MODULO ELEVEN: NUMBER THEORY (11A07; 11A41)

VIBHU SACHDEV

10/37, Old Rajinder Nagar, New Delhi - 110060, India.

(Received On: 25-09-20; Revised & Accepted On: 05-10-20)

ABSTRACT

The following paper provides a technique, with the help of which, one can easily and efficiently find remainders when a two or three-digit number is divided by 11. The paper provides logical and simple proofs to the formulae as well as verifies them with the help of examples.

Keywords: Number theory, modular arithmetic, congruence modulo, modulo 11, division algorithm.

INTRODUCTION

Modular Arithmetic

\[a \mod n = r \]

When \(a = qn + r \), where \(q \) is the quotient and \(r \) is the remainder upon dividing \(a \) by \(n \), we write \(a \mod n = r \).

\begin{align*}
3 \mod 2 & = 1, \text{ since } 3 = 1 \times 2 + 1 \\
6 \mod 2 & = 0, \text{ since } 6 = 2 \times 3 + 0 \\
11 \mod 3 & = 2, \text{ since } 11 = 3 \times 3 + 2
\end{align*}

Definitions and Concepts Used

- \(\mod 11/\text{modulo 11} \) implies the remainder obtained when a number, here a two or three-digit number, is divided by 11.

- Let \(m \) be any multiple of 11, then \(m \mod 11 = 0 \).

- Division Algorithm for integers: Suppose \(b > 0 \) and \(a \) are integers. Then there exist unique integers \(q \) and \(r \) such that \(a = bq + r \), where \(0 \leq r < b \). The number \(q \) is called the quotient and \(r \) is called the remainder. \([2]\)

- The set \(Z_n = \{0, 1, \ldots, n - 1\} \) for \(n \geq 1 \) is a group under addition modulo \(n \). For any \(j > 0 \) in \(Z_n \), the inverse of \(j \) is \(n - j \). \([3]\)

FORMULATION, PROOFS, and EXAMPLES

Let \(ab \) be a two-digit number, where \(a \) is the tens digit and \(b \) is the ones digit, then:

\[ab \mod 11 = \begin{cases}
 b - a & \text{if } a \leq b \\
11 - (a - b) & \text{if } a > b
\end{cases} \]

Proof:

i) Given \(a \leq b \),

\[ab \text{ can be written as:} \]

\[a \times 10 + b \]

Now, adding and subtracting \(a \) from (1), we get,

\[a \times 11 + (b - a) \] \hspace{1cm} (2)

Equation (2) modulo eleven gives the remainder as \(b - a \).
ii) Given \(a > b \)

Equation (2) modulo eleven, in this case, leaves us with \((b-a) \mod 11\), where \(b-a < 0\). The remainder, however, cannot be negative and therefore here, \(b-a \) can be viewed as the additive inverse of \(a-b \), which will be \(11-(a-b) \).

(The set of remainders when a number is divided by 11 is \(\{0,1,2,3,4,5,6,7,8,9,10\} \) which is the group \(\mathbb{Z}_{11} \) with the operation addition modulo 11. The additive inverse of an element \(j \) is given by \(11 - j \)).

Examples:

1. Consider the number 24. Here, \(2 < 4 \) and hence, the remainder is \(4 - 2 = 2 \).

 It can be verified by dividing 24 by 11. \(24 = 11 \times 2 + 2 \), by division algorithm, which clearly gives 2 as the remainder.

2. Consider the number 42. Here, \(4 > 2 \) and hence, using the above formula, the remainder would be \(11 - (4 - 2) = 9 \).

 It can be verified by dividing 42 by 11. \(42 = 11 \times 3 + 9 \), by division algorithm, which clearly gives 9 as the remainder.

Let \(abc \) be a three-digit number, where \(a \) is the hundreds digit, \(b \) is the tens digit and \(c \) is the ones digit, then:

\[
abc \mod 11 = \begin{cases}
 a + c - b & \text{if } a + c \geq b \text{ and } a + c - b \leq 11 \\
 (a + c) - b - 11 & \text{if } a + c \geq b \text{ and } a + c - b > 11 \\
 11 - (b - (a + c)) & \text{if } a + c < b
\end{cases}
\]

Proof:

(i) \(a + c \geq b, (a + c) - b \leq 11 \)

\(abc \) can be written in the expanded form as:

\[
a \times 100 + b \times 10 + c
\]

Adding and subtracting \(10a \) and \(b \) in (1), we get,

\[
110 \times a + 11 \times b + c - 10 \times a - b
\]

Writing \(-10 \times a \) as \(-11 \times a + a \) in (2), we get,

\[
110 \times a + 11 \times b + c - 11 \times a + a - b
\]

Equation (5) modulo 11, gives the remainder as \(a + c - b \).

(ii) \(a + c \geq b, (a + c) - b > 11 \)

Reducing equation (5) modulo 11, gives \(a + c - b \). Here, since, \(a + c - b > 11 \), it can be written as:

\[
11 + [(a + c - b) - 11], \text{ where } [(a + c - b) - 11] < 11
\]

(Since, the maximum value of \(a + c - b \) can be 18, when \(a = 9 \) and \(b = 0 \).)

Equation (6) modulo 11, gives the remainder as \((a + c - b) - 11 \).

(iii) \(a + c < b \)

Again, reducing equation (5) modulo 11, we get, \(a + c - b \). Here, \(a + c - b < 0 \), therefore, it can be viewed as the additive inverse of \(b - (a + c) \), where \(b - (a + c) > 0 \), which is given by

\[
11 - [b - (a + c)].
\]

These three cases are exhaustive; any three digit number will fit into either of the three cases.

Examples:

1. Consider the number 148 Using the above formula, we get the remainder as \(1 + 8 - 4 = 5 \).

 It can be verified using the division algorithm:

 \(148 = 11 \times 13 + 5 \), which clearly gives the remainder as 5.
2. Consider the number 819. Using the above formula, since $8 + 9 - 1 = 16 > 11$, therefore the remainder is $16 - 11 = 5$.
Using division algorithm, we get, $819 = 11 \times 74 + 5$, which clearly gives the remainder as 5.

3. Consider the number 191. Using the above formula, the remainder will be $11 - \left(9 - (1+1)\right) = 4$.
Using division algorithm, we get, $191 = 11 \times 17 + 4$, which clearly gives the remainder as 4.

Let $a0b$ be a three-digit number, where a is the hundreds digit, 0 is the tens digit and b is the ones digit, then:

$$a0b \mod 11 = \begin{cases} a + b & \text{if } a + b \leq 11 \\ a + b - 11 & \text{if } a + b > 11 \end{cases}$$

This is, in particular, for a three digit number whose tens digit is zero.

The formula for two-digits can also be obtained from the formula for three-digits by equating a to 0.

REFERENCES