International Journal of Mathematical Archive-11(8), 2020, 1-4

 IMAAvailable online through www.ijma.info ISSN 2229-5046
STRUCTURES OF SIMPLE SEMIRINGS

P. SREENIVASULU REDDY*1\& GETASEW KINDIE WUDNEH ${ }^{2}$
1,2Department of Mathematics, Gambella University, Gambella, Gambella Regional State, Ethiopia.

(Received On: 16-06-20; Revised \& Accepted On: 28-07-20)

Abstract

In this paper we determined some characteristics of simple semiring and also proved some results on simple semirings which was introduced by Golan [1].

PRELIMINARIES

A triple ($\mathrm{S},+$, .) is called a semiring if $(\mathrm{S},+$) is a semigroup; ($\mathrm{S},$.) is semigroup; $\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$ and $(\mathrm{b}+\mathrm{c}) \mathrm{a}=\mathrm{ba}+\mathrm{ca}$ for every $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in $\mathrm{S} .(\mathrm{S},+)$ is said to be band if $\mathrm{a}+\mathrm{a}=\mathrm{a}$ for all a in $\mathrm{S} . \mathrm{A}(\mathrm{S},+)$ semigroup is said to be rectangular band if $a+b+a=a$ for all a, b in S. A semigroup (S, .) is said to be a band if $a=a^{2}$ for all a in S. A semigroup ($\mathrm{S},$.) is said to be rectangular band if $a b a=a$.

Definition 1.1: A semigroup (S, .) is said to be left (right) singular if $a b=a(a b=b)$ for $a l l a, b$ in S.
Definition 1.2: A semigroup $(S,+)$ is said to be left (right) singular if $a+b=a(a+b=b)$ for $a l l a, b$ in S.
Definition 1.3: A semiring ($\mathrm{S},+$, .) is said to be zero square semiring if $\mathrm{x}^{2}=0$ for all x in S .
Definition 1.4: An element ' a ' of ' S ' is called E - inverse if there is an element ' x ' of S such that $a x+a x=a x$, i.e $\operatorname{ax} \varepsilon E(S)$, where $E(S)$ is the set of all idempotent elements of S.

Definition 1.5: A semigroup ' S ' is called an E - inverse semigroup if every element of S is an E - inverse.
Definition 1.6: A semigroup $(S,+)$ is said to be left regular if $a b a=a b$.
Definition 1.7: A viterbi semiring is a semiring in which S is additively idempotent and multiplicatively subidempotent. i.e., $a+a=a$ and $a+a^{2}=a$ for all a in S.

Definition 1.8: A semiring $(S,+)$ is said to be Additively Idempotent Semiring if $a+a=a$ for all a in S.
Definition 1.9: [3] A semiring S is called simple if $a+1=1+a=1$ for any $a \in S$.
Theorem 1.10: Let $(S,+, \cdot)$ be a simple semiring then following are true.
(i) $\mathrm{ab}+\mathrm{a}=\mathrm{a}=\mathrm{a}+\mathrm{ab}$ (ii) $\mathrm{ab}+\mathrm{a}+\mathrm{ab}=\mathrm{a}$ (iii) $\mathrm{a}+\mathrm{ab}+\mathrm{a}=\mathrm{a}$ (iv) $\mathrm{a}^{2}+\mathrm{a}=\mathrm{a}=\mathrm{a}+\mathrm{a}^{2}$

Proof: Since $(S,+, \cdot)$ be a simple semiring $b+1=1$ for every b in $(S,+, \cdot) \Rightarrow a \cdot(b+1)=a .1 \Rightarrow a b+a=a$.
Similarly, $\mathrm{a}+\mathrm{ab}=\mathrm{a}$.
ii) $a b+a=a \Rightarrow a b+a .1=a \Rightarrow a b+a(1+b)=a \Rightarrow a b+a+a b=a$
iii) $\mathrm{a}+\mathrm{ab}+\mathrm{a}=\mathrm{a}(1+\mathrm{b})+\mathrm{a}=\mathrm{a} .1+\mathrm{a}=\mathrm{a}+\mathrm{a}=\mathrm{a}(1+1)=\mathrm{a} .1=\mathrm{a} \Rightarrow \mathrm{a}+\mathrm{ab}+\mathrm{a}=\mathrm{a}$
iv) $\mathrm{a}=\mathrm{a} \Rightarrow \mathrm{a} \cdot 1=\mathrm{a} \Rightarrow \mathrm{a}(\mathrm{a}+1)=\mathrm{a} \Rightarrow \mathrm{a}^{2}+\mathrm{a}=\mathrm{a}$.

