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ABSTRACT 
The methods of graph index computation can help to find out of chemical, biological information of drugs in Chemical 
science. In this paper, we introduce the multiplicative reduced modified second Zagreb index, multiplicative reduced 
product connectivity index, multiplicative reduced atom bond connectivity index, multiplicative reduced geometric-
arithmetic index, multiplicative reduced F1-Index of a graph and compute exact formulas for carbon nanocone 
networks, armchair polyhex nanotubes and zigzag polyhex nanotubes. 
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1. INTRODUCTION 
 
A molecular graph or a chemical graph such that its vertices correspond to the atoms and the edges to the bonds. The 
whole structure of a graph is characterized by numeric quantity called a graph index or a topological index. Several 
graph indices [1] have been considered in Theoretical chemistry have found some applications, especially in 
QSPR/QSAR study, see [2, 3]. Let G be a finite connected in directed graphs without loops and multiple edges. Let G 
be a such graph with vertex set V(G) and edge set E(G). The degree DG(v) of a vertex v is the number of vertices 
adjacent to v. for basic notations and terminologies, we follow the book [4]. 
 
The multiplicative reduced second Zagreb index and multiplicative reduced second hyper Zagreb index were 
introduced by Kulli in [5] and they are defined as 
 ( ) ( )( ) ( )( )

( )
1 1 1 .G G

uv E G
RM II G d u d v

∈

= − −∏  

 ( ) ( )( ) ( )( )
( )

2
2 1 1 .G G

uv E G
RHM II G d u d v

∈

 = − − ∏  

 
Recently some reduced Zagreb indices were studied in [6, 7, 8]. 
 
We introduce the multiplicative reduced modified second Zagreb index, multiplicative reduced product connectivity 
index, multiplicative reduced reciprocal connectivity index, multiplicative reduced F1- index of a graph as follows: 
 
The multiplicative reduced modified second Zagreb index of a graph G is defined as 
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The multiplicative reduced product connectivity index of a graph G is defined as 
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The multiplicative reduced reciprocal product connectivity index of a graph G is defined as  
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The multiplicative reduced F1 Index of a graph G is defined as 
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We also propose the multiplicative reduced atom bond connectivity index, multiplicative reduced geometric arithmetic 
index, and multiplicative reduced arithmetic –geometric index of a graph as follows. 
 
The multiplicative reduced atom bond connectivity index of a graph G is defined as 
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The multiplicative reduced geometric index of a graph G is defined as 
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The multiplicative reduced arithmetic –geometