BEST SIMULTANEOUS APPROXIMATION IN FUZZY ANTI-*n*-NORMED LINEAR SPACES

B. Surender Reddy*

Department of Mathematics, PGCS, Saifabad, Osmania University, Hyderabad-500004, AP, INDIA E-mail: bsrmathou@yahoo.com

(Received on: 02-09-11; Accepted on: 16-09-11)

ABSTRACT

T he main aim of this paper is to consider the t-best simultaneous approximation in fuzzy anti-n-normed linear spaces. We develop the theory of t-best simultaneous approximation in its quotient spaces. Then we discuss the relationship in t-proximinality and t-Chebyshevity of a given space and its quotient space.

Key Words: Fuzzy anti-n-norms, simultaneous approximation, simultaneous t-proximinality, simultaneous t-chebyshevity, Quotient space.

2000 AMS Subject Classification No: 46A30, 46S40, 46A70, 54A40.

1. INTRODUCTION:

Fuzzy set theory is a useful tool to describe situations in which the data are imprecise or vague. Fuzzy sets handle such situation by attributing a degree to which a certain object belongs to a set. The theory of fuzzy sets was introduced by Zadeh [24] in 965. The idea of fuzzy norm was initiated by Katsaras in [13]. Felbin [6] defined a fuzzy norm on a linear space whose associated fuzzy metric is of Kaleva and Seikkala type [12]. Cheng and Mordeson [4] introduced an idea of a fuzzy norm on a linear space whose associated metric is Kramosil and Michalek type [14].

Bag and Samanta in [1] gave a definition of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [14]. They also studied some properties of the fuzzy norm in [2] and [3]. Bag and Samanta discussed the notion of convergent sequence and Cauchy sequence in fuzzy normed linear space in [1]. They also made in [3] a comparative study of the fuzzy norms defined by Katsaras [13], Felbin [6], and Bag and Samanta [1]. The concept of *n*-norm on a linear space has been introduced and developed by Gahler in [7,8]. Following Misiak [16], Malceski [15] and Gunawan and Mashadi [10] developed the theory of *n*-normed space. Narayana and Vijayabalaji [17] introduced the concept of fuzzy *n*-normed linear space. Vijayabalaji and Thillaigovindan [23] introduced the notion of and convergent sequence and Cauchy sequence in fuzzy *n*-normed linear space and studied the completeness of the fuzzy *n*-normed linear space. Many authors studied on fuzzy *n*-normed linear spaces. Goudarzi and Vaezpour [9] considered the set of all *t*-best simultaneous approximation in fuzzy normed linear spaces.

In [11] Iqbal H. Jebril and Samanta introduced fuzzy anti-norm on a linear space depending on the idea of fuzzy antinorm was introduced by Bag and Samanta [3] and investigated their important properties. In [18,19] Surender Reddy introduced the notion of convergent sequence and Cauchy sequence in fuzzy anti-2-normed linear space and fuzzy anti*n*-normed linear space. In [20] Surender Reddy studied on the set of all *t*-best approximations on fuzzy anti-*n*-normed linear spaces. In [21] Surender Reddy considered the set of all *t*-best simultaneous approximation in fuzzy anti-2normed linear spaces.

In the present paper, we consider the set of all *t*-best simultaneous approximation in fuzzy anti-*n*-normed linear spaces and use the concept of simultaneous *t*-proximinality and simultaneous *t*-Chebyshevity to introduce the theory of *t*-best simultaneous approximation in quotient spaces.

2. PRELIMINARIES:

Definition 2.1: Let $n \in N$ and let X be a real linear space of dimension $\geq n$. A real valued function $||\bullet, \bullet, ..., \bullet||$ on

 $X \times X \times ... \times X = X^n$ satisfying the following conditions

Corresponding author: B. Surender Reddy, *E-mail: bsrmathou@yahoo.com

 $nN_1: ||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,

 nN_2 : $||x_1, x_2, ..., x_n||$ is invariant under any permutation of $x_1, x_2, ..., x_n$,

$$nN_3: ||x_1, x_2, ..., x_{n-1}, \alpha x_n|| = |\alpha| ||x_1, x_2, ..., x_{n-1}, x_n||$$
, for every $\alpha \in R$,

 $nN_4: \|x_1, x_2, ..., x_{n-1}, y + z\| \le \|x_1, x_2, ..., x_{n-1}, y\| + \|x_1, x_2, ..., x_{n-1}, z\| \text{ for all } y, z, x_1, x_2, ..., x_{n-1} \in X,$ then the function $\|\bullet, \bullet, ..., \bullet\|$ is called an *n*-norm on X and the pair $(X, \|\bullet, \bullet, ..., \bullet\|)$ is called *n*-normed linear space.

Example 2.2: A trivial example of an *n*-normed linear space is $X = R^n$ equipped with the following Euclidean *n*-norm.

$$\|x_1, x_2, \dots, x_n\|_E = |\det(x_{ij})| = abs \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix},$$

where $x_i = (x_{i1}, x_{i2}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n.

