(C大 $\$$ MA Available online through www.ijma.info ISSN 2229-5046

EVALUATION OF NEW MATHEMATICAL CONSTANT BY APPLICATION OF TWO DEFINED NUMBERS

RAJBALI YADAV*
Ordnance Factory Khamaria Jabalpur -482005, (M.P.), India.

(Received On: 18-09-20; Revised \& Accepted On: 05-10-20)

Abstract

Various mathematical constant have been investigated in mathematics, in this paper it is shown that if $A=a+10 b+100 c+1000 d+\ldots \ldots ., \& B=b+10 c+100 d+\ldots \ldots$, , are two positive integer of base 10 positional numeral system then ratio of A \& B in a defined manner is a Constant where $a, b, c, d \ldots$ are decimal digits (0 to 9).

Keywords: Base 10 numeral system, Decimal digit, Positive integer

1. INTRODUCTION

Between two numbers, $A=a+10 b+100 c+1000 d+\ldots$, and $B=b+10 c+100 d+\ldots$. , B depends upon A and is less than A.

Suppose,

$$
\operatorname{Lim}_{A \rightarrow \infty}\left(1+\frac{A}{B}\right)^{B / A} \text { and } \operatorname{Lim}_{A \rightarrow \infty}\left(1+\frac{B}{A}\right)^{A / B}
$$

are two equations in which limit of A is infinity, as soon as the value of A taken very large, A / B reaches toward 10 . Let $A=10$ so $B=1$, now A / B become exactly 10 . I hope $A=10 \& B=1$ give correct value of this Constant up to infinite decimal places.

1.1. Definition

Base 10 numeral system In math, $0,1,2,3,4,5,6,7,8$, and 9 are base ten numerals. We can only count to nine without the need for two numerals or digits. All numbers in the number system are made by combining these 10 numerals or digits

Decimal digits For writing numbers, the decimal system uses ten decimal digits, a decimal mark, and, for negative numbers, a minus sign "-". The decimal digits are $0,1,2,3,4,5,6,7,8,9$

Positive integers The positive integers are the numbers $1,2,3, \ldots$ (OEIS A000027), sometimes called the counting numbers or natural numbers.

2. EVALUATION OF CONSTANT

If A and B are two positive integer of base 10 positional numeral system in term of $A=a+10 b+100 c+1000 d+\ldots . .$. , $\& B=b+10 c+100 d+\ldots .$. , where $a, b, c, d \ldots \ldots$. are decimal digits (0 to 9) then

$$
\begin{aligned}
& \operatorname{Lim}_{A \rightarrow \infty}\left(1+\frac{A}{B}\right)^{B / A}=\text { Constant }=1.2709816152101406386055351375284 \ldots \ldots \\
& \operatorname{Lim}_{A \rightarrow \infty}\left(1+\frac{B}{A}\right)^{A / B}=\text { Constant }=2.5937424601
\end{aligned}
$$

Proof:

Table ' X '

