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ABSTRACT 
Many distance based indices of a graph have been appeared in the literature. The status of a vertex u in a connected 
graph G is defined as the sum of the distance between u and all other vertices of G. In this paper, we introduce the sum 
connectivity status neighborhood index, product connectivity status neighborhood index, reciprocal product 
connectivity status neighborhood index, general first and second status neighborhood indices of a graph and compute 
their values for some standard graphs, wheel and friendship graphs. 
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1. INTRODUCTION 
 
In this paper, we are concerned with simple graphs. Let G be a connected graph. Let V(G) and E(G) be its vertex and 
edge sets respectively. The edge between the vertices u and v is denoted by uv. The degree of a vertex u is the number 
of vertices adjacent to u and is denoted by dG(u). The distance between two vertices u and v is the length of shortest 
path connecting u and v. The status σ(u) of a vertex u in G is the sum of distances of all other vertices from u  in G. Let 
N(v) = NG(v) = {u:uv∈Ε(G)}. Let ( ) ( )

( )
n

u N v
v uσ σ

∈
= ∑  be the status sum of neighbor vertices. We refer [1] for 

undefined terms and notations from graph theory. 
 
A graph index is a numerical parameter mathematically derived from the graph structure. Graph indices [2] have 
applications in various disciplines of Science and Technology [3, 4]. Some of the graph indices may be found in [5, 6, 
7, 8]. 
 
The first and second status neighborhood indices are introduced by Kulli in [9], and they are defined as 
 ( ) ( ) ( )

( )
1 ,n n

uv E G
SN G u vσ σ

∈

 = + ∑  ( ) ( ) ( )
( )

2 .n n
uv E G

SN G u vσ σ
∈

= ∑
 

 
Recently some new status neighborhood indices were studied in [10, 11]. 
 
We introduce some connectivity status neighborhood indices as follows: 
 
The sum connectivity status neighborhood index of a graph G is defined as 

 ( )
( ) ( )( )

1 .
uv E G n n

SSN G
u vσ σ∈

=
+

∑  
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The product connectivity status neighborhood index of a graph G is defined as 

( )PSN G
( )uv E G∈

= ∑ ( ) ( )
1 .

n nu vσ σ
 

  
The reciprocal product connectivity status neighborhood index of a graph G is defined as 

 ( )RPSN G ( ) ( )
( )

.n n
uv E G

u vσ σ
∈

= ∑  

 
The modified first status neighborhood index of a graph G is defined as 

 ( )
( ) ( )( )

1
1 .m

n nuv E G
SN G

u vσ σ∈
=

+∑  

 
The modified second status neighborhood index of a graph G is defined as 

 ( )
( ) ( )( )

2
1 .m

n nuv E G
SN G

u vσ σ∈
= ∑  

 
We continue these generalizations and introduce the general first and second status neighborhood indices of a graph 
and they are defined as

 

 
( ) ( ) ( )

( )
1 ,aa

n n
uv E G

SN G u vσ σ
∈

 = + ∑  

 ( ) ( ) ( )
( )

2 ,aa
n n

uv E G
SN G u vσ σ

∈

 =  ∑  

where a is a real numbers. 
 
Recently, some variants of status indices were studied, for example, in [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. 
 
In this paper, the sum connectivity status neighborhood index, product connectivity status neighborhood index, 
reciprocal product connectivity status neighborhood index, modified first and second status neighborhood indices, 
general first and second status neighborhood indices of some standard graphs, wheel and friendship graphs are 
determined. 
 
2. RESULTS FOR COMPLETE GRAPHS 
 
Theorem 1: The general first status neighborhood index of a complete graph Kn is 

  ( )
( )

( )2
1

1 2 1 .
2

aa
n

n nSN K n−  = −                                     (1) 

Proof: Let Kn be a complete graph with n vertices and 
( )1

2
n n −

edges. For any vertex u of Kn, σ(u) = n – 1. Clearly 

σn(u) = (n – 1)2 for any vertex u of Kn. Therefore 

 ( ) ( ) ( )
( )

( ) ( )
( )2 2

1
11 1 .

2
n

aaa
n n n

uv E K

n nSN K u u n nσ σ
∈

−  = + = − + −  ∑  

  
( )

( )21 2 1 .
2

an n n−  = −   

From Theorem 1, we establish the following results. 
 
Corollary 1.1: Let Kn be a complete graph with n vertices. Then 

(i) ( ) .
2 2n

nSSN K =  

(ii) ( ) ( )1 .
4 1

m
n

nSN K
n

=
−

 

 
Proof: Put a = –½, –1 in equation (1), we obtain the desired results. 
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Theorem 2: The general second status neighborhood index of a complete graph Kn is 

  ( )
( )

( )4
2

1 1 .
2

aa
n

n nSN K n−
= −                                                  (2) 

Proof: Let Kn be a complete graph with n vertices and 
( )1

2
n n −

edges. For any vertex u of Kn, σn(u) = (n – 1)2. Thus 

 ( ) ( ) ( )
( )

( ) ( )
( )2 2

2
11 1 .

2
n

aaa
n n n

uv E K

n nSN K u u n nσ σ
∈

−  = = − −  ∑  

 
( )

( )41 1 .
2

an n n−
= −  

We obtain the following results by using Theorem 2. 
 
Corollary 2.1: Let Kn be a complete graph with n vertices. Then 

(i) ( ) ( )
.

2 1n
nPSN K

n
=

−
 

(ii) ( ) ( )31 1 .
2nRPSN K n n= −  

(iii) ( )
( )2 3 .

2 1
m

n
nSN K

n
=

−
 

 
Proof: Put a = –½, ½, –1 in equation (2), we get the desired results. 
 
3. RESULTS FOR COMPLETE BIPARTITE GRAPHS 
 
Theorem 3: The general first status neighborhood index of a complete bipartite graph Kp,q is 

  ( ) ( ) ( )2 2
1 , 2 2 2 .

aa
p qSN K pq p q p q pq = + − + +                                   (3) 

 
Proof: Let Kp,q be a complete graph with p+q vertices and pq edges. For vertex set of Kp,q can be partitioned into two 
independent sets V1 and V2 such that u ∈ V1 and v ∈ V2 for every edge uv in Kp,q. Therefore dK(u)=q, dK(v)=p, where 
K=Kp,q. Then σ(u)= q + 2p – 2 and σ(v)= p + 2q – 2. Thus by calculation, we have σn(u)= p(q + 2p – 2) and           
σn(v) = q(p + 2q – 2). Therefore 

 ( ) ( ) ( )
( )

( ) ( )1 , 2 2 2 2 .aaa
p q n n

uv E K
SN K u u pq p q p q p qσ σ

∈

  = + = + − + + −   ∑  

                                   ( ) ( )2 22 2 2 .
a

pq p q p q pq = + − + +   

By using Theorem 3, we establish the following results. 
 
Corollary 3.1: Let Kp,q be a complete bipartite graph. Then 

(i) ( ) ( ) ( )
1

2 2 2
, 2 2 .p qSSN K pq p q p q pq

−
 = + − + +   

(ii) ( ) ( ) ( )1 , 2 2
.

2 2 2
m

p q
pqSN K

p q p q pq
=

+ − + +
 

 
Proof: Put a = –½ , –1 in equation (3), we obtain the desired results. 
 
Theorem 4: The general second status neighborhood index of a complete bipartite graph Kp,q is 

  ( ) ( ) ( )2 2 2 2
2 , 2 6 5 4 .

aa
p qSN K pq pq p q pq p q p q pq = + − + + +                                 (4) 

 
Proof: Let Kp,q be a complete bipartite graph with p+q vertices and pq edges. By calculation, we obtain σn(u) = p(q + 
2p – 2) and σn(v) = q(p + 2q – 2). Thus 
 ( ) ( ) ( )

( )
( ) ( )2 , 2 2 2 2 aa

p q n n
uv E K

SN K u v pq p q p q p qσ σ
∈

 = = + − + − ∑  

 ( ) ( )2 2 2 22 6 5 4 .
a

pq pq p q pq p q p q pq = + − + + +   
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We obtain the following results by using Theorem 4. 
 
Corollary 4.1: Let Kp,q be a complete bipartite graph. Then 

(i) ( ) ( ) ( )
1

2 2 2 2 2
, 2 6 5 4 .p qPSN K pq pq p q pq p q p q pq

−
 = + − + + +   

(ii) ( ) ( ) ( )
1

2 2 2 2 2
, 2 6 5 4 .p qRPSN K pq pq p q pq p q p q pq = + − + + +   

(iii) ( ) ( ) ( )
12 2 2 2

2 , 2 6 5 4 .m
p qSN K pq pq p q pq p q p q pq

−
 = + − + + +   

 
Proof: Put a = –½ , ½ , –1 in equation (4), we obtain the desired results. 
 
4. RESULTS FOR WHEEL GRAPHS 
 
A wheel graph is the join of Cn and K1 and it is denoted by Wn. This graph has n+1 vertices and 2n edges. A graph W4 is 
presented in Figure 1. 
 

 
Figure-1: Wheel graph W4 

 
In a graph Wn, there are two types of edges as follows: 
 ( ) ( ) ( ){ }1 | 3 ,

n nn W WE uv E W d u d v= ∈ = =  |E1| = n. 

 ( ) ( ) ( ){ }2 | 3, ,
n nn W WE uv E W d u d v n= ∈ = =  |E2| = n. 

 
Therefore, in Wn, there are two types of status edges as follows. 
 

( ) ( ) ( ), \ nu v uv E Wσ σ ∈  (2n – 3, 2n – 3) (n, 2n – 3) 
Number of edges n n 

Table-1: Status edge partition of Wn 
 
By calculation, we obtain that there are two types of status neighborhood edges as given in Table 2. 
 

σn(u) ,σn(v) ( )\ nuv E W∈  (5n – 6, 5n – 6) 5n – 6, n(2n – 3) 
Number of vertices n n 

Table-2: Status neighborhood edge partition of Wn 
 
Theorem 5: The general first status neighborhood index of a wheel graph Wn is given by 

 ( ) ( ) ( )2
1 10 12 2 2 6 .

aaa
nSN W n n n n n= − + + −                                                     (5) 

 
Proof: By definition and by using Table 2, we deduce 

 ( ) ( ) ( )
( )

1
n

aa
n n n

uv E W
SN W u vσ σ

∈

 = + ∑  

 ( ) ( )25 6 5 6 5 6 2 3
aan n n n n n n= − + − + − + −  

  ( ) ( )210 12 2 2 6 .
aan n n n n= − + + −  
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From Theorem 5, we establish the following results. 
 
Corollary 5.1: Let Wn be a wheel graph with n+1 vertices and 2n edges. Then 

(i) ( )nSSN W =
10 12

n
n − 22 2 6

n

n n
+

+ −
 

(ii) ( )1 10 12
m

n
nSN W

n
=

− 22 2 6
n

n n
+

+ −
 

 
Proof: Put a = –½, – 1 in equation (5), we obtain the desired results. 
 
Theorem 6: The general second status neighborhood index of a wheel graph Wn is given by 

 ( ) ( ) ( )2 3 2
2 5 6 10 27 18 .

aaa
nSN W n n n n n n= − + − +                                     (6) 

 
Proof: Let Wn be a wheel graph n+1 vertices 2n edges. By definition and by using Table 2, we derive 

 ( ) ( ) ( )
( )

2
n

aa
n n n

uv E W
SN W u vσ σ

∈

 =  ∑  

 ( )( )[ ] ( )( )25 6 5 6 5 6 2 3
aan n n n n n n = − − + − −   

  ( ) ( )2 3 25 6 10 27 18 .
aan n n n n n= − + − +  

 
By using Theorem 6, we obtain the following results. 
 