Definition 2.3: Let X be a linear space over a real field F. A fuzzy subset N of $X \times X \times ... \times X \times R$ is called a fuzzy *n*-norm on X if the following conditions are satisfied for all $x_1, x_2, ..., x_n, y \in X$. $(n - N_1)$ For all $t \in R$ with $t \le 0$, $N(x_1, x_2, ..., x_n, t) = 0$,

 $(n - N_2)$: For all $t \in R$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 1$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent, $(n - N_3)$: $N(x_1, x_2, ..., x_n, t)$ is invariant under any permutation of $x_1, x_2, ..., x_n$,

$$(n - N_4)$$
: For all $t \in R$ with $t > 0$, $N(x_1, x_2, ..., x_{n-1}, cx_n, t) = N(x_1, x_2, ..., x_{n-1}, x_n, \frac{t}{|c|})$, if $c \neq 0, c \in F$,

 $(n - N_5): \text{ For all } s, t \in \mathbb{R},$ $N(x_1, x_2, ..., x_{n-1}, x_n + y, s + t) \ge \min \{N(x_1, x_2, ..., x_{n-1}, x_n, s), N(x_1, x_2, ..., x_{n-1}, y, t)\},$

 $(n - N_6)$: $N(x_1, x_2, ..., x_n, t)$ is a non-decreasing function of $t \in R$ and $\lim_{t \to \infty} N(x_1, x_2, ..., x_n, t) = 1$.

Then the pair (X, N) is called a fuzzy *n*-normed linear space (briefly F-n-NLS).

Example 2.4: Let $(X, || \bullet, \bullet, ..., \bullet ||)$ be a *n*-normed linear space. Define

$$N(x_1, x_2, ..., x_n, t) = \frac{t}{t + ||x_1, x_2, ..., x_n||}, \text{ if } t > 0, t \in \mathbb{R}, x_1, x_2, ..., x_n \in X$$
$$= 0, \text{ if } t \le 0, t \in \mathbb{R}, x_1, x_2, ..., x_n \in X.$$

Then (X, N) is a fuzzy *n*-normed linear space.

Definition 2.5: Let X be a linear space over a real field F. A fuzzy subset N of $X \times X \times ... \times X \times R$ is called a fuzzy anti-*n*-norm on X if the following conditions are satisfied for all $x_1, x_2, ..., x_n, y \in X$. $(a - n - N_1)$ For all $t \in R$ with $t \le 0$, $N(x_1, x_2, ..., x_n, t) = 1$,

 $(a-n-N_2)$: For all $t \in R$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,

$$(a-n-N_3): N(x_1, x_2, ..., x_n, t)$$
 is invariant under any permutation of $x_1, x_2, ..., x_n$,

 $(a-n-N_4)$: For all $t \in R$ with t > 0, $N(x_1, x_2, ..., x_{n-1}, cx_n, t) = N(x_1, x_2, ..., x_{n-1}, x_n, \frac{t}{|c|})$, if $c \neq 0$,

$$c \in F,$$

$$(a - n - N_5): \text{ For all } s, t \in R,$$

$$N(x_1, x_2, ..., x_{n-1}, x_n + y, s + t) \le \max \{ N(x_1, x_2, ..., x_{n-1}, x_n, s), N(x_1, x_2, ..., x_{n-1}, y, t) \}$$

 $(a-n-N_6): N(x_1, x_2, ..., x_n, t)$ is a non-increasing function of $t \in R$ and $\lim_{t \to \infty} N(x_1, x_2, ..., x_n, t) = 0$.

Then the pair (X, N) is called a fuzzy anti-*n*-normed linear space (briefly Fa-*n*-NLS).

Remark 2.6: From $(a - n - N_3)$, it follows that in Fa-*n*-NLS,

 $(a-n-N_4)$: For all $t \in R$ with t > 0, $N(x_1, x_2, ..., cx_i, ..., x_n, t) = N(x_1, x_2, ..., x_i, ..., x_n, \frac{t}{|c|})$, if $c \neq 0$,

$$c \in F,$$

$$(a - n - N_5): \text{ For all } s, t \in R,$$

$$N(x_1, x_2, ..., x_i + x'_i, ..., x_n, s + t) \le \max\{N(x_1, x_2, ..., x_i, ..., x_n, s), N(x_1, x_2, ..., x'_i, ..., x_n, t)\}.$$

Example 2.7: Let $(X, ||\bullet, \bullet, ..., \bullet||)$ be a *n*-normed linear space. Define

$$N(x_1, x_2, ..., x_n, t) = \frac{k \|x_1, x_2, ..., x_n\|}{kt^n + m \|x_1, x_2, ..., x_n\|}, \text{ if } t > 0, t \in \mathbb{R}, k, m, n \in \mathbb{R}^+, x_1, x_2, ..., x_n \in X$$
$$= 1, \text{ if } t \le 0, t \in \mathbb{R}, x_1, x_2, ..., x_n \in X.$$

Then (X, N) is a fuzzy anti-*n*-normed linear space. In particular if k = m = n = 1 we have

$$N(x_1, x_2, ..., x_n, t) = \frac{\|x_1, x_2, ..., x_n\|}{t + \|x_1, x_2, ..., x_n\|}, \text{ if } t > 0, t \in \mathbb{R}, x_1, x_2, ..., x_n \in X$$
$$= 1, \text{ if } t \le 0, t \in \mathbb{R}, x_1, x_2, ..., x_n \in X,$$

which is called the standard fuzzy anti-*n*-norm induced by the *n*-norm $\bullet, \bullet, \dots, \bullet$.

Definition 2.8: A sequence $\{x_k\}$ in a fuzzy anti-*n*-normed linear space (X, N) is said to be converges to $x \in X$ if given t > 0, 0 < r < 1, there exists an integer $n_0 \in N$ such that

 $N(x_1, x_2, ..., x_{n-1}, x_k - x, t) < r, \ \forall \ k \ge n_0.$

Theorem 2.9: In a fuzzy anti-*n*-normed linear space (X, N), a sequence $\{x_k\}$ converges to $x \in X$ if and only

$$\lim_{k \to \infty} N(x_1, x_2, \dots, x_{n-1}, x_k - x, t) = 0, \ \forall \ t > 0.$$

Definition 2.10: Let (X, N) be a fuzzy anti-*n*-normed linear space. Let $\{x_k\}$ be a sequence in X then $\{x_k\}$ is said to be a Cauchy sequence if $\lim_{k \to \infty} N(x_1, x_2, ..., x_{n-1}, x_{k+p} - x_k, t) = 0, \forall t > 0$ and p = 1, 2, 3, ...