Similarly, $\mathrm{a}+\mathrm{a}^{2}=\mathrm{a}$. therefore, $\mathrm{a}^{2}+\mathrm{a}=\mathrm{a}=\mathrm{a}+\mathrm{a}^{2}$

Corresponding Author: P. Sreenivasulu Reddy*1,
 ${ }^{1}$ Department of Mathematics,
 Gambella University, Gambella, Gambella Regional State, Ethiopia.

Theorem 1.11: Let $(S,+, \cdot)$ be a simple semiring then $(S,+)$ is a band.
Proof: Since $(S,+, \cdot)$ be a simple semiring $b+1=1$ for every b in $(S,+, \cdot) \Rightarrow a .(b+1)=a .1 \Rightarrow a b+a=a$, for all a in S $\Rightarrow \mathrm{a} .1+\mathrm{a}=\mathrm{a}($ taking $\mathrm{b}=1) \Rightarrow \mathrm{a}+\mathrm{a}=\mathrm{a} \therefore .(\mathrm{S},+)$ is a b and.

Theorem 1.12: Let $(S,+, \cdot)$ be a simple semiring then $(S,+, \cdot)$ is viterbi semiring.
Proof: From the theorem 1.10, S satisfies $a^{2}+a=a=a+a^{2}$.
From the theorem 2, $(\mathrm{S},+)$ is a band.
Therefore, S is viterbi semiring.
Theorem 1.13: Let S be a simple semiring. If ($S,+$) is a cancellative then (i) ($S, \cdot \cdot$) is a band. (ii) ($S, \cdot \cdot$) is a rectangular band.

Proof: Since From the theorem 1.10, $a^{2}+a=a \Rightarrow a^{2}+a=a+a \Rightarrow a^{2}=a((S,+)$ is cancellative $) \Rightarrow(S, \cdot)$ is a band.
Since from the theorem $1, a+a b=a \Rightarrow(a+a b) a=a . a \Rightarrow a^{2}+a b a=a^{2} \Rightarrow a+a b a=a \Rightarrow a+a b a=a+a \Rightarrow a b a=a$. $((\mathrm{S},+)$ is cancellative $) \Rightarrow(\mathrm{S}, \cdot)$ is a rectangular band.

Theorem 1.14: If S is a simple semiring and (S, .) is a left singular then $(S,+)$ is a band.
Proof: From the theorem 1.10, $a+a b=a$. Since $(S,$.$) is left singular implies a b=a \Rightarrow a+a=a \Rightarrow(S,+)$ is $a b$ and

Example 1.15:

+	a	2 a				
a	a	a				
2 a	a	2 a	\quad	.	a	2 a
:---:	:---:	:---:				
a	a	a				
2 a	2 a	2 a				

Theorem 1.16: If S is a simple semiring and $(S,+)$ is a right singular semigroup, then $(S,+)$ is a rectangular band.
Proof: From the theorem 1.10, $a+a b=a$, for all a, bin $S \Rightarrow a+a b+b=a+b \Rightarrow a+a b+b=b(\because(S,+)$ is a rightsingular $) \Rightarrow a+a b+b+a=b+a \Rightarrow a+a b+b+a=a(\because(S,+)$ is a right singular) $\Rightarrow a+b+a=a$. Hence $(S,+)$ is a rectangular band.

Theorem 1.17: If S is a zero square and simple semiring where 0 is the additive identity in S then $a b a=0$ and $b a b=0$ for all a, b in S .

