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ABSTRACT

In this paper we are analysing the reliability analysis of third optional service for a single server retrial queueing
system subject to server breakdowns occurs randomly at any phase of service. Arrival of passengers follows the
Poisson’s distribution law with parameter A, while the servers serving their services (parameter ) using exponential
distribution law on the basis of FCFS discipline. This exponential distribution rate comes to fail at second phase and
third optional phase of service. We also derive the joint probability distribution for the server, the probability
generating function of the stationary queue size distribution, some important performance measures and reliability
analysis with a numerical example. We obtain the transient and the steady state solutions for both queueing and
reliability measures, by using a supplementary variable method.

Keywords — The reliability analysis, optional service, server breakdown and repair, M/G/1 queue, stationary queue
size distribution and reliability index.

1. INTRODUCTION

Queueing models with optional service are the new upcoming requirements in queueing systems. These systems are
mostly suitable for passport sevakendra, banking service, telecommunications, operating systems etc. It is necessary to
check the reliability analysis of these models based on different variations. We are also moving towards third optional
service respect to server breakdown and repair. The first and second are the essential services for all the arriving
customers. These types of systems are known as multiphase queueing systems. K.C.Madan [11] studied an M/G/1
queue with second optional service in which first essential service time follows a general distribution but second
optional service is assumed to be exponentially distributed. Medhi [12] generalized this model by considering that the
second optional is also governed by a general distribution. D.H.Shi [2] gives the new method for the calculation of
mean number of failures and availability of server for a repairable system. W. Li, D. Shi, X. Chao, [3] were the first to
make paper in the segment of reliability analysis of M/G/1 queueing system with server breakdowns and vacations.
Y. Tang, [6] represents the single server M/G/1 queueing system subject to breakdowns — their reliability with
queueing problems. O. Kella, [10] was the first to provide the optimization control of vacation scheme in an M/G/1
queue. This optimization control is helpful for the solution of mean number of failures in the system. Gautam
Chaudhary [13] to [16] works for Bernoulli vacation, delayed repair, multiple vacation policy for two phases of service
respect to server breakdown and repair. D.R. Cox, [17] gives the most suitable tool of supplementary variables for non
Markovian stochastic process.

The remaining overview of the paper is as follows —In point 2, we represent the description of mathematical model and
assumptions. Point 3 stands for the model solution and derivations of the stationary distribution of the queue size for
the server. Point 4 stands for the reliability analysis of the system and derivation of availability of server for steady
state and number of failures in the system. Point 5 stands for numerical illustration to know the effect of reliability
factor of the system. Finally conclusion is drawn in last one. To derive the probability generating function for queue
size distribution at different phases of service, we apply the supplementary variable technique by introducing one or
more supplementary variables.
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2. THE MATHEMATICAL MODEL AND ASSUMPTIONS

The assumptions of this model are: Let us suppose an M/G/1 retrial queueing system. In this system arrivals of
customers are according to a Poisson process with arrival rate ‘A’. It is a single server model. The system serves
according to first come, first serve (FCFS) service discipline. All the arriving customers join the queue and serves the
essential preliminary first phase and second phase of regular service. Let B(v) and b(v)respectively be the probability
distribution function and density function of the first service times with mean rate 1 / y; and py(x) is the hazard rate
function, and let C(v) and c(v)respectively be the probability distribution function and density function of the second
service times with mean rate 1 / 1, and Ux(x) is the hazard rate function. When the second service of a customer is
completed then customer can apply for third optional service with probability p or he can leave the system permanently
with probability 1 — p. On leaving the system if there is any customer at the head of the queue joins the server and
apply for first essential service. The third service times are consider to be exponentially distributed with mean service
rate 1 / ps. Let us suppose for first essential service the server has exponential distribution with mean 1/ a,;. For second
and third service the server fails with an exponential distribution of rate a, and as. While serving the customers the
server can break down at any instant, and if it happens then the server is sent for repair. The distributions of the repair
time for all the three phases are arbitrarily distributed with the probability distribution functions G;(x), for i = 1,2,3,
with probability density functions gi(x), means are 1/ B;for i = 1,2,3 and B;(x) are the hazard rate function for i =1,2,3.
When the server is repair it again restarts its service to serve the customers, where the service time is cumulative. All
the process involved in the system are consider to be mutually exclusive to each other.