$\begin{aligned} & \text { a , b , c , d, e } \\ & \text { Decimal digits (0 to 9) } \end{aligned}$	$\begin{aligned} & A=a+10 b \\ & +100 c+1000 d \\ & +\ldots \end{aligned}$	$\begin{aligned} & B=b+10 c+ \\ & 100 d+\ldots . \end{aligned}$	$\left(1+\frac{B}{A}\right)^{B / A}$	$\left(1+\frac{A}{B}\right)^{B / A}$
$\begin{aligned} & \mathrm{a}=9, \mathrm{~b}=8, \mathrm{c}=7, \mathrm{~d}=6, \mathrm{e}=5, \\ & \mathrm{f}=4, \mathrm{~g}=3, \mathrm{~h}=2, \mathrm{i}=1 \end{aligned}$	123456789	12345678	1.2709816....	2.59374246....
$\begin{aligned} & \mathrm{a}=8, \mathrm{~b}=8, \mathrm{c}=8, \mathrm{~d}=8, \mathrm{e}=8, \\ & \mathrm{f}=9, \mathrm{~g}=9, \mathrm{~h}=9, \mathrm{i}=9, \mathrm{f}=9 \end{aligned}$	9999988888	999998888	1.270981615.....	2.5937424601....
$\begin{aligned} & \mathrm{a}=7, \mathrm{~b}=8, \mathrm{c}=9, \mathrm{~d}=1, \mathrm{e}=0, \\ & \mathrm{f}=0, \mathrm{~g}=0, \mathrm{~h}=1, \mathrm{i}=3, \mathrm{j}=2, \\ & \mathrm{k}=1, \mathrm{l}=1, \mathrm{~m}=0, \mathrm{n}=1 \end{aligned}$	10112310001987	1011231000198	1.270981615210....	2.5937424601000
$\begin{aligned} & \mathrm{a}=9, \mathrm{~b}=9, \mathrm{c}=9, \mathrm{~d}=9, \mathrm{e}=9 \\ & \mathrm{f}=9, \mathrm{~g}=9, \mathrm{~h}=9, \mathrm{i}=9, \mathrm{j}=9, \\ & \mathrm{k}=9, \mathrm{l}=9, \mathrm{~m}=9, \mathrm{n}=9, \\ & \mathrm{o}=9, \mathrm{p}=9, \mathrm{q}=9, \mathrm{r}=9, \\ & \mathrm{~s}=9, \mathrm{t}=9 \end{aligned}$	$\begin{aligned} & 99999999999999 \\ & 999999 \end{aligned}$	$\begin{aligned} & 9999999999999 \\ & 999999 \end{aligned}$	$\begin{aligned} & 1.270981615210140638 \ldots \\ & \ldots \end{aligned}$	$\begin{aligned} & \text { 2.59374246010000 } \\ & 00000 \ldots \end{aligned}$
$\begin{aligned} & \mathrm{a}=9, \mathrm{~b}=9, \mathrm{c}=9, \mathrm{~d}=9, \mathrm{e}=9, \\ & \mathrm{f}=9, \mathrm{~g}=9, \mathrm{~h}=9, \mathrm{i}=9, \mathrm{j}=9, \\ & \mathrm{k}=9, \\ & \mathrm{l}=9, \mathrm{~m}=9, \mathrm{n}=9, \mathrm{o}=9, \mathrm{p}=9, q \\ & =9, \mathrm{r}=9, \mathrm{~s}=9, \mathrm{t}=9, \mathrm{u}=9, \mathrm{v}=9 \end{aligned}$	$\begin{aligned} & 99999999999999 \\ & 99999999 \end{aligned}$	$\begin{aligned} & 9999999999999 \\ & 99999999 \end{aligned}$	$\begin{aligned} & 1.270981615210140638605 \\ & \ldots \end{aligned}$	$\begin{aligned} & \text { 2.59374246010000 } \\ & 0000000 \ldots \end{aligned}$
$\mathrm{a}=0, \mathrm{~b}=1$	10	1	$\begin{aligned} & 1.270981615210140638605 \\ & 5351375284 \ldots . . \\ & \hline \end{aligned}$	2.5937424601

Important deduction from above observation.

For $\mathrm{A}=10 \& B=1$

$$
\begin{align*}
& \operatorname{Lim}_{A \rightarrow \infty}\left(1+\frac{A}{B}\right)^{B / A}=C 1=11 \wedge(1 / 10) \tag{1}\\
& \text { and } \\
& \operatorname{Lim}_{A \rightarrow \infty}\left(1+\frac{B}{A}\right)^{A / B}=C 2=1.1 \wedge 10 \tag{2}
\end{align*}
$$

Taking 'log' both side for equation (1) \& (2)

$$
\begin{align*}
& \log C 1=\log 11 \wedge(1 / 10)=1 / 10 \log 11 \\
& \log 11=10 \log C 1 \tag{3}\\
& \log C 2=\log 1 \cdot 1^{\wedge} 10=10[\log 11-\log 10] \tag{4}
\end{align*}
$$

Put the value of ' $\log 11$ ' from equation (3) in equation (4)

$$
\begin{aligned}
\log C 2 & =10[10 \log C 1-\log 10] \\
& =100 \log C 1-10 \log 10
\end{aligned}
$$

$\log 10^{\wedge} 10=100 \log C 1-\log C 2 \quad\{$ as $\log a-\log b=\log (a / b)\}$
$\log 10 \wedge 10=\log [\mathrm{C} 1 \wedge 100 / \mathrm{C} 2)$
$10 \wedge 10=\mathrm{C} 1 \wedge 100 / \mathrm{C} 2$
$C 1 \wedge 100=10 \wedge 10 \times C 2$

CONCLUSION

Based on above observation mentioned in table $\mathrm{X}, \mathrm{A}=10$ give correct value of first constant up to 31 decimal places than other numbers and can be shortly written as $11 \wedge(1 / 10)=1.2709816152101406386055351375284 \ldots$. \& constant C 2 can be written shortly as $1.1^{\wedge} 10=2.5937424601$

REFERENCES

1. www.splashlearn.com
2. https//en.wikipedia.org
3. https://mathworld.wolfram.com/PositiveInteger.html

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

