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ABSTRACT 
In this paper author solely introduces the concept of fuzzy complex near-field spaces, fuzzy near matrix near-field, 
fuzzy polynomial near-field space, special fuzzy near-field space and fuzzy non-associative complex near-field spaces 
of Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field and studies them. 
 
All these concepts are far from the conventional way of defining the same. Hence we in this section define these five 
types of fuzzy near-field spaces and study some of its interesting properties. 
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SECTION 1: Some special classes of Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-
field. 
 
Definition 1.1: Let Q n x n denote the set of all n x n matrices with entries from [0, 1] i.e., Q n x n  = { [aij : a ij∈ [0, 1] } 
for any two matrices A, B ∈ Q n x n  define ⊕ as follows: 
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Clearly, (Q n x n , ⊕ )  is an abelian group and 

0 0 ... 0
0 0 ... 0

0
... ... ... ...
0 0 ... 0

 
 
 =
 
 
 

 

is zero matrix which acts as the additive identity with respect to ⊕. 
 
Define ⊗ on Q n x n  as follows. For A, B ∈ Q n x n  
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where aij .bij = aij for all aij∈ A and bij∈ B. Clearly, (Q n x n , ⊗ ) is a nagendram gamma semi sub near-field space. Thus  
(A ⊕ B) ⊗ C = A ⊗ C ⊕ B ⊗ C. Hence (Q n x n , ⊕, ⊗ ) is a nagendram gamma near-field space. Which we call as the 
fuzzy matrix nagendram gamma near-field space. 
 
Definition 1.2: In (Q n x n , ⊕, ⊗) be a fuzzy matrix nagendram gamma near-field space we say a fuzzy matrix 
nagendram gamma sub near-field space I of Q n x n  is a fuzzy left ideal of Q n x n  if  
a. (I , +) is a normal subgroup of Q n x n  
b. n(n| + i ) + nrn|∈ I for each i∈ I and nr, n, n|∈ N where nr denotes the unique right inverse of n. 
 
Note 1.3: All properties enjoyed by near-field spaces can be defined and will be true with appropriate modifications. 
 
Now we proceed on to define the concept of fuzzy complex nagendram gamma near-field spaces. 
 
Definition 1.4: Let U = {a +i b: a, b ∈ [0, 1]} define on U the operation called addition denoted by ⊕ s follows: 
For  a + i b, al + ibl∈ U,  a + i b ⊕ al + ibl  = a + al + i (b + bl) where a ⊕ al = a + al   if a + al< l and a + al = a + al – 1  if 
a + al ≥ 1 where “+” is the usual addition of numbers. Clearly, (U, ⊕) is a field.  
 
Define  ⊗ on U by (a + i b) ⊗ (al + ibl) = a + i b for all ∈are fuzzy complex nagendram gamma sub near-field spaces of 
(U, ⊕, ⊗) a + i b, al + ibl∈ U. (U, ⊗ ) is a nagendram gamma semi sub near-field space. It is easily verified. (U, ⊕, ⊗) 
is a nagendram gamma near-field space, which we call as the fuzzy complex nagendram gamma near-field space. 
 
Note 1.5: Q = {a: a ∈ [0, 1]} and C = {ib: b ∈ [0, 1]} are fuzzy complex nagendram gamma sub near-field spaces of 
(U, ⊕, ⊗ ). 
 
Definition 1.6: Let V = {a + ib: a, b ∈ [0, 1]} called the set of fuzzy complex numbers} Define on V two binary 
operations ⊕ and  ⊗ as follows: 
(V, ⊕) is a commutative loop where a + ib, c + id∈ V define a + ib⊕ c + id  = a  ∼ c + i (b ∼  d) where ∼ is the 
difference between a and b. Clearly (V, ⊕) is a commutative loop. 
 
Define ⊗ on V by a + ib ⊗ c + id  = a + i b  for all a + ib, c + id∈ V. (V, ⊕, ⊗) is called the fuzzy complex non-
associative nagendram gamma near-field space. ([0, 1], ⊕, ⊗) ⊆ (V, ⊕, ⊗ ) is a fuzzy non-associative nagendram 
gamma sub near-field space. 
 