Let the total number of customers in the system is N(t) at time t. By using a supplementary variable method, we obtain
the transient and the steady state solutions for both queueing and reliability measures. To solve under a Markov
process, let X(t) = the elapsed service time of the customer which is served, Y(t) = the elapsed repair time of the

customer for failed server at time t, Q(t) = probability of server is at idle state at time t, Pn(l) (t; X)dx = probability of n
customers in the queue at time t, excluding the one which is serve, the elapsed service time of a customer between x
and x + dx during first essential service, Pn(z) (t; X)dx = probability of n customers in the queue at time t, the elapsed

service time of a customer between x and x + dx during second essential service, Pn(3) (t)dx = probability of n

customers in the queue during third optional service. Sr(]i)(t, X; y)dy = is the joint probability of n customers at time t
for elapsed service time under service is equal to x, and server is repaired with elapsed repair time between y and
y + dy, where i = 1,2,3 for first, second essential service and third optional service respectively. To obtain a bivariate
Markov process {N (t),X(t)}at any instant t, system can be characterised by the random variables N(t), X(t) and
Y(t).From time range tto t + dtand letting At — 0, the system of forward equations for n = 0, 1, 2.... are governed as
follows —

d 0 ©

sz@(t) — P O+ - P)| [} PO €0 000+ [ R (08090 | @)
-§+§+muww+%}mam PO+ S 4% ) A (y)dy @2
o 0 o
j§+5+yxw+z+a4wamw=zw?@M+Lsﬁamw»zwmy @3
§+ﬂ4n+»u§k9m=zw%0+{fe@mmMWMwﬂwatw%umq

[ S9y)8(Ndy @9
_8%+§+ A+ ﬂl(y)_Sél) (txy) = A8 (L X y) (2.5)
i+£+/1+,Bz(y) S@(t,x;y) =S (t, x; y) (2.6)
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Under the boundary conditions,

R (t0) = (- p)[ [ PO (dx+ [P, x)qu)dx] WACIOREY (28)

RO (t:0) = (1- p)[ [ RO 0m)dx+ [ RO, x)uz(xmx} + (RO M)+ Q) n21 29)

SP(t,x;0) = o, PO (t; X) (2.10)
St x,0) = a,P? (t;x) (2.11)
S (t;0) = ;PO (t) (2.12)

The set of above equations (2.1) — (2.12) are solved together under the normalising condition,

5 ROM+ [ POt x)dx+ [ PP (&, x)dx+ [ S (¢, y)dy+ [ [ S (t,x, y)dxdy
1=Q)+
-0 + IO _[O S@(t, x, y)dxdy

with initial condition Q(0) =1, with any fixed t, X, y.
3. THE MODEL SOLUTION

Let us introduce the following PGFs,
PU(t,x,2) =2 2"PY(t,x), RP(t,x,2) =D 2"PP(t,x), PRO(t,2) = z"PA (1)
n=0 n=0 n=0
SP(txy,2)=2.2"SP(txy) . SP(txy,2) =) 2"SP(t,x,y) . SP(t,y,2) =D 2"SP(t,y)
n=0 n=0 n=0

Using definition of Laplace transform f(r),
£ _[* -1t
fU)—Le f (t)dt
and define &,(r,z)=r+A-Az+oa; —;0;(r + A —Az),fori=1.23

Theorem 3.1: The Laplace — Stieltjes transforms and probability for stationary queue size distribution is given by -

[&,(r,2) + 1][(r + 2 - 22)Q(r) -1]

D (1) _ " _
X D) = G ) =216 () + ] - pean D) ng) e el 2HE=B00)
o A2+ I+ A= A2)O() 1] } .
R D) = e ) =2lE(r )+ aa]— pe& (1, ), () o (2P B ()
B0 (2= PCa(Dr+4-42)Q(r) 1)

[CE(r2) - 21L&, (1, 2) + ]~ PEE(T D), 2)
- 1
vy

SO(r,x,y,2) =, PP (1, x,2) exp{—(r + A - Az) yH1-G,(Y))
SA(r,x,Y,2) = a,P2 (r, x, z)exp{~(r + 1 - 2z) y}(1- G, (y))
SO(r,y,2) =P (r,2)exp{~(r + 1 - Az) y}{1-G,(Y))

where z; is the root of the equation,

k=g, (r,x) - PO g1 Re(ry > 0
& X) +

Proof: Taking Laplace transform from equation (2.1) — (2.7) with respect to t we have

(r+ 20 ~L= wR2(r) + (1= P)| [ PO (r 0100+ [} B2 (r, 0,0 61
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9
OX

% PO, X)+ (1 + 41, () + A+a,)P (1, %) = ABE(r, )+ [ SO (r, % y) B, (y)dy (3:3)