Proof: $\quad \mathbf{a}+\mathrm{ab}=\mathrm{a}$ for all a, b in S , from theorem1.10, $\Rightarrow \mathrm{a}^{2}+\mathrm{aba}=\mathrm{a}^{2} \Rightarrow 0+\mathrm{aba}=0(\because \mathrm{~S}$ is a zero square semiring, $\left.a^{2}=0\right) \Rightarrow a b a=0$

Also, $b+b a=b$ for all b, a in $S \Rightarrow b^{2}+b a b=b^{2} \Rightarrow 0+b a b=0\left(\because S\right.$ is a zero square semiring, $\left.b^{2}=0\right) \Rightarrow b a b=0$. Hence, aba $=0$ and bab $=0$.

Theorem 1.18: Let S be a simple Semiring.
(i) If ($\mathrm{S},$.) is left regular semigroup and $(\mathrm{S},$.$) is commutative then \mathrm{S}$ is an E - inversesemigroup.
(ii) If (S , .) is band, then S is an E - inversesemigroup.

Proof:

(i) From theorem1.10, $a+a b=a$ for all a, b in S
$\Rightarrow(a+a b) b=a b \Rightarrow a b+a b^{2}=a b \Rightarrow a b a+a b^{2} a=a b a \Rightarrow a b+a . b b . a=a b(\because S$ is leftregular $) \Rightarrow a b+(b a b) a=a b((S,)$. is commutative) $\Rightarrow a b+b a a=a b \Rightarrow a b+a b a=a b$
$\Rightarrow a b+a b=a b(\because S$ is leftregular $) \Rightarrow S$ is an $E-$ inverse semigroup.
ii) From theorem 1.10, $a+a b=a$ for all a, b in S
$\Rightarrow(a+a b) b=a b \Rightarrow a b+a b^{2}=a b \Rightarrow a b+a b=a b \quad((S,$.$) is band)$
$\Rightarrow \mathrm{S}$ is an E - inverse semigroup.

Theorem 1.19: If S is a Simple Semiring with additive identity 0 then $a b=o$ for $a l l a$, b in S when ($S,+$) is cancellative.

Proof: From theorem 1.10, $a+a b=a$ for all a, b in S
$\Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{a} \Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{a}+0 \Rightarrow \mathrm{ab}=0 \quad(\because(\mathrm{~S},+)$ is cancellative $)$
Theorem 1.20: If a, b, c and d are elements of a simple semiring S satisfying $a+c=b$ and $b+d=a$ and $(S,+)$ is commutative, then $\mathrm{a}=\mathrm{b}$.

Proof: If S is a Simple Semiring, i.e, $a=a+a N o w, ~ a=a+b+d(\because a=b+d)=a+a+c+d(\because b=a+c)=a+c+d$ $(\because a=a+a)$

$$
\begin{array}{ll}
=\mathrm{b}+\mathrm{d}+\mathrm{c}+\mathrm{d} & (\because \mathrm{a}=\mathrm{b}+\mathrm{d})=\mathrm{b}+\mathrm{d}+\mathrm{d}+\mathrm{c}(\because(\mathrm{~S},+) \text { is Commutative }) \\
=\mathrm{b}+\mathrm{d}+\mathrm{c} & (\because \mathrm{~d}=\mathrm{d}+\mathrm{d})=\mathrm{a}+\mathrm{c}=\mathrm{b} \quad(\because \mathrm{~b}=\mathrm{a}+\mathrm{c})
\end{array}
$$