Definition 2.11: A fuzzy anti-*n*-normed linear space (X, N) is said to be complete if every Cauchy sequence in X is convergent.

Definition 2.12: A complete fuzzy anti-*n*-normed linear space (X, N) is called a fuzzy anti-*n*-Banach space.

Definition 2.13: Let (X, N) be a fuzzy anti-*n*-normed linear space. The open ball B(x, r, t) and the closed ball B[x, r, t] with the center $x \in X$ and radius 0 < r < 1, t > 0 are defined as follows:

$$B(x, r, t) = \{ y \in X : N(x_1, x_2, ..., x_{n-1}, x - y, t) < r \}$$

 $B[x,r,t] = \{ y \in X : N(x_1, x_2, ..., x_{n-1}, x - y, t) \le r \}$

Definition 2.14: Let (X, N) be a fuzzy anti-*n*-normed linear space. A subset *A* of *X* is said to be open if there exists $r \in (0,1)$ such that $B(x,r,t) \subset A$ for all $x \in A$ and t > 0.

Definition 2.15: Let (X, N) be a fuzzy anti-*n*-normed linear space. A subset A of X is said to be closed if for any sequence $\{x_k\}$ in A converges to $x \in A$.

i.e.,
$$\lim_{k \to \infty} N(x_1, x_2, ..., x_{n-1}, x_k - x, t) = 0$$
, for all $t > 0$ implies that $x \in A$.

Corollary 2.16: Let (X, N) be a fuzzy anti-*n*-normed linear space. Then N is a continuous function on

$$\underbrace{X \times X \times \ldots \times X}_{n} \times R$$
.

3. t-BEST SIMULTANEOUS APPROXIMATION:

Definition 3.1: Let (X, N) be a fuzzy anti-*n*-normed linear space. A subset *A* of X is called *F*-bounded if there exists t > 0 and 0 < r < 1 such that $N(x_1, x_2, ..., x_{n-1}, x, t) < r$, $\forall x \in A$.

Definition 3.2: Let (X, N) be a fuzzy anti-*n*-normed linear space, *W* be a subset of X and *M* be a *F*-bounded subset in *X*. For t > 0, we define

$$d(M, W, t) = \inf_{w \in W} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, m - w, t).$$

An element $w_0 \in W$ is called a *t*-best simultaneous approximation to *M* from *W* if for t > 0,

$$d(M, W, t) = \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, m - w_0, t).$$

The set of all t-best simultaneous approximations to M from W will be denoted by $S'_{W}(M)$ and we have,

$$S_{W}^{t}(M) = \{ w \in W : \sup_{m \in M} N(x_{1}, x_{2}, ..., x_{n-1}, m - w, t) = d(M, W, t) \}$$

Definition 3.3: Let W be a subset of a fuzzy anti-*n*-normed linear space (X, N) then W is called a simultaneous *t*-proximinal subset of X if for each F-bounded set M in X, there exists at least one *t*-best simultaneous approximation from W to M. Also W is called a simultaneous *t*-Chebyshev subset of X if for each F-bounded set M in X, there exists a unique *t*-best simultaneous approximation from W to M.

Definition 3.4: Let (X, N) be a fuzzy anti-*n*-normed linear space. A subset *E* of X is said to be convex if $(1-\lambda)x + \lambda y \in E$ whenever $x, y \in E$ and $0 < \lambda < 1$.

Lemma 3.5: Every open ball in a fuzzy anti-*n*-normed linear space (X, N) is convex.

© 2011, IJMA. All Rights Reserved

Theorem 3.6: Suppose that W is a subset of a fuzzy anti-*n*-normed linear space (X, N) and *M* is *F*-bounded in *X*. Then $S_W^t(M)$ is a *F*-bounded subset of X and if *W* is convex and is a closed subset of X then $S_W^t(M)$ is closed and is convex for each *F*-bounded subspace *M* of *X*.

Proof: Since *M* is *F*-bounded, there exists t > 0 and 0 < r < 1 such that $N(x_1, x_2, ..., x_{n-1}, x, t) < r$, for all $x \in M$. If $w \in S_w^t(M)$, then

$$\sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, t) = d(M, W, t)$$

Now, for all $m \in M$ and $w \in S_W^t(M)$,

$$\begin{split} N(x_1, x_2, ..., x_{n-1}, w, 2t) &= N(x_1, x_2, ..., x_{n-1}, w - m + m, 2t) \\ &\leq \max\{N(x_1, x_2, ..., x_{n-1}, w - m, t), N(x_1, x_2, ..., x_{n-1}, m, t)\} \\ &\leq \sup_{m \in M} \max\{N(x_1, x_2, ..., x_{n-1}, w - m, t), N(x_1, x_2, ..., x_{n-1}, m, t)\} \\ &\leq \max\{\sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, w - m, t), \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, m, t)\} \\ &\leq \max\{d(M, W, t), r\} \leq r_0, \text{ for some } 0 < r_0 < 1. \end{split}$$

