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ABSTRACT

The aim of this paper is to extend the result which was proved by ovidiv (2010) and to show the existence and
uniqueness of the best proximity point for (¥, @) —weak contractions.
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INTRODUCTION AND PRELIMINARIES

Let (X,d) be a metric space. A mapping T:X — X is a contraction if there exists a constant k(0,1) such that
d(Tx,Ty) < kd(x,y)holds forany x,y € X.

If X is complete, then every contraction has a unique fixed point and that point can be obtained as a limit of repeated
iteration of the mapping at any point X(the banach contraction principle obviously every contraction is a continuous
function.

A mapping T: X — Xis a @-weak contraction if for each x,y € X, there exists a function @: [0, o) = [0, o) such that
@ is positive on [0,0),®(0) = 0 and d(Tx, Ty) < d(x,y) —P(d(x,y)).

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in 1997. They defined such
mappings for single-valued maps on Hilbert spaces and proved the existence of fixed points. Rhodes [6] showed that
most results of [1] are true for any banach space. Also Rhodes proved the following generalization of the Banach
contraction principle.

Theorem: 1 Let (X, d) be a nonempty complete metric space and let T: X — X be a @-weak contraction on X. If @ is a
continuous and nondecreasing function with@(t) > 0 for all t > 0 and @(0) = 0, then T has a unique fixed point.
Every contraction is a @-weak contraction @(t) = ktwhere 0 < k < 1.

Dutta and Choudhury [3] proved the following generalization of theorem 1.

Theorem 2: Let (X,d) be a nonempty complete metric space and let T: X — X be a self-mapping satisfying the
inequality ¥ (d(Tx, Ty)) < ¥(d(x,y)) —@(d(x,y)), where ¥,@: [0, ) — [0, o) are both continuous and monotone
nondecreasing functions with¥’(t) = @(t) = 0 ifand only if t = 0. Then T has a unique fixed point.

Doric [4] generalized theorem 2.

Theorem 3: Let (X,d) be a nonempty complete metric space and let T: X — X be a self-mapping satisfying the
inequality ¥(d(Tx,Ty)) <¥(M(x,y)) —PM(x,y)), for any x,y € X, where M is given by M(x,y) =
max{d(x,y), d(x,Tx), d(y,Ty), 2222y

a) W:[0,00) — [0,00) is a continuous monotone non-decreasing function with ¥ (t) = 0 ifand only if t = 0,

b) @:[0,0) — [0, )is a lower semi-continuous function with @(t) = 0 ifand only if t = 0.
Then T has a fixed point.

Ovidiu [5] extended the result proved by Doric [4], Rhodes [6] and Choudhary [3].
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Theorem 4: Let (X,d) be a nonempty complete metric space and T: X — Xbe a mapping satisfying for all x,y €
XY(d(Tx,Ty)) <¥YM(x,y)) —P(M(x,y)), where
a)¥:[0,0) — [0,0) isa monotone non-decreasing function with ¥(t) = 0 ifand only if t = 0,
b) @:[0,0) — [0, o) is a function with @(¢t) = 0 ifand only if ¢t = 0 and lim,,_,., ?(a,) > 0 if
lim,_., a, =a >0,
c) @(a) > ¥(a)— ¥(a—)for any a > 0, where ¥ (a—) is the left limit of ¥ at a.
Then T has a unique fixed point.

Definition 5: [2] Let 4, B be nonempty subsets of a metric space X. Amap T: A — Bis said to be a generalised weakly
contracting mapping if for all x, y € 4, then

Y(d(Tx,Ty)) <¥PM(x,y)) — ®(max{d(x,y),d(y,Ty) — d(A,B)})
whereM (x,y) = max{d(x,y), d(x,Tx) —d(4,B),d(y,Ty) — d(A,B),% [d(x, Ty) +d(y, Ty)] —d(4,B)}.

Theorem 6: [7] Let (4, B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that 4, is
nonempty. Let T: A — B be a weakly contractive mapping satisfying T(4,) S B,. Assume that the pair (4, B) has the
p-property. Then there exists a unique x* € A such that d(x*, Tx*) = d(4, B).

MAIN RESULTS

Theorem 7: Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X,d) such that A, is
nonempty. Let T: A — B be such that T(4,) S B,. Suppose

) Y(d(Tx,Ty)) <¥PM(x,y)) — ®(max{d(x,y),d(y,Ty) — d(A,B)}) @
where

a) W:[0,00) — [0,0) isa monotone non-decreasing function with ¥ (t) = 0 ifand only if t = 0,

b) @:[0,0) — [0, )is a lower semi-continuous function with @(t) = 0 ifand only if t = 0.