Theorem 1.21: If S is a Simple Semiring then $a^{n}+1=1$ for every a in S.
Proof: Let S be a simple semiring then we have $\mathrm{a}+1=1$ for every a in S . If $\mathrm{n}=1$ then proof is obvious.
If $\mathrm{n}=2$ then $\mathrm{a}^{2}+1=\mathrm{aa}+1=\mathrm{aa}+\mathrm{a}+1=\mathrm{a}(\mathrm{a}+1)+1=\mathrm{a} \cdot 1+1=\mathrm{a}+1=1$.
If $\mathrm{n}=2$ then the statement is true.
Assume that the statement is true for $\mathrm{n}=\mathrm{k}$ the $\mathrm{a}^{\mathrm{k}}+1=1$.
We have to prove that the statement is true for $\mathrm{n}=\mathrm{k}+1$.
Consider $\mathrm{a}^{\mathrm{K}+1}+1=\mathrm{a}^{\mathrm{K}} \mathrm{a}+1=\mathrm{a}^{\mathrm{k}} \mathrm{a}+\mathrm{a}+1=\mathrm{a}\left(\mathrm{a}^{\mathrm{k}}+1\right)+1=\mathrm{a} \cdot 1+1=\mathrm{a}+1=1$.
Hence the result is true for $\mathrm{n}=\mathrm{k}+1$.
Therefore, If S is a Simple Semiring then $\mathrm{a}^{\mathrm{n}}+1=1$ for every a in S .
Theorem 1.22: If S is a Simple Semiring then $\mathrm{ab}+1=1$ for every a, b in S .
Proof: If S is a Simple Semiring then $\mathrm{a}+1=1$ and $\mathrm{b}+1=1$ for every a, b in S .
$a b+1=a b+a+1=a(b+1)+1=a .1+1=a+1=1$.
Hence, $\mathrm{ab}+1=1$.
Theorem 1.23: If S is a Simple Semiring then $a_{1} a_{2} a_{3} a_{4} \ldots . . a_{n}+1=1$ for every a_{i} in S.
Theorem 1.24: Let S be a simple semiring and $(S,+)$ be commutative. Then ($\mathrm{S},$.) is commutative if $(\mathrm{S},+$) is not a rectangularband.

Proof: Suppose $(\mathrm{S},+$) is a rectangular band
Consider $a b+a=a$, for all a, b in $S \Rightarrow a b+a+a b=a+a b \Rightarrow a(b+1+b)=a b+a$ (Since $(S,+)$ is commutative) $\Rightarrow \mathrm{ab}=\mathrm{ab}+\mathrm{a}$ (Since $(\mathrm{S},+$) is a rectangularband) $\Rightarrow \mathrm{ab}=\mathrm{a}$

Now $\mathrm{ab}+\mathrm{a}=\mathrm{a}($ Put $\mathrm{a}=1)$ then $\Rightarrow 1 \mathrm{~b}+1=1 \Rightarrow \mathrm{~b}+1=1$, for all b in S
Also $b a+b=b$, for $a l l a, b$ in $S \Rightarrow b a+b+b a=b+b a \Rightarrow b(a+1+a)=b a+b$ (Since $(S,+)$ is commutative) $\Rightarrow \mathrm{ba}=\mathrm{ba}+\mathrm{b}($ Since $(\mathrm{S},+)$ is a rectangularband $) \Rightarrow \mathrm{ba}=\mathrm{b} \Rightarrow \mathrm{ab} \neq \mathrm{ba}$, which proves the result. Also $\mathrm{ab}=\mathrm{a}$ $\Rightarrow a b+b=a+b \Rightarrow(a+1) b=a+b \Rightarrow 1 . b=a+b \quad($ from $b+1=1) \Rightarrow b=a+b=b+a$

This is evident from the following example

Example 1.25:

+	1	A	b
1	1	1	1
A	1	A	b
B	1	B	b

y	1	a	b
1	1	a	b
a	a	a	a
b	b	a	b

Theorem 1.26: Let S be a simple semiring. Let $(S,+)$ be commutative and $(S,$.$) is rectangular band then a b=a$ and ba $=\mathrm{b}$

Proof: Consider $\mathrm{ab}+\mathrm{a}=\mathrm{a}$ for all a, b in S and $\mathrm{ba}+\mathrm{b}=\mathrm{b}$ for all b , a inS
$\Rightarrow a b=a(b a+b) \Rightarrow a b=a b a+a b \Rightarrow a b=a+a b \quad$ (Since (S, .) is a rectangularband)
$\Rightarrow \mathrm{ab}=\mathrm{ab}+\mathrm{a} \quad($ Since $(\mathrm{S},+$) is commutative) $\Rightarrow \mathrm{ab}=\mathrm{a}$
Also $b a=b(a b+a) \Rightarrow b a=b a b+b a \Rightarrow b a=b+b a($ Since $(S,$.$) is a rectangular band) \Rightarrow b a=b a+b \quad($ Since $\quad(S,+) \quad$ is commutative) $\Rightarrow \mathrm{ba}=\mathrm{b}$. Therefore, $\mathrm{ab}=\mathrm{a}$ andba $=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in S .