Definition 1.7: Let N be the set of real number. The fuzzy polynomial nagendram gamma sub near-field space       
N[x[0, 1]] consist of elements of the form p0 + p1 xr1 + p2 xr2 + ……+ pnxrn where p0, p1, p2, …….,pn∈ N and                  
γ1, γ2,……γn∈ [ 0, 1] with γ1<γ2<…… <γn 

Two elements p(x) = q(x) ⇔ pi = qi. and γ1 = si where p(x) = p0 + p1 xr1 + p2 xr2 + ……+ pnxrn and q(x)  = q0 + q1 xs1  
+ q2 xs2 + ……+ qnxsn. Addition is performed as in the case of usual polynomials. 
Define ⊗ on N [x[0, 1]] by p(x) ⊗ q(x) = p(x) for p(x), q(x) ∈ N [x[0, 1]]. Clearly {N[x[0, 1], +, ⊗} is called the fuzzy right 
polynomial nagendram gamma near-field space. x0 = 1 by definition. 
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Definition 1.8: Let {N [x[0, 1], +, ⊗}be a fuzzy polynomial  nagendram gamma near-field space. for any polynomial 
p(x) ∈ N [x[0, 1]] define the derivative of p(x) as follows. 
 
If p(x) = p0 + p1 xs1 + p2 xs2 + …+ pnxsn and on differentiation p(x) w.r.t. x we get  
d[p(x)]/dx = 0 + p1 xs1-1 + p2 xs2-1 + ……+ pnxsn-1 = (s1p1 )xs1-1 +……..+ (snpn ) xs1-1. Where “∼” denotes the difference 
between si and 1. Clearly, if p(x) ∈N [x[0, 1]] then d[p(x)]/dx ∈N [x[0, 1]]. Likewise successive derivatives are also 
defined i.e., product of si pi∈ N as si∈  0, 1] and pi∈ N i.e., the usual multiplication of the real numbers. 
 
Example 1.9: Let N be the set of real numbers N [ x[0, 1] ] be a polynomial nagendram gamma near-field space.  
p(x) = 5 – 6 x1/5 + 2 x3/8– 15 x7/9 then on differentiation p(x) w.r.t. x we get,  
      d[p(x)]/dx = 0 – 1/5 6.x4/5 + 2 x3 /8 x5/8 – 15 x 7/9 x2/9  = - 6/5 x4/5 + ¾ x5/8 – 35/3 x2/9 

 
The observation to be made is that no polynomial other than the polynomial x vanishes after differentiation. 
 
Definition 1.10: Let p(x) ∈ {N [x[0,1]} the fuzzy degree of polynomial nagendram gamma near-field space p(x) is sn 
where p(x) = p0 + p1 xs1 + p2 xs2 + ……+ pnxsn, s1< s2< … <sn (pn ≠ 0) deg p(x) = sn. The maximal degree of any 
polynomial p(x) can take is 1. Now it is important to note that as in the case polynomial fields we cannot say                             
deg [p(x).q(x)] = deg p(x) + deg q(x). 
 
But we have always in fuzzy polynomial nagendram gamma near-field space is a fuzzy degree we shall denote then by 
f (deg (p(x)). 
 
Definition 1.11: Let p(x) ∈ [N[x[0,1]] - p(x) is said to have a root α if p(α) = 0. 
 
Example 1.12: Let p(x) = √2 –x1/2  be a polynomial in N [x[0, 1] ]. The root of p(x) is 2 for p(2) = √2 – 21/2 = 0. 
 
In case of root of polynomial nagendram gamma near-field space of degree n has n only n roots which is the 
fundamental theorem of algebra. We in case of fuzzy polynomial nagendram gamma near-field spaces cannot say the 
number of roots in a nice mathematical terminology that is itself fuzzy. 
 
A study of these fuzzy polynomial nagendram gamma near-field spaces over a nearfield N is left open for any 
interested upcoming researchers and scholars. We proceed on to define fuzzy polynomial nagendram gamma near-field 
spaces when the number of variables is more than one x and y. 
 
Definition 1.13: Let N be the set of real numbers x, y be two variables we first assume xy = yx. Define the fuzzy 
polynomial nagendram gamma near-field space. 
 
N [x[0, 1] , y[0, 1]] by = {∑ rixpi yqi : ri∈ Ni ; pi∈ [0, 1], qi∈ [0, 1]}  
 
Define “+” as in the case of polynomial and “.” By p(xy). q(x.y) = p(x, y). Clearly, N [x[0, 1], y[0, 1]] is called as fuzzy 
polynomial nagendram gamma right near-field space. 
 
Definition 1.14: Let {N [x[0, 1], y[0, 1]] ⊕ “.”} be a fuzzy polynomial nagendram gamma right near-field space in the 
variable x and y. 
 
Definition 1.15: homogeneous of fuzzy polynomial nagendram gamma right near-field space degree. A fuzzy 
polynomial nagendram gamma near-field space p(x, y) is said to be homogeneous of fuzzy polynomial nagendram 
gamma right near-field space degree t, t ∈ [0, 1] if p(x, y) = anxs1 yt1 + ……. + bnxspytp then ti ≠ 0, si ≠ 0 for all               
I = 1, 2, 3,….,p and si + ti = t for I = 1, 2, 3,…..,p. 
 