PO, X) + (1 +44,(0) + A+ ) PO (r, ) = 2RY(r.x) + [ SO (r, % y) A (y)dy @2

[r+ 2,00+ 2+ @ PO =BG 0) + p| [ PO 000+ [ P10 ()0 |

+[SO(rxy),(y)dy (34)
%ﬂ”(n X Y)+(s+A+B(Y)SP(r,xy) =S (r,x y) (3.5)
%Siﬁ”(m )+ (54 A+ A0SO, %y) = ASAr,x:Y) @)
%S”P(r,y)+(s+ﬂ+ﬂ3(y)s“§3><r,y)=z§§31(r,y) @)

Similarly taking Laplace transform from equation (2.8) — (2.12) with respect to t we have

we have,

RY(r0)= (- p)[f RA(r X (dx+ [ RA(r, x)ﬂz(x)dx} +H(ORA(). n=1 @39)

POr0) =) [} RO (0 (dx+ [ B (rx) (x| + i (0P (1) + 2Q(r) n>109)

S(r,x,0) = P (r; %) (3.10)

S (r,x:0) = a,P(r;x) (3.11)

$,7(r;0) = ;R (r) (3.12)
On multiplying equation (3.2) by Z 2", using probability generating function defined in section 3 and on simplifying

n=0

% PO(r,x,2) = —(r +a, + g, + A— A2)PO(r, x,2) +I: SO(r,x,y,2) 4. (y)dy (3.13)
Again applying similar operations from equation (3.4) — (3.12), we have

£8Py =5+ A=zt AOISL (Y. 14

0 Q(2) — g (2)

ESV (r,x,y,2)=—(s+A-Az+ 5,(y))S,”(r, X, y,2) (3.15)

%553) (r,y,2)=—(s+A-2z+ B, (Y)SP(r.y,2) (3.16)

[r+ 00+ 2= 22+ @ P2 (1,2) = B| [} PO, (0 [ PO(r % 2) 0, (0%
+[752(r,y,2)B,(y)dy (317)
PO (r.0,2)= - p) [ (X, D (9 [ P (%, 20, (000K |+, 00RE (. 2)

- p) [P0 000k [ BP0, 00k [+ (0RO (1) +22Q() 19

S®(r,x,0,2) =, PO (r; x, 2) (3.19)
SP(r,x,0,z) = a,P? (r; x,2) (3.20)
SP(r;0,2) = a,PO(r,2) (3.21)
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On rewriting equation (3.1)

—[ﬂﬁ“)(ma— p)[ [ RO () (dx+ [ F%‘”(r,x)uz(x)dxﬂ =1-(r+2Q(N  @22)

Using equation (3.22) in equation (3.18) then,
PO(r,0,2) =1+ (1- p)[f RO, %, 2) (x)dx+ [P (1, x, z)uz(x)dx} + ()R (r,2)

+(Az-2-1)Q(r) (3.23)

Now solving equations (3.11), (3.12) and (3.13)
SO(r,x,y,2) =S®(r,x,0,z) exp[-(s + A — A7) y](1— G,(y)) (3.24)
S0 %, Y,2) = S (1, x.0,2) exp[~(s + 2~ 22) Y11~ Gy (y)) (3.25)
SO(r,y,2) = a,RP (r,2)exp[—(s + 1 — 22) yIL - G;(y)) (3.26)

Put value of (3.24) in equation (3.13) becomes
ZRO(rx2) = (1 +ay+ e+ 4= 20RO (10, D)+ PO 1, x2) [ expl(s+ 2~ 2)YIL- GUMAMY
X

on solving above equation,
PO(r,x,z) = PO(r,0,z) exp{-¢&,(r, 2)x}(1- B(x)) (3.27)

also,

[ PO %, 2) ()dx+ [ "R (r,x,2) 1, ()dx = B (1,0, 2)e{&, (r, 2)} (3.28)

Using equation (3.21), (3.26) and (3.28) in equation (3.17) then,

[r 4+ 15(0) + 2= A2+ 0, P (r,2) = PP (1.0, )64, (r, D3+ P (1, 2)[[ expl-(s+ 4~ 72)Y1(L- Gy(y)) A (y)cy

[r+1,(x) + A=Az + o, PO (r,z) = pPO (1,0, 2)c{&,(r, 2)}+ ;PO (r, 2) G, (r + A — A2)
5O (r. 7)< PRO(10.2)c{5,(r.2)}