Furthermore the pair (4, B) has the p-property. Then there exists a unique x* in A such that d(x*, Tx*) = d(4, B).
Proof: Choose x, € A.
Since Tx, € T(A,) S By, there exists x; € A, such that d(x;,Tx,) = d(4, B).

Analogously, regarding the assumption, Tx; € T(4,) S B,, we determine x, € A, such that d(x,,Tx;) = d(4, B).
Recursively, we obtain a sequence (x,,) in A, satisfying
d(x,41,Tx,) =d(A,B) foralln € N 2

Claim: d(x,,x,41) = 0
If xy = xy4q1, then xy is a best proximity point.

By the p-property, we have
d(xn+1'xn+2) = d(Txn' Txn+1)

Hence we assume that x,, # x,,,, forall n € N.

Since d(x,41,Tx,) = d(4, B), from (1), we have for alln € N.
L‘U(d(xn+1'xn+2)) = w(d(Txn'Txn+1))
< w(max {d(xn'xn+1)'d(xn'Txn) - d(A'B)' d(xn+1'Txn+1) - d(A' B)'

E [d(xn'Txn+1) + d(xn+1'Txn)] - d(A'B)}) - (p(max {d(xn'xn+1)' d(xn+1'Txn+1) - d(A'B)})
< ’P(max {d(xnﬂjlcn+1)'d(xn'Txn) - d(A'B)' d(xn+1'Txn+1) - d(A' B)'

E [d(xn'Txn+1) + d(xn+1'Txn)] - d(A'B)}) - (p(max {d(xn'xn+1)' d(xn+1'Txn+1) - d(A'B)})
< w(max {d(xn'xn+1)'d(xn'Txn) - d(A'B)' d(xn+1'Txn+1) - d(A' B)'

1
5 (@, Tx41)) = d(4, B)}) = @ (max {d (6, X 1), d (i1, Ts1) = d(4, BYY)
Since > (d (%, TX41)) — d(A,B) < 5 (d (X, Xn41) + A(X41, THn1)) — d(A, B)
< max {d(xn'xn+1)' d(xn+1'Txn+1) - d(A'B)}

d(xn'Txn) - d(A'B) < d(xn'xn+1)'d(xn+1'Txn) - d(A'B)
= d(xn'xn+1)
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It follow that

w(d(Txn'Txn+1)
< w(max {d(xn'xn+1)'d(xn+1'Txn+1) - d(A'B)}) - (p(max {d(xn'xn+1)' d(xn+1'Txn+1)
—d(A,B)})

llU(d(xn+1'xn+2)) < w(max {d(xn'xn+1)' d(xn+1'xn+2)})¢(max {d(xn'xn+1)'d(xn+1'xn+2)}) (3)

Suppose that d(x,,, X, 4+1) < d(X,41, X,42) fOr some positive integer n.
Then from (3), we have

w(d(xn+1'xn+2)) < w(d(xn+1'xn+2)) - ¢(d(xn+1'xn+2))'
that is @(d (x,, 11, Xn4+2)) < 0 which implies that d(x,,,1, x,42) = 0, contradicting our assumption.

Therefore d(x, 41, X42) < d(x,,%x,41) for any n € N and hence {d(x,,x,,1)} iS monotone decreasing sequence of
nonnegative real numbers, hence there exists r = 0 such that lim,,_,,, d(x,,x,.1) = 7.

In the view of the fact from (3), for any n € N, we have
lp(d(xn+1'xn+2)) < w(d(xnﬂxn+1)) - (p(d(xn'xn+1))!

Taking the limit as n — oo in the above inequality, and using the conditions of ¥ and @ we have
Y(r) < ¥(r) — &(r) which implies @(r) = 0

Hence lim,,_,,, d(x,,,X,41) =0 4)
Next we show that (x,,) is a Cauchy sequence.