Then $S_W^t(M)$ is *F*-bounded. Suppose that *W* is convex and is a closed subset of *X*. We show that $S_W^t(M)$ is convex and closed. Let $x, y \in S_W^t(M)$ and $0 < \lambda < 1$. Since *W* is convex, there exists $z_\lambda \in W$ such that $z_\lambda = \lambda x + (1 - \lambda)y$, for each $0 < \lambda < 1$. Now for t > 0 we have,

$$\sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, (\lambda x + (1 - \lambda)y) - m, t) = \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, z_{\lambda} - m, t)$$

$$\geq d(M, W, t).$$

On the other hand, for a given t > 0, take the natural number *n* such that $t > \frac{1}{n}$, we have

$$\begin{split} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, (\lambda x + (1 - \lambda)y) - m, t) &= \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, \lambda(x - y) + y - m, t) \\ &\leq \sup_{m \in M} \max\{N(x_1, x_2, ..., x_{n-1}, x - y, \frac{1}{\lambda n}), N(x_1, x_2, ..., x_{n-1}, y - m, t - \frac{1}{n})\} \\ &\leq \max\{N(x_1, x_2, ..., x_{n-1}, x - y, \frac{1}{\lambda n}), \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, y - m, t - \frac{1}{n})\} \\ &\leq \lim_{n \to \infty} \left(\sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, y - m, t - \frac{1}{n})\right) = d(M, W, t) \,. \end{split}$$

So $S_W^t(M)$ is convex. Finally let $\{w_n\} \subset S_W^t(M)$ and suppose $\{w_n\}$ converges to some w in X. Since $\{w_n\} \subset W$ and W is closed so $w \in W$. Therefore by Corollary 2.16, for t > 0 we have

$$\sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, t) = \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, \lim_{n \to \infty} w_n - m, t)$$
$$= \limsup_{n \to \infty} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, w_n - m, t) = d(M, W, t)$$

Theorem 3.7: The following assertions are hold for t > 0,

(i)
$$d(M + x, W + x, t) = d(M, W, t), \quad \forall x \in X$$

(ii) $d(\lambda M, \lambda W, t) = d(M, W, \frac{t}{|\lambda|}), \quad \forall \lambda \in C$,

© 2011, IJMA. All Rights Reserved

(iii) $S_{W+x}^{t}(M+x) = S_{W}^{t}(M) + x, \quad \forall x \in X,$ (iv) $S_{\lambda W}^{|\lambda|t}(\lambda M) = \lambda S_{W}^{t}(M) + x, \quad \forall \lambda \in C,$

Proof: (i)
$$d(M + x, W + x, t) = \inf_{w \in W} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, (m + x) - (w + x), t)$$

= $\inf_{w \in W} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, m - w, t) = d(M, W, t)$

(ii) Clearly equality holds for $\lambda = 0$, so suppose that $\lambda \neq 0$. Then,

$$d(\lambda M, \lambda W, t) = \inf_{w \in W} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, \lambda(m-w), t)$$

=
$$\inf_{w \in W} \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, m-w, \frac{t}{|\lambda|}) = d(M, W, \frac{t}{|\lambda|})$$

(iii) $x + W \in S_{W+x}^{t}(M + x)$ if and only if,

 $\sup_{m+x\in M+x} N(x_1, x_2, ..., x_{n-1}, m+x-w-x, t) = d(M+x, W+x, t)$

and by (i), the above equality holds if and only if,

$$\sup_{m \in M} N(x_1, x_2, \dots, x_{n-1}, m-w, t) = d(M, W, t)$$

for all $w \in W$ and this shows that $w \in S_W^t(M)$. So $x + w \in S_W^t(M) + x$.

(iv) $y_0 \in S_{\lambda W}^{|\lambda|t}(\lambda M)$ if and only if $y_0 \in \lambda W$ and, $d(\lambda W, \lambda M, |\lambda|t) = \sup_{\lambda m \in \lambda M} N(x_1, x_2, ..., x_{n-1}, y_0 - \lambda m, |\lambda|t)$ $= \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, \frac{y_0}{\lambda} - m, t)$

But by (ii), we have $d(\lambda M, \lambda W, |\lambda|t) = d(W, M, t)$. So we have $\frac{y_0}{\lambda} \in W$ and

 $d(M, W, t) = \sup_{m \in M} N(x_1, x_2, ..., x_{n-1}, \frac{y_0}{\lambda} - m, t) \text{ or equivalently } \frac{y_0}{\lambda} \in S_W^t(M) \text{ and the proof is completed.}$

Corollary 3.8: Let A be a nonempty subset of a fuzzy anti-*n*-normed linear space (X, N) then the following statements are hold.

(i) A is simultaneous t-proximinal (respectively simultaneous t-Chebyshev) if and only if A+y is simultaneous t-proximinal (respectively simultaneous t-Chebyshev), for each $y \in X$,

(ii) A is simultaneous t-proximinal (respectively simultaneous t-Chebyshev) if and only if αA is simultaneous $|\alpha|t$ -proximinal (respectively simultaneous $|\alpha|t$ -Chebyshev), for each $\alpha \in C$.

Corollary 3.9: Let A be a nonempty subspace of a fuzzy anti-*n*-normed linear space X and M be a F-bounded subset of X. Then for t > 0,

(i) $d(A, M + y, t) = d(A, M, t), \forall y \in A$, (ii) $S_A^t(M + y) = S_A^t(M) + y, \forall y \in A$, (iii) $d(A, \alpha M, |\alpha|t) = d(A, M, t)$, for $0 \neq \alpha \in C$, (iv) $S_A^{|\alpha|t}(\alpha M) = \alpha S_A^t(M)$, for $0 \neq \alpha \in C$.

4. SIMULTANEOUS t-PROXIMINALITY AND SIMULTANEOUS t-CHEBYSHEVITY IN QUOTIENT SPACES:

In this section we give characterization of simultaneous *t*-proximinality and simultaneous *t*-Chebyshevity in quotient spaces.