(3.29)
&1, 2) + 14y
Integrating (3.27) with respect to x by parts then,
BO(r,2) = BO(r.0, Z){M} (3.30)
&(r.z)
On combining (3.19), (3.24) and (3.30)
§\51) (r,2)=a, 1-c{&(r,2)}1-g,(r+A-12) |5V(1) (r,0,2) (3.31)
&(r,z) (r+A-A12)
§\52) r.2)=a, 1-c{&,(r,2)}1-g,(r+1-42) ISV(l) (r,0,2) (3.32)
& (r,z) (r+A-12)
§\53) (I’1 Z) —a, 1—6{§S(F, Z)}l— 63(r +A _/IZ) ﬁv(l) (r10, Z) (3.33)

& (r,2) + g (r+1-42)

Using eq (3.23) and (3.29) -
5O x2) = (D) + ]l +2-72)Q(0) 1)
CTTTIe(E(n )~ 208, (r 2) + ] - P& (r,2)E,(r )

exp{-¢,(r, 2)x}(1-By(x))

similarly for P@(r,x,z) and PO(r, x,2) .
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Theorem 3.2: For the steady state system,

(1) The probability for the idle state of server, Q =1— p, (1+ ﬂ} -p, (1+ ﬂ} - pp; [1+ﬁJ
ﬂl ﬂz ﬂ3

(2) The probability for the busy state of server, P = p, + p, + pp,

A
(3) The probability for the repair state of server, R = ,01ﬂ +p, &+ Po; &where pi=—
B P B H

Proof: By Tauberian property,

Nowlet P,(r,z) =P (r,2)+ P2 (r,2) + PV (r,2) + R “(r,2) + R, (r,z) + R, (r, z) represents the

probability generating function for number in the queue then applying results of theorem (3.1),

b (1. 2) - P DOE(1,2) + P& (1 DB 2} + (4,1, + 1) (- A& (r, DYQ() -1/ v+ 72
' (&(r 2) + 15)C 8, (1, 2) = (&, (r, 2) + 11,)(C{6,(r, 2)} - 2) — P&, (r, 2)C{&, (r, 2)}

(3.34)

Multiplying above equation by r and taking r — O and applying Tauberian property,
P (2) = limrP (1. 2) = P06 (0.9) + P& (0.2)C{E 0.2)}+ (5,0.2) + 1)L~ HE Q.23
' =0T (55(0,2) + 45)€4,(0,2) = (£, (0, 2) + 4,)[6{£,(0,2) - 23] - P&, (0, 2)e{, (0, 2)}

Set z =1and apply L- Hospital rule, on simplifying

{— p/m[u “ﬁSJ—ﬂ% [1+ ?]/M —m (1+ ?j/yl}(}

pz(u Oﬁ%)w{z(u Z‘ZJ/M ~1|+ P(M?J/M —1}

0Q+Py(1) =1, we have

“1opl1a & | 514 % |- 14 %
Q p1(+ﬁ,1] pz(+ﬁ2} pps(+ﬂ3

where p, (1+ %) +p, {1+ %] + PP, (1+ %J <1, emerges for stability condition.

1 2 3

P,()=1imP,(2) =

P =limlimr[P® (r,z) + P2 (r,z) + PO(r, 2)]

z—1 r—0

R=Ilimlimr[R®(r,z) + R@(r,z) + R®(r,2)]

z—>1 r—0
are direct calculations.

Theorem 3.3: The Laplace Steiltjes transform for the moment generating function Z Pnzn is,
n=0

5 __[P&(r, 2)e{&,(r,2) + p&, (r, )&, (r, )} + (&, (r,2) + 1) A -, (r, 2)}] 1 1

P(r,z)= (&,(r, 2) + 1,)CE,(r,2) — (&,(r, 2) + w, ) (C{E,(r, 2)}—2) — p&E,(r, 2)S{E(r, )} r+ A Az, Y+ A-Az

Proof: From theorem (3.1) and equation (3.34), we have the result.
4. THE RELIABILITY ANALYSIS

In this section, the availability of system, their failure frequency, failure time of server etc are analysed. Let
M(t) = availability of system at time t ( the probability of system working at time t), then the following results obtained.

Theorem 4.1: The Laplace Steiltjes transform of M(t) is given by,
__ L (elra 2= 22) -0 [p&(r)e{E(rd) + pS, (r)O{g (FD}+ (&, (rD) +41,) - {5 (r 3]
r+A-4z, (S3(rD) + 1) 8, (r1) — (&, (r D) + 1, )&, (r.1)}-1) - p&, (r.1)e{S, (r. 1)}
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Corollary 1: The availability of the server for steady state is given by,

(04 o o
R A}

Corollary 2: The failure frequency of the server for steady state is given by,
My = pioy + pra, + PPyt

where z, is the root of the equation (3.1) inside |Z| =1, Re(r) > 0.