Definition 1.16: symmetric fuzzy polynomial nagendram gamma near-field space. Let N {x[0, 1], y[0, 1] , ⊕, ⊗}  be 
the fuzzy nagendram gamma near-field space is a homogeneous polynomial nagendram gamma near-field space of 
fuzzy degree t, t ∈ [0, 1] such that p(x, y) = p1xt1 ys1 + ……. + pnxtmysn where t1< t2< …. < tnsn< sn-1< … < s1 with           
t1 = sn, t2 = sn-1, …., tn = s1 further p1 = pn, p2 = pn-1, so on. 
 
Example 1.17: p(x, y) = 3 x1/2 y1/2 + 3 x2/3 y1/2 .p(x, y) = xryr r∈ [0, 1].  
                         p(x, y) = xr + yr + xs.yt where s + t = 1 and s, t , r ∈ [0, 1]. 
 
Definition 1.18: fuzzy polynomial nagendram gamma near-field space in n-variables. As we have other 
polynomials we can extend the fuzzy polynomial nagendram gamma near-field spaces to any number of variables say 
X1, X2, …., Xn under the assumption XiXj = XjXi and denote it by N [X1

[0, 1], X2
[0, 1], ….., Xn

[0, 1]] is called the fuzzy 
polynomial nagendram gamma near-field space in n-variables. 
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SECTION 2: FUZZY NON-ASSOCIATIVE POLYNOMIAL NAGENDRAM GAMMA NEAR-FIELD SPACE 
AND SPECIAL CLASS OF FUZZY NAGENDRAM GAMMA RIGHTNEAR-FIELD SPACE. 
 
We have introduced the concept of complex near-field space, nagendram gamma sub near-field space, nagendram 
gamma semi sub near-field space, nagendram gamma near-field space and now we just define yet new notion called 
fuzzy non-associative nagendram gamma near-field space. 
 
Definition 2.1: fuzzy non-associative polynomial nagendram gamma near-field space. Let {V, ⊕, ⊗} be the fuzzy 
non-associative complex nagendram gamma near-field space. Let x be an indeterminate. We define the fuzzy non-
associative polynomial nagendram gamma near-field spaceas follows 
 
V [x] = {∑ pi xi: pi∈ V} we say p(x), q(x) ∈ V [x] are equal if and only if every coefficient of same power of x is equal 
i.e., if p(x) = p0 + p1x +…..+pnxn and q(x) = q0 + q1x +…..+qnxn. p(x) = q(x) if and only if pi = qi for i = 1, 2, 3,….,n. 
Addition is performed as follows p(x) ⊕ q(x) = p0⊕ q0  + …… + (pn⊕qn)xn where ⊕ is the operation on V. For p(x), 
q(x) in V [x] define p(x) ⊗ q(x) = p(x). Clearly, {v [x], ⊕, ⊗} is a fuzzy non-associative complex polynomial 
nagendram gamma near-field space. 
 
Let us take Z 0 = Z+ ∪ {0}. Let p : Z0→ V be defined by p(0) = 0, p(x) = 1/x for 0 ≠ x ∈ Z. 
 
Clearly, p(z) is a fuzzy non-associative polynomial nagendram gamma sub near-field space of V. thus p is a fuzzy non-
associative polynomial nagendram gamma sub near-field space. Let N = Z0 x Z0. Define a map p0 : N→ V [x] by  
p(0, 0) = 0.  
p(x, y) = 1/x + 1/y where x ≠ 0, y ≠ 0.  
p(x, 0) = 1/x. 
p(0, y) = 1/y. 
Then the map p is a fuzzy non-associative complex nagendram gamma sub near-field space of N. 
 
Definition 2.2: special fuzzy nagendram gamma right near-field space. 
Let Q = [0, 1] the interval from 0 to 1. Define ⊕  and ⊗ on Q s follows. For a, b ∈ Q define a ⊕ b = a + b if a + b < 1,  
a ⊕ b = 0  if a + b = 1 and a ⊕ b = a + b – 1 if a + b > 1. Thus  ⊕  acts as modulo 1. Define ⊗ on a, b ∈ Q  = [0, 1] by    
a ⊗ b = a; clearly, (a ⊕ b) ⊗ c = a ⊗ c ⊕ b ⊗ c = a ⊕ b. clearly, (Q, ⊕) is a nagendram gamma sub near-field space of 
N and (Q, ⊗) is a nagendram gamma semi sub near-field space of N. Hence (Q, ⊕, ⊗) is a nagendram gamma right 
near-field space of N. 
 
We recall {Q, ⊕, ⊗} the special fuzzy nagendram gamma right near-field space of N. 
 
