλ ). The Kalangi automaton direct product (K-automaton 

direct product) of 1M and 2M denoted by 1M × 2M  is defied as the product of the automaton 1M =( 1N , B1, 

C1, δ1, λ1) and 2M = ( 2N , B2, C2, δ2, λ2 )  where 1M × 2M  = ( 1N × 2N , B1 × B2 , C1 × C2, δ, λ ) with δ ((n1, n2 ), (b1 
, b2)) = (δ1(n1 , b2), δ2(n2 , b2)), λ ((n1 , n2 ), (b1 , b2)) = (λ1(n1 , b2), λ2(n2 , b2)) ∀ (n1, n2 ) ∈ N1 × N2 and (b1, b2) ∈ B1× B2. 
 

0 

2 3 

1 
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Note 2.3: Here in 1M  × 2M  we do not take the free groupoid to be generated by B1 × B2 but only free groupoid 

generated by 1M × 2M . 
Thus the K-automaton direct product exists wherever a automaton direct product exists. 
We made this in order to make the Kalangi parallel composition and Kalangi series composition of automaton 
extendable in a simple way. 
 
Definition 2.4: Kalangi groupoid. A kalangi groupoid L1 divides a Kalangi groupoid L2 if the corresponding Kalangi 
non-associative Γ-semi sub   near-field space of a Γ-near-field space over near-field M1 and M2 of L1 and L2 
respectively divides, that is , if M1 is a homomorphic image of a Kalangi non-associative Γ-semi sub   near-field space 
of M2. 
 
Note 2.5: In symbols L1 \ L2 the relation divides is denoted by “\”. 
 

Definition 2.6: Equivalent K-automaton. Two K-automaton 1M and 2M are said to be equivalent K-automaton if 

they divide each other. In symbols we denote it as 1M ∼ 2M . 
 

Definition 2.7: Let 1M  and 2M be any two K-automatons where 1M = ( 1N , kB , kC , kδ , kλ ) and     

2M = (N2, kB , kC , kδ , kλ ) with an additional assumption B2 = C1. 
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