Definition 4.1: Let (X, N) be a fuzzy anti-*n*-normed linear space, M be a linear manifold in X and let $Q: X \to X/M$ be the natural map Qx = x + M. We define

 $N(x_1, x_2, ..., x_{n-1}, x + M, t) = \inf\{N(x_1, x_2, ..., x_{n-1}, x + y, t) : y \in M\}, \quad t > 0$

Theorem 4.2: If M is a closed subspace of a fuzzy anti-*n*-normed linear space (X, N) and $N(x_1, x_2, ..., x_{n-1}, x + M, t)$ is defined as above then

- (a) N is a fuzzy anti-n-norm on X/M.
- (b) $N(x_1, x_2, ..., x_{n-1}, Qx, t) \le N(x_1, x_2, ..., x_{n-1}, x, t)$.
- (c) If (X, N) is a fuzzy anti-*n*-Banach space then so is (X/M, N).

Proof: (a) It is clear that $N(x_1, x_2, ..., x_{n-1}, x + M, t) = 1$ for $t \le 0$.

Let $N(x_1, x_2, ..., x_{n-1}, x + M, t) = 0$ for t > 0. By definition there is a sequence $\{x_k\}$ in M such that $N(x_1, x_2, ..., x_{n-1}, x + x_k, t) \to 0$. So $x + x_k \to 0$ or equivalently $x_k \to (-x)$ and since M is closed so $x \in M$ and x + M = M, the zero element of X/M. On the other hand we have,

$$\begin{split} N(x_1, x_2, ..., x_{n-1}, (x+M) + (y+M), t) &= N(x_1, x_2, ..., x_{n-1}, (x+y) + M, t) \\ &\leq N(x_1, x_2, ..., x_{n-1}, (x+m) + (y+n), t) \\ &\leq \max\{N(x_1, x_2, ..., x_{n-1}, x+m, t_1), N(x_1, x_2, ..., x_{n-1}, y+n, t_2)\} \end{split}$$

for $m, n \in M$, $x_1, x_2, ..., x_{n-1}, x, y \in X$ and $t_1 + t_2 = t$. Now if we take infimum on both sides, we have,

 $N(x_1, x_2, ..., x_{n-1}, (x+M) + (y+M), t) \le \max\{N(x_1, x_2, ..., x_{n-1}, x+M, t_1), N(x_1, x_2, ..., x_{n-1}, y+M, t_2)\}.$

Also we have,
$$N(x_1, x_2, ..., x_{n-1}, \alpha(x+M), t) = N(x_1, x_2, ..., x_{n-1}, \alpha x + M, t)$$

 $= \inf\{N(x_1, x_2, ..., x_{n-1}, \alpha x + \alpha y, t) : y \in M\}$
 $= \inf\{N(x_1, x_2, ..., x_{n-1}, x + y, \frac{t}{|\alpha|}) : y \in M\}$
 $= N(x_1, x_2, ..., x_{n-1}, x + M, \frac{t}{|\alpha|})$

and the remaining properties are obviously true. Therefore N is a fuzzy anti-n-norm on X/M .

(b) We have,
$$N(x_1, x_2, ..., x_{n-1}, Qx, t) = N(x_1, x_2, ..., x_{n-1}, x + M, t)$$

= $\inf\{N(x_1, x_2, ..., x_{n-1}, x + y, t) : y \in M\}$
 $\leq N(x_1, x_2, ..., x_{n-1}, x, t)$

(c) Let $\{y_k + M\}$ be a Cauchy sequence in X/M. Then there exists $\mathcal{E}_k > 0$ such that $\mathcal{E}_k \to 0$ and $N(x_1, x_2, ..., x_{n-1}, (y_k + M) - (y_{k+1} + M), t) \le \mathcal{E}_k$. Let $z_1 = 0$. We choose $z_2 \in M$ such that, $N(x_1, x_2, ..., x_{n-1}, y_1 - (y_2 - z_2), t) \le \max\{N(x_1, x_2, ..., x_{n-1}, (y_1 - y_2) + M, t), \mathcal{E}_1\}.$

© 2011, IJMA. All Rights Reserved

But $N(x_1, x_2, ..., x_{n-1}, (y_1 - y_2) + M, t) \le \mathcal{E}_1$. Therefore,

$$N(x_1, x_2, \dots, x_{n-1}, y_1 - (y_2 - z_2), t) \le \max{\{\mathcal{E}_1, \mathcal{E}_1\}} = \mathcal{E}_1$$

Now suppose z_{k-1} has been chosen, $z_k \in M$ can be chosen such that

 $N(x_1, x_2, ..., x_{n-1}, (y_{k-1} + z_{k-1}) - (y_k + z_k), t) \le \max\{N(x_1, x_2, ..., x_{n-1}, (y_{k-1} - y_k) + M, t), \mathcal{E}_{k-1}\} \text{ and therefore, } N(x_1, x_2, ..., x_{n-1}, (y_{k-1} + z_{k-1}) - (y_k + z_k), t) \le \max\{\mathcal{E}_{k-1}, \mathcal{E}_{k-1}\} = \mathcal{E}_{k-1}.$

Thus, $\{y_k + z_k\}$ is Cauchy sequence in X. Since X is complete, there is an y_0 in X such that $y_k + z_k \rightarrow y_0$ in X. On the other hand $y_k + M = Q(y_k + z_k) \rightarrow Q(y_0) = y_0 + M$. Therefore every Cauchy sequence $\{y_k + M\}$ is convergent in X/M and so X/M is complete and (X/M, N) is a fuzzy anti-*n*-Banach space.