Definition 2.3: fuzzy nagendram gamma right near-field space zero symmetric and constant part over 
nagendram gamma near-field space.Let {Q, ⊕, ⊗} be a fuzzy nagendram gamma near-field space. Q0 = {q ∈ Q: q.0 
= 0} is called the fuzzy nagendram gamma near-field space zero symmetric part and Qc = {n ∈ Q: n.0 = n} is called the 
fuzzy nagendram gamma near-field space constant part over  nagendram gamma near-field space. 
 
Definition 2.4: fuzzynagendram gamma right near-field space invariant and fuzzynagendram gamma right 
near-field space right invariant.  A fuzzy nagendram gamma sub near-field space N of Q is called fuzzy nagendram 
gamma near-field space invariant if NQ ⊆ N and QN ⊆ N we call fuzzy nagendram gamma sub near-field space N of Q 
to be a fuzzy nagendram gamma near-field space right invariant if NP ⊂ N. 
 
Note 2.5: Every fuzzy nagendram gamma sub near-field space N of Q is fuzzy nagendram gamma near-field space 
right invariant. 
 
Definition 2.6: The set Q = {0, 1} with two binary operations ⊕ and ⊗ is called fuzzy  nagendram gamma right semi 
near-field space if {Q, ⊕} and {Q, ⊗} are fuzzy  nagendram gamma semi near-field space. 
 
Example 2.7: We being all results can be easily extended in case of fuzzy nagendram gamma semi near-field space. 
Further, let {Q, ⊕, ⊗} be the fuzzy nagendram gamma semi near-field space.  
define ⊕ as  
p ⊕ q = 0  if p + q < 1  
p ⊕ q = 1  if p + q ≥  1. Then (Q, ⊕) is a nagendram gamma semi near-field space.  
Define ⊗ as  
p ⊗ q = p for all p, q ∈ Q. Clearly, {Q, ⊕, ⊗} is a special fuzzy nagendram gamma semi near-field space. 
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SECTION 3: MAIN RESULTS ON SPECIAL CLASSES OF FUZZY NON-ASSOCIATIVE POLYNOMIAL 
NAGENDRAM GAMMA NEAR-FIELD SPACE AND SPECIAL CLASS OF FUZZY NAGENDRAM 
GAMMA RIGHT NEAR-FIELD SPACE. 
 
In this third section, we study and deduce some main results related on special classes of Fuzzy non-associative 
polynomial nagendram gamma near-field space and special class of fuzzy nagendram gamma right near-field space. 
 
Theorem 3.1: The fuzzy matrix nagendram gamma near-field space is a commutative polynomial nagendram gamma 
near-field space. 
 
Proof: with the help of basic definitions one can prove straightforward. 
 
Theorem 3.2: The fuzzy matrix nagendram gamma near-field space is not an abelian nagendram gamma near-field 
space. 
 
Proof: for M, N ∈ Q n x n we have M ⊗ N ≠ N ⊗ M in general. Hence The fuzzy matrix nagendram gamma near-field 
space is not an abelian nagendram gamma near-field space. This completes the proof of the theorem. 
 
Note 3.3: In {Q n x n, ⊕, ⊗} we have J n x n ≠ M where J n x n  is the fuzzy matrix nagendram gamma near-field space with 
diagonal elements 1 and rest 0. 
 
Note 3.4: W = {a + ib: a, b ∈ [0, 1]} has non-trivial idempotent. 
 
Note 3.5: The special fuzzy right nagendram gamma right near-field space {Q, ⊕, ⊗} has no fuzzy invertible elements. 
 
Example 3.6: Let S = {r/p, 0: 1 < r < p} is a fuzzy nagendram gamma sub near-field space or to be more specific          
S = {0, ¼, ½, ¾}; S is a fuzzy nagendram gamma sub near-field space. 
 
Theorem 3.7: Let {W, ⊕, ⊗} be a fuzzy complex nagendram gamma near-field space. Every non-trivial fuzzy 
nagendram gamma sub near-field space of N is a fuzzy right ideal of W. 
 
Proof: It is obvious by the fact that if N is a fuzzy nagendram gamma sub near-field space of W then NW ⊆ N. 
It is open question. Does W have non-trivial fuzzy left, right ideals and ideals. The reason that we are to develop new 
and analogous notions and definitions about the concepts of special classes of Fuzzy non-associative polynomial 
nagendram gamma near-field space and special class of fuzzy nagendram gamma right near-field space. 
 
Now a natural question would can we have the concept of fuzzy non-associative complex nagendram gamma near-field 
space; to this end we define a fuzzy non-associative complex nagendram gamma near-field space. 
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