If otherwise there exists € > 0, for which we can find two sequences of positive integers (m,,) and (n,) such that for
all positive integers my, > ny > k, d(xp,,, %,,) = €and d(x,,,, X,, ,) <€

NOWS S d(xmk’ nk) < d(xmk’ Nnp— 1)+d(xnk 1’ nk)’

thatise < d(xp,,x,,) <&+ d(x

Nj— 1’

Taking the limit as k — oo in the above inequality and using (4) we have

lim d(xp,,,%,,) = € (5)
n—-oo
Again A(Xmyr Xn, ) S A Xy Xmy )+ ACony Xy ) T Ay, X, )

Taking the limit as k — oo in the above inequalities and using (4) and (5) we have
]}Lrgd(xmk+1’xnk+!) =€ 6)

Again d(Xm, Xn,) < d(xXpy,, Xn) T d(xnk+1,xnk) and d(xp,, , Xnpyr) S A(Xmy, Xy, ) + d(xnk,xnk+1)

Letting k — oo in the above inequalities and using (4) and (5) we have
]}1_)1‘1; d(xmk'xn,H_l) =€ (7)
]}i_)n;d(xnk’xmk_'_l) =€ (8)

Forx = xp,, , ¥ = Y, We have
d(Xm,, Txp,) —d(A,B) < d(xp,, Xmy ) T d(x

= Ay Xmyy1)

TXp,) — d(4, B)

Mp+1’

Similarly d(x,,, Tx,,) — d(A,B) = d(xy,,%n,,,)-

Also d(xp,,,Tx,,) —d(A,B) = d(x )and d(x,,,Txn,) —d(A,B) = d(X,,, X, ,)-

my’ nk+1

From (1) we have
w(d(xmk+1’xnk+1)) = w(d(Txmk’Txnk))
< Y(max {d(xp,,, X, ), Ad(Xpy, , TXm, ) — d(4,B), d(x,,,Tx,,) — d(A,B),

1
E [d(xmk'Txnk) + d(xnk’Txmk)] - d(A’ B)}) - (p(max {d(xmk'xnk)'d(xnk'Txnk) - d(A’ B)})
< ¥Y(max {d(xmk,xnk),d(xmk,xmk+1), d(xnk,xnk+1),
1
E [d(xmk'xn,H_l) + d(xnk'xm,H_l)]}) - (p(max {d(xmkﬂxnk)'d(xnk'xn,H_l)})
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It follows that
Y(d(Txm,, Tx,,)) < ¥ (max {d(xmk,xnk),d(xnk,Txnk+1),

1
E [d(xmk'xn,H_l) + d(xnk'xm,H_l)]}) - (p(max {d(xmk'xnk)'d(xnk'Txnk+1)})
w(d(xmk+1'Txnk+1) S w(max {d(xmkﬂxnk)' d(xnk'xnk+1)}) - (p(max {d(xmk'xnk)'d(xnk'Txnk+1)})

From (4), (5), (7) and (8) and letting k — oo in the above inequalities and using the conditions of ¥ and &, we have
Y(e) < ¥ (e) — ®@(g) which is contradiction by virtue of property @.

Hence (x,,) is a Cauchy sequence.
Since (x,,) € Aand A isa closed subset of the complete metric space (X, d), there exists x* in A such that x,, — x*.

Putting x = x,, and y = x* in (1) and since
d(x,, Tx*) < d(x,,x*) +d(x*, Tx,) and
d(x*,Tx,) < d(x*,Tx*)+d(Tx*,Tx,)
We have
Y(d(xp41, Tx*) —d(A, B) < Wd(Tx,,Tx"))
< Y(max {d(x,,x*), d(x,, Tx,41), d(x*, Tx*) — d(4, B),

%[d(xn,Tx*) +d(x*,Tx,)] —d(4,B)}) — @(max {d(x,,x"),d(x*, Tx*) —d(4,B)})

Taking the limitas n — oo in the above inequalities and using the conditions of ¥and ¢,we have
Ydx*Tx*) —d(A,B)) <¥(d(x*,Tx*) —d(4,B)) — ®(d(x*,Tx*) — d(4,B))

which implies that d(x*, Tx*) = d(4, B)
Hence x* is a best proximity point of T.
For the uniqueness

Let p and g be two best proximity point and suppose that p # q,
Then putting x = p and y = q in (1) we obtain

1
Y(d(T,, T,) < ¥ (max(d(,9), d@.T,) — d(4,B),d(6,T,) = d(A, B), 5 [d@.T,) +d(q,T,)] — d(A, B}

— ®(max{d(p,q),d(q,T,) — d(4, B)})
thatis ¥ (d(p,q)) < ¥(d(p,q)) — 2(d(p,9))

which is contradiction by virtue of a property @.
Therep =q
This completes the proof.
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