Definition 4.3: Let A be a nonempty set in a fuzzy anti-*n*-normed linear space (X, N). For $x \in X$ and t > 0, we shall denote the set of all elements of *t*-best approximation to x from A by $P_A^t(x)$;

i.e.,
$$P_A^t(x) = \{y \in A : d(A, x, t) = N(x_1, x_2, ..., x_{n-1}, y - x, t)\}.$$

where, $d(A, x, t) = \inf\{N(x_1, x_2, ..., x_{n-1}, y - x, t) : y \in A\} = \inf_{y \in A} N(x_1, x_2, ..., x_{n-1}, y - x, t).$

If each $x \in X$ has at least (respectively exactly) one *t*-best approximation in A then A is called a *t*-proximinal (respectively *t*-chebyshev) set.

Lemma 4.4: Let (X, N) be a fuzzy anti-*n*-normed linear space and *M* be a *t*-proximinal subspace of *X*. For each nonempty *F*-bounded set *S* in *X* and t > 0,

$$d(S, M, t) = \sup_{s \in S} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$

Proof: Since *M* is *t*-proximinal it follows that for each $s \in S$ there exists $m_s \in P_M^t(S)$ such that for t > 0,

$$N(x_1, x_2, ..., x_{n-1}, s - m_s, t) = \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t).$$

So,

$$d(S, M, t) = \inf_{m \in M} \sup_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$

$$\leq \sup_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t)$$

$$\leq \sup_{s \in S} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$

$$\leq \inf_{m \in M} \sup_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m, t) = d(S, M, t)$$

This implies that, $d(S, M, t) = \sup_{s \in S} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$.

Example 4.5: Let $(X = R^2, \|\bullet, \bullet, ..., \bullet\|)$ be a anti-*n*-normed linear space and consider (X, N) as its standard induced fuzzy anti-*n*-normed linear space (Example 2.7). A nonempty subset *S* of *X* is *F*-bounded if and only if *S* is bounded in $(X, \|\bullet, \bullet, ..., \bullet\|)$. If we take M = R we can easily prove that *M* is proximinal in $(X, \|\bullet, \bullet, ..., \bullet\|)$.

Lemma 4.6: Let (X, N) be a fuzzy anti-*n*-normed linear space, *M* be a *t*-proximinal subspace of *X* and *S* be an arbitrary subset of *X* then the following assertions are equivalent:

- (i) *S* is a *F*-bounded subset of *X*.
- (ii) S/M is a *F*-bounded subset of X/M.

Proof: Suppose that S be a F-bounded subset of X. Then there exist t > 0, 0 < r < 1 such that, $N(x_1, x_2, ..., x_{n-1}, x, t) < r$, for all $x \in S$. But,

$$N(x_1, x_2, ..., x_{n-1}, x + M, t) = \inf_{y \in M} N(x_1, x_2, ..., x_{n-1}, x + y, t) \le N(x_1, x_2, ..., x_{n-1}, x, t) \le r$$

So, $(i) \Rightarrow (ii)$ is proved. Now to prove that $(ii) \Rightarrow (i)$. Let S/M be a F-bounded subset of X/M. Since M is tproximinal, then for each $s \in S$ there exists $m_s \in M$ such that $m_s \in P_M^t(S)$. So for each $s \in S$,

$$N(x_1, x_2, ..., x_{n-1}, s - m_s, t) = \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$
(1)

Now from Lemma 4.4, we conclude that for t > 0,

$$\sup_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) = \sup_{s \in S} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, s - m, t)$$
$$= \inf_{m \in M} \sup_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m, t).$$

Then for 0 < r < 1 such that $\sup_{s \in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) \le r$ and t > 0 there exists $m_r \in M$ such that,

$$\sup_{s\in S} N(x_1, x_2, ..., x_{n-1}, s - m_r, t) \le \sup_{s\in S} N(x_1, x_2, ..., x_{n-1}, s - m_s, t) - r \le 0.$$

So by (1), for all $s \in S$ we have,

$$N(x_{1}, x_{2}, ..., x_{n-1}, s, t) = N(x_{1}, x_{2}, ..., x_{n-1}, s - m_{r} + m_{r}, t)$$

$$\leq \max\{N(x_{1}, x_{2}, ..., x_{n-1}, s - m_{r}, \frac{t}{2}), N(x_{1}, x_{2}, ..., x_{n-1}, m_{r}, \frac{t}{2})\}$$

$$\leq \sup_{s \in S} \max\{N(x_{1}, x_{2}, ..., x_{n-1}, s - m_{r}, \frac{t}{2}), N(x_{1}, x_{2}, ..., x_{n-1}, m_{r}, \frac{t}{2})\}$$

$$\leq \max\{(\sup_{s \in S} N(x_{1}, x_{2}, ..., x_{n-1}, s - m_{s}, \frac{t}{2}) - r), N(x_{1}, x_{2}, ..., x_{n-1}, m_{r}, \frac{t}{2})\}$$

$$= \max\{(\sup_{s \in S} \inf_{m \in M} N(x_{1}, x_{2}, ..., x_{n-1}, s - m, \frac{t}{2}) - r), N(x_{1}, x_{2}, ..., x_{n-1}, m_{r}, \frac{t}{2})\}$$

$$\leq \max\{(\sup_{s \in S} N(x_{1}, x_{2}, ..., x_{n-1}, s + M, \frac{t}{2}) - r), N(x_{1}, x_{2}, ..., x_{n-1}, m_{r}, \frac{t}{2})\}.$$
(2)

Since S/M is *F*-bounded, by its definition we can find $0 < r_0 < 1$ such that in the right hand side of (2) be less than or equal to r_0 and this completes the proof.