Theorem 1.27: Let S be a simple semiring and (S, \cdot) be a left singular, then ($\mathrm{S},+$) is a right singularsemigroup.
Proof: By hypothesis $a b=a$, for all a, b in $S(\because(S, \cdot)$ is left singular $) \Rightarrow a b+b=a+b \Rightarrow(a+1) b=a+b \Rightarrow 1 . b=a+b$ $(\because S$ is simple semiring $) \Rightarrow b=a+b$ Also $b a=b \Rightarrow b a+a=b+a \Rightarrow(b+1) a=b+a \Rightarrow 1 . a=b+a$
$(\because S$ is simple semiring $) \Rightarrow a=b+a \Rightarrow$
$a+b=b$ and $b+a=a$, for all a, b in S. Hence $(S,+)$ is a right singular semigroup.
Theorem 1.28: Let S be a simple semiring. If $(S,+)$ is a right singular semigroup, then $(S,+)$ is a rectangular band.
Proof: By hypothesis $\mathrm{a}+\mathrm{b}=\mathrm{b}$, for all a , b in $\mathrm{S}(\because(\mathrm{S},+)$ is rightsingular $) \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{a}=\mathrm{b}+\mathrm{a} \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{a}=\mathrm{a}$, for all a , b in S , which proves the theorem. $(\because(\mathrm{S},+)$ is a right singular semigroup) i.e., $(\mathrm{S},+)$ is a rectangular band.

Theorem 1.29: Let S be a totally ordered simple semiring. If ($\mathrm{S},+$) is p.t.o (n.t.o.) and ($\mathrm{S}, \cdot \cdot$) is commutative, then ($\mathrm{S}, \cdot \mathrm{r}$) is n.t.o.(p.t.o.).

Proof: Since S istotally ordered simple semiring $a b+a=a$, for all a, b in $S \Rightarrow a=a b+a \geq a b(\because(S,+)$ is p.t.o. $) \Rightarrow a \geq a b$

Suppose $\mathrm{ab}>\mathrm{b} \Rightarrow \mathrm{ab}+\mathrm{a} \geq \mathrm{b}+\mathrm{a} \Rightarrow \mathrm{a} \geq \mathrm{b}+\mathrm{a}(\because \mathrm{ab}+\mathrm{a}=\mathrm{a}) \Rightarrow \mathrm{b}+\mathrm{a} \leq \mathrm{a}$

Which contradicts the hypothesis that ($\mathrm{S},+$) is p.t. $\mathrm{o} . \Rightarrow \mathrm{ab} \leq \mathrm{b}$
$\therefore \mathrm{ab} \leq \mathrm{a} \& \mathrm{ab} \leq \mathrm{b}$ Hence (S, \cdot) is n.t.o.
Similarly we can prove that (S, \cdot) is p.t.o if $(\mathrm{S},+$) is n.t.o.
Theorem 1.30: If S be a simple semiring then ($\mathrm{S},+$) is weakly seperative semigroup.
Proof: If S be a simple semiring then $(S,+)$ is a band.
Consider $\mathrm{a}+\mathrm{a}=\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{b} \Rightarrow \mathrm{a}=\mathrm{a}+\mathrm{b}=\mathrm{b} \Rightarrow \mathrm{a}=\mathrm{b} \Rightarrow(\mathrm{S},+)$ is weakly seperative semigroup.

REFERENCES

1. Golan, J.S. "The theory of semirings with applications in mathematics and theoretical computer science", Pitman monographs and surveys in pure and applied mathematics, II. Series.(1992).
2. Jonathan S.Golan, "Semirings and their Applications".
3. Jonathan S.Golan, "Semirings and Affine Equations over Them: Theory and Applications". Kluwer Academic.
4. P. Sreenivasulu Reddy and Guesh Yftertela "Simple semirings", International journal of Engineering Inventions, Vol.2, Issue 7, 2013, PP: 16-19.
5. P. Sreenivasulu Reddy and Abduselam Mahamed Derdar "Some studies on simple semirings" International Journal of Engineering Research \& Technology, ISSN: 2278-0181, Vol. 6 Issue 03, March-2017.

Source of support: Nil, Conflict of interest: None Declared.
[Copy right © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

