International Journal of Mathematical Archive-11(10), 2020, 39-41 Available online through www.ijma.info ISSN 2229-5046
 MODULO ELEVEN: NUMBER THEORY (11A07; 11A41)

VIBHU SACHDEVA*
10/37, Old Rajinder Nagar, New Delhi - 110060, India.
(Received On: 25-09-20; Revised \& Accepted On: 05-10-20)

Abstract

The following paper provides a technique, with the help of which, one can easily and efficiently find remainders when a two or three-digit number is divided by 11. The paper provides logical and simple proofs to the formulae as well as verifies them with the help of examples.

Keywords: Number theory, modular arithmetic, congruence modulo, modulo 11, division algorithm.

INTRODUCTION

Modular Arithmetic ${ }^{[1]}$

When $a=q n+r$, where q is the quotient and r is the remainder upon dividing a by n, we write $a \bmod n=r$.
$3 \bmod 2=1$, since $3=1 \times 2+1$
$6 \bmod 2=0$, since $6=2 \times 3+0$
$11 \bmod 3=2$, since $11=3 \times 3+2$

Definitions and Concepts Used

- mod 11/modulo 11 implies the remainder obtained when a number, here a two or three-digit number, is divided by 11 .
- Let m be any multiple of 11 , then $m \bmod 11=0$.
- Division Algorithm for integers: Suppose $b>0$ and a are integers. Then there exist unique integers q and r such that $a=b q+r$, where $0 \leq r<b$. The number q is called the quotient and r is called the remainder. ${ }^{[2]}$
- The set $Z_{n}=\{0,1, \ldots n-1\}$ for $n \geq 1$ is a group under addition modulo n. For any $j>0$ in Z_{n} the inverse of j is $n-j$. ${ }^{[3]}$

FORMULATION, PROOFS, and EXAMPLES

Let $a b$ be a two-digit number, where a is the tens digit and b is the ones digit, then:

$$
a b \bmod 11=\left\{\begin{array}{cll}
b-a & \text { if } & a \leq b \\
11-(a-b) & \text { if } & a>b
\end{array}\right.
$$

Proof:
i) Given $a \leq b$,
$a b$ can be written as :
$a \times 10+b$
Now, adding and subtracting a from (1), we get,

$$
\begin{equation*}
a \times 11+(b-a) \tag{2}
\end{equation*}
$$

Equation (2) modulo eleven gives the remainder as $b-a$.
ii) Given $a>b$

Equation (2) modulo eleven, in this case, leaves us with $(b-a) \bmod 11$, where $b-a<0(\sin c e, a>b)$. The remainder, however, cannot be negative and therefore here, $b-a$ can be viewed as the additive inverse of $a-b$, which will be $11-(a-b)$.
(The set of remainders when a number is divided by 11 is $\{0,1,2,3,4,5,6,7,8,9,10\}$ which is the group Z_{11} with the operation addition modulo 11 . The additive inverse of an element j is given by $11-j$).

Examples:

1. Consider the number 24 . Here, $2<4$ and hence, the remainder is $4-2=2$.

It can be verified by dividing 24 by $11.24=11 \times 2+2$, by division algorithm, which clearly gives 2 as the remainder.
2. Consider the number 42. Here, $4>2$ and hence, using the above formula, the remainder would be $11-(4-2)=9$.
It can be verified by dividing 42 by 11. $42=11 \times 3+9$, by division algorithm, which clearly gives 9 as the remainder.

Let $a b c$ be a three-digit number, where a is the hundreds digit, b is the tens digit and c is the ones digit, then:

$$
a b c \bmod 11=\left\{\begin{array}{cccc}
a+c-b & \text { if } & a+c \geq b & \text { and } a+c-b \leq 11 \\
{[(a+c)-b]-11} & \text { if } & a+c \geq b & \text { and } \\
a+c-b>11 \\
11-[b-(a+c)] & \text { if } & a+c<b &
\end{array}\right.
$$

Proof:

(i) $a+c \geq b ;(a+c)-b \leq 11$
$a b c$ can be written in the expanded form as:
$a \times 100+b \times 10+c$
Adding and subtracting $10 a$ and b in (1), we get,
$110 \times a+11 \times b+c-10 \times a-b$
Writing $-10 \times a$ as $-11 \times a+a$ in (2), we get,
$110 \times a+11 \times b+c-11 \times a+a-b$
Equation (5) modulo 11, gives the remainder as $a+c-b$.
(ii) $a+c \geq b ;(a+c)-b>11$

Reducing equation (5) modulo 11, gives $a+c-b$. Here, since, $a+c-b>11$, it can be written as:
$11+[(a+c-b)-11]$, where $[(a+c-b)-11]<11$
(Since, the maximum value of $a+c-b$ can be 18 , when $a=c=9$ and $b=0$.)
Equation (6) modulo 11, gives the remainder as $(a+c-b)-11$.
(iii) $a+c<b$

Again, reducing equation (5) modulo 11, we get, $a+c-b$. Here, $a+c-b<0$, therefore, it can be viewed as the additive inverse of $b-(a+c)$, where $b-(a+c)>0$, which is given by $11-[b-(a+c)]$.

These three cases are exhaustive; any three digit number will fit into either of the three cases.

Examples:

1. Consider the number 148 Using the above formula, we get the remainder as $1+8-4=5$.

It can be verified using the division algorithm:
$148=11 \times 13+5$, which clearly gives the remainder as 5 .
2. Consider the number 819 . Using the above formula, since $8+9-1=16>11$, therefore the remainder is, $16-11=5$.
Using division algorithm, we get, $819=11 \times 74+5$, which clearly gives the remainder as 5 .
3. Consider the number 191. Using the above formula, the remainder will be $11-[9-(1+1)]=4$. Using division algorithm, we get, $191=11 \times 17+4$, which clearly gives the remainder as 4 .

Let $a 0 b$ be a three-digit number, where a is the hundreds digit, 0 is the tens digit and b is the ones digit, then:

$$
a 0 b \bmod 11=\left\{\begin{array}{ccc}
a+b & \text { if } & a+b \leq 11 \\
a+b-11 & \text { if } & a+b>11
\end{array}\right.
$$

This is, in particular, for a three digit number whose tens digit is zero.
The formula for two-digits can also be obtained from the formula for three-digits by equating a to 0 .

REFERENCES

1. Joseph A. Gallian, Contemporary Abstract Algebra, $4^{\text {th }}$ edition, Narosa Publishing House, 1999, pg: 8-9.
2. Joseph A. Gallian, Contemporary Abstract Algebra, $4^{\text {th }}$ edition, Narosa Publishing House, 1999, pg: 4
3. Joseph A. Gallian, Contemporary Abstract Algebra, $4^{\text {th }}$ edition, Narosa Publishing House, 1999, pg: 42.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