Lemma 4.7: Let M be a *t*-proximinal subspace of a fuzzy anti-*n*-normed linear space (X, N) and $W \supseteq M$ a subspace of X. Let K be F-bounded in X. If $w_0 \in S_W^t(K)$, then

$$w_0 + M \in S^{\prime}_{W/M}(K/M).$$

Proof: Since K is F-bounded by Lemma 4.6, K/M is F-bounded in X/M. Assume that $w_0 \in S_W^t(K)$ and $w_0 + M \notin S_{W/M}^t(K/M)$. Thus there exists $w' \in M$ such that for t > 0,

$$\sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) < \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + M), t)
\leq \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - w_0, t) = d(K, W, t) \quad (3)$$

On the other hand for each $k \in K$ and for t > 0,

B. Surender Reddy*/ BEST SIMULTANEOUS APPROXIMATION IN FUZZY ANTI-n-NORMED LINEAR SPACES / IJMA- 2(10), Oct.-2011, Page: 1885-1897 $N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) = \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, k - (w' + m), t)$

Then for each $0 < \varepsilon < 1$ and $k \in K$ there exists $m_k \in M$ such that for t > 0,

$$N(x_1, x_2, ..., x_{n-1}, k - (w' + m_k), t) \le N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) + \mathcal{E}$$

Since $w' + m_k \in M$ we conclude that

$$d(K, W, t) \leq \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + m_k), t)$$

$$\leq \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) + \varepsilon$$

Thus,

$$d(K, W, t) \le \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t)$$
(4)

By (3) and (4) we get,

$$d(K, W, t) \le \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w' + M), t) < d(K, W, t),$$

and this is a contradiction. Therefore $w_0 + M \in S_{W/M}^t(K/M)$ and the proof is completed.

Corollary 4.8: Let *M* be a *t*-proximinal subspace of a fuzzy anti-*n*-normed linear space (X, N) and $W \supseteq M$ a subspace *X*. If *W* is simultaneous *t*-proximinal then W/M is a simultaneous *t*-proximinal subspace of X/M.

Corollary 4.9: Let *M* be a *t*-proximinal subspace of a fuzzy anti-*n*-normed linear space (X, N) and $W \supseteq M$ a subspace *X*. If *W* is simultaneous *t*-proximinal then for each *F*-bounded set *K* in *X*,

$$Q(S_W^t(K)) \subseteq S_{W/M}^t(K/M).$$

Theorem 4.10: Let M be a *t*-proximinal subspace of a fuzzy anti-*n*-normed linear space (X, N) and $W \supseteq M$ subspace of X. If K is F-bounded set in X such that $w_0 + M \in S^t_{W/M}(K/M)$ and $m_0 \in S^t_M(K - w_0)$, then $w_0 + m_0 \in S^t_W(K)$.

Proof: In view of Lemma 4.4, for t > 0 we have,

$$\begin{split} \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, (k - w_0) - m_0, t) &= \inf_{m \in M} \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, (k - w_0) - m, t) \\ &= \sup_{k \in K} \inf_{m \in M} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + m), t) \\ &= \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + M), t) \\ &\leq \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w + M), t) \quad \forall \ w \in W \\ &\leq \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - w, t) \quad \forall \ w \in W . \end{split}$$
Hence,
$$\sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - (w_0 + m_0), t) \leq \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - w, t) \quad \forall \ w \in W . \end{split}$$

But $w_0 + m_0 \in W$. Then $w_0 + m_0 \in S_W^t(K)$ and so the proof is completed.

Theorem 4.11: Let *M* be a *t*-proximinal subspace of a fuzzy anti-*n*-normed linear space (X, N) and $W \supseteq M$ a simultaneous *t*-proximinal subspace of *X*. Then for each *F*-bounded set *K* in *X*,

$$Q(S_W^t(K)) = S_{W/M}^t(K/M)$$

© 2011, IJMA. All Rights Reserved

1894

Proof: By Corollary 4.9, we obtain

$$Q(S_W^t(K)) \subseteq S_{W/M}^t(K/M).$$

Also by Lemma 4.6, W/M is simultaneous *t*-proximinal in X/M. Now let, $w_0 + M \in S_{W/M}^t(K/M)$, where $w_0 \in W$. By simultaneous *t*-proximinality of M there exists $m_0 \in M$ such that $m_0 \in S_M^t(K - w_0)$. Then in view of Theorem 4.10, we conclude that $w_0 + m_0 \in S_W^t(K)$. Therefore $w_0 + M \in Q(S_W^t(K))$ and the proof is completed.

Corollary 4.12: Let W and M be subspaces of a fuzzy anti-n-normed linear space (X, N). If M is simultaneous t-proximinal then the following assertions are equivalent:

(i) W/M is simultaneous *t*-proximinal in X/M.

(ii) W + M is simultaneous *t*-proximinal in *X*.

Proof: (*i*) \Rightarrow (*ii*). Let K be an arbitrary F-bounded set in X. Then by Lemma 4.6, K/M is a F-bounded set in X/M. Since (W+M)/M = W/M and M are simultaneous t-proximinal it follows that there exists $w_0 + M \in (W+M)/M$ and $m_0 \in M$ such that $w_0 + M \in S^t_{(W+M)/M}(K/M)$ and $m_0 \in S^t_M(K-w_0)$. By Theorem 4.10, we have $w_0 + m_0 \in S^t_{W+M}(K)$. This shows that W + M is simultaneous t-proximinal in X.

 $(ii) \Rightarrow (i)$. Since W + M is simultaneous *t*-proximinal and $W + M \supseteq M$, by Corollary 4.8, we have (W + M)/M = W/M is simultaneous *t*-proximinal.

Theorem 4.13: Let *W* and *M* be subspaces of a fuzzy anti-*n*-normed linear space (X, N). If *M* is simultaneous *t*-Chebyshev then the following assertions are equivalent:

- (i) W/M is simultaneous *t*-Chebyshev in X/M.
- (ii) W + M is simultaneous *t*-Chebyshev in *X*.