Proof: From theorem (3.1) and result M (r) = Q(r) + If’v(l)(r,l) + FA’V(Z) (r)+ |5v(3)(r,1) ,
We have the result.

Theorem 4.2: The Laplace Steiltjes transform of M,(t), M,(t) and Ms(t) is given by,

ML (r) = ] @ (& (D) + )[rQ(N) -1 _ 1-c{a(rD}
(& D +u)C5 ()~ (&) +m)CAE(rDI-D - pS(r)HE (D} &(rD)

M (r) = o, (5(r )+ 41,)[rQ(r) 1] 1-c{5(r}
(& (rD)+ )8, (r) (&, (rD) + 16,) (S, (r 3= - ps, (r He{S (r D} &,(rD)

ML (r) = pats, (r)S{&, (r)HrQ(n) -1

(& (rD) +)C8,(rD) (& (r) + ) (C{&(r)}-1) - p&,(rHe{& (r)}

Proof: Using [2], and I\ﬁi(r) = Z:lofai Isn(”(r,x)dx =, Isv(i)(l’,l) fori=123.
The result follows by theorem (3.1).

Theorem 4.3: The Laplace Steiltjes transform of R(t) is given by,

R(r) = 1 N p(r+a,)C(r+a,)+ p(r+a,)c(r+o,)+@—C(r+e))(r+o+ 1) r 1
Cr+A-Jz, [E(r+a,) —1)(r +a; + 1) — p(r +a,)(r +2,)e(r + ;)] lr+a-2z,

Proof: Apply the result
R() =0(r)+ |im[j°° RO, x, 2)dx+ [ BA(r,, z)dx} limPO(r,2)
717 J0 0 71"
The result follows.

5. NUMERICAL EXAMPLE

Now, we are demonstrating the effect of failure rates of ¢; (for i =1, 2, 3) on some of the performance measures of the
system in steady state.

Let us suppose p = 0.2, A = 0.50, u; = 1.50, p, =1.25, Y3 =1.00, B, = 0.15, B, = 0.10, Bz = 0.05 and allow the failure
rates o; (for i= 2, 3) varies from 0 to 0.08.

The availability of the server for steady state is given by,

(04 a (04
BB B

The failure frequency of the server for steady state is given by,
A
M = pia, + p,a, + Ppsaswhere p = —
i
The result of this setup is given in table 1, where the server availability for the steady state A and failure frequency Mg
for steady state are calculated using the above data mention.

It is observed that higher the value of o; (for i=2, 3) results in low server availability and high failure frequency.
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ay ap a3 By B2 Bs A M¢
0 0 0 1 0

0.10 | 0.05 0 0.15| 0.10 | 0.05 | 0.582 | 0.053

0.10 | 0.05 | 0.02 | 0.15 | 0.10 | 0.05 | 0.542 | 0.055

0.10 | 0.05 | 0.04 | 0.15 | 0.10 | 0.05 | 0.502 | 0.057

0.10 | 0.05 | 0.06 | 0.15 | 0.10 | 0.05 | 0.432 | 0.059

0.10 | 0.05 | 0.08 | 0.15 | 0.10 | 0.05 | 0.422 | 0.061

0.10 0 0.05]0.15| 0.10 | 0.05 | 0.682 | 0.038

0.10 [ 0.02 | 0.05 | 0.15 | 0.10 | 0.05 | 0.602 | 0.046

0.10 [ 0.04 | 0.05 | 0.15 | 0.10 | 0.05 | 0.522 | 0.054

0.10 | 0.06 | 0.05 | 0.15 | 0.10 | 0.05 | 0.442 | 0.062

0.10 | 0.08 | 0.05 | 0.15 | 0.10 | 0.05 | 0.362 | 0.070

0.10 | 0.08 | 0.08 | 0.15| 0.10 | 0.05 | 0.49 | 0.06

Table-6.1: Effect of Reliability factor o, and .

6. CONCLUSION

This paper, we are analysing the M/G/1 single server retrial queueing system and observe the reliability analysis impact
on third optional service respect to server breakdown and repair. By using random variables for supplementary variable
technique based on Markov chain model, we derive the transient and stationary queueing model, and the reliability
measures for steady state with numerical illustration. It is clear from section 5 that on increasing the phases of service
then there is a great impact on system performance. The chances of server breakdown and low server availability also
increases due to increase in number of service phases. Optional service are customer dependent but they affect the
system reliability. For future work, it can be analysed by taking more number of servers in the same model.
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