Corollary 6.1: Let Wn be a wheel graph with n+1 vertices and 2n edges. Then 

(i) ( )
3 2

.
5 6 10 27 18

n
n nPSN W

n n n n
= +

− − +
 

(ii) ( ) ( ) 3 25 6 10 27 18 .nRPSN W n n n n n n= − + − +  

(iii) ( )
( )2 2 3 2 .

10 27 185 6
m

n
n nSN W

n n nn
= +

− +−
 

 
Proof: Put a = –½, ½, – 1 in equation (6), we get the desired results. 
 
5. RESULTS FOR FRIENDSHIP GRAPHS 
 
A friendship graph, denoted by Fn, is the graph obtained by taking n ≥ 2 copies of C3 with vertex in common. A graph 
Fn has 2n+1 vertices and 3n edges. A graph F4 is presented in Figure 2. 
 

 
Figure-2: Friendship graph F4  

 
Let F=Fn. In a graph Fn, we obtain two types of edges as follows: 
 E1 = {uv ∈ E(F) | dF(u) = dF(v) = 2 },  | E1 | = n.  
 E2 = {uv ∈ E(F) | dF(u) = 2, dF(v) = 2n},              | E2 | = 2n. 
 
Therefore in a graph Fn, we find two types of status edges as given in Table 3.  
 

( ) ( ) ( ), \ nu v uv E Fσ σ ∈  (4n – 2, 4n – 2) (2n, 4n – 2) 
Number of edges n 2n 

Table-3: Status edge partition of Fn 
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By calculation, we find that there are two types of status neighborhood edges as given in Table 4.  
 

σn(u) ,σn(v) ( )\ nuv E F∈  (6n – 2, 6n – 2) (6n – 2, 2n(4n – 2)) 
Number of edges n 2n 

Table-4: Status neighborhood edge partition of Fn 
 
Theorem 7: The general first status neighborhood index of a friendship graph Fn is given by 

 ( )1
a

nSN F = ( )12 4 an n − ( )22 8 2 2 .
a

n n n+ + −                                                    (7) 
 
Proof: By definition and by using Table 4, we obtain 

 ( ) ( ) ( )
( )

1
aa

n n n
uv E F

SN F u vσ σ
∈

 = + ∑  

 ( ) ( )26 2 6 2 2 6 2 8 4
aan n n n n n n= − + − + − + −  

  ( )12 4 an n= − ( )22 8 2 2 .
a

n n n+ + −  
 
By using Theorem 7, we obtain the following results. 
 
Corollary 7.1; Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(i) ( )nSSN F =
2 3 1

n
n − 2

2 .
8 2 2

n

n n
+

+ −
 

(ii) ( )1 2 .
12 4 4 1

m
n

n nSN F
n n n

= +
− + −

 

 
Proof: Put a = –½, – 1 in equation (7), we get the desired results. 
 
Theorem 8: The general second status neighborhood index of a friendship graph Fn is 

 ( ) ( ) ( )2 3 2
2 6 2 2 4 12 10 2 .

aaa
nSN F n n n n n n = − + − +                                      (8) 

Proof: From definition and by using Table 4, we deduce 

 ( ) ( ) ( )
( )

2
aa

n n n
uv E F

SN F u vσ σ
∈

 =  ∑  

 ( )( )[ ] ( )( )26 2 6 2 2 6 2 8 4
aan n n n n n n = − − + − −   

  ( ) ( )2 3 26 2 2 4 12 10 2 .
aan n n n n n = − + − +   

 
We obtain the following results from Theorem 8. 
 
Corollary 8.1: Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(i) ( )
3 2

.
6 2 12 10 2

n
n nPSN F

n n n n
= +

− − +
 

(ii) ( ) ( ) 3 26 2 4 12 10 2 .nRPSN F n n n n n n= − + − +  

(iii) ( )
( ) ( )2 2 3 2

.
2 12 10 26 2

m
n

n nSN F
n n nn

= +
− +−

 

 
Proof: Put a = –½, ½, – 1 in equation (8), we obtain the desired results. 
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