Proof: $(i) \Rightarrow (ii)$, By hypothesis (W + M)/M = W/M is simultaneous *t*-Chebyshev. Assume that (ii) is false. Then some *F*-bounded subset *K* of *X* has two distinct simultaneous *t*-best approximations such as l_0 and l_1 in W + M. Thus we have,

$$l_0, \ l_1 \in S_{W+M}^t(K).$$
 (5)

Since $W + M \supseteq M$ by lemma 4.6, $l_0 + M$, $l_1 + M \in S_{(W+M)/M}^t(K/M) = S_{W/M}^t(K/M)$.

Since W/M is simultaneous *t*-Chebyshev, $l_0 + M = l_1 + M$. So there exists $0 \neq m_0 \in M$ such that $l_1 = l_0 + m_0$.

By (5) for all
$$t > 0$$
,

$$\sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, (k - l_0) - m_0, t) = \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - l_1, t)$$

$$= \sup_{k \in K} N(x_1, x_2, ..., x_{n-1}, k - l_0, t)$$

$$= d(K, W + M, t)$$

$$= d(K - l_0, W + M, t) \le d(K - l_0, M, t)$$

This shows that both *m* and zero are simultaneous *t*-best approximations to $S - l_0$ from *M* and this is a contradiction. (*ii*) \Rightarrow (*i*). Assume that (*i*) does not hold. Then for some *F*-bounded subset *K* of *X*, *K*/*M* has two distinct simultaneous *t*-best approximations such as w + M and

w'+M in W/M. Thus $w-w' \notin M$. Since M is simultaneous *t*-proximinal there exists simultaneous *t*-best approximations m and m' to K-w and K-w' from M respectively. Therefore $m \in S_M^t(K-w)$ and $m' \in S_M^t(K-w')$. Since $W+M \supseteq M$, w+M and w'+M are in $S_{W/M}^t(K/M) = S_{(K+M)/M}^t(K/M)$, by Theorem 4.10, w+m and $w'+m' \in S_{W+M}^t(K)$.

But W + M is simultaneous *t*-Chebyshev. Thus w + m = w' + m' and so $w - w' \in M$, which is a contradiction.

Corollary 4.14: Let *M* be simultaneous *t*-Chebyshev subspace of a fuzzy anti-*n*-normed linear space (X, N). If $W \supseteq M$ is a simultaneous *t*-Chebyshev subspace in *X*, then the following assertions are equivalent:

(i) W is simultaneous t-Chebyshev in X.

(ii) W/M is simultaneous *t*-Chebyshev in X/M.

ACKNOWLEDGEMENT: The author is grateful to the referee for careful reading of the article and suggested improvements.

REFERENCES:

[1] T. Bag and T.K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, Vol. 11(3) (2003), 687-705.

[2] T. Bag and T.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, Vol. 151 (2005), 513-547.

[3] T. Bag and T.K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets and Systems, Vol. 159 (2008), 670-684.

[4] S. C. Cheng and J.N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., Vol. 86 (1994), 429-436.

[5] H. Efe and C. Yildiz, some results in fuzzy compact linear operators, Journal of computational Analysis Applications, Vol. 12(1-B) (2010), 251-262.

[6] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, Vol. 48 (1992), 239-248.

[7] S. Gahler, Lineare 2-normierte Raume, Math. Nachr., Vol. 28 (1964), 1-43.

[8] S. Gahler, Unter Suchungen uber verallagemeinerte *m*-mertische raume I, Math. Nachr., Vol. 40 (1969), 165-189.

[9] M. Goudarzi and M. Vaezpour, Best simultaneous approximation in fuzzy normed spaces, Iranian Journal of fuzzy systems, Vol. 7(3) (2010), 87-96.

[10] H. Gunawan and Mashadi, On finite Dimensional n-normed spaces, Int. J. Math. Math. Sci., Vol. 27(10) (2001), 631-639.

[11] Iqbal H. Jebril and T.K. Samanta, Fuzzy Anti-Normed space, Journal of Mathematics and Technology, February (2010), 66-77.

[12] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, Vol. 12 (1984), 215-229.

[13] A. K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets and Systems, Vol. 12 (1984), 143-154.

[14] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric space, Kybernetica, Vol. 11 (1975), 326-334.

[15] R. Malceski, Strong n-convex n-normed spaces, Math. Bulletin, Vol. 21(47) (1997), 81-102.

[16] A. Misiak, n-inner product spaces, Math. Nachr., Vol. 140 (1989), 299-319.

[17] I. Narayana and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. Math. Sci., Vol. 24 (2005), 3963-3977.

[18] B. Surender Reddy, Fuzzy anti-2-normed linear space, Journal of Mathematics Research, Vol. 3(2) May (2011), 137-144.

[19] B. Surender Reddy, Fuzzy anti-*n*-normed linear space, Journal of Mathematics and Technology, Vol. 2(1) February (2011), 14-26.

[20] B. Surender Reddy, Some results on t-best approximation in Fuzzy anti-n-normed linear spaces. (Communicated)

[21] B. Surender Reddy, Best simultaneous approximation in Fuzzy anti-2-normed linear spaces. International Journal of Mathematical Archive, Vol. 2, No. 9, September 2011, 1747-1757.

[22] S. M. Vaezpour and F. Karimi, *t*-best approximation in fuzzy normed spaces, Iranian Journal of fuzzy systems, Vol. 5(2) (2008), 93-99.

[23] S. Vijayabalaji and N. Thillaigovindan, Complete fuzzy n-normed linear space, Journal of Fundamental Sci., Vol. 3(1) (2007), 119-126.

[24] L. A. Zadeh, Fuzzy sets, Inform. and Control, Vol. 8 (1965), 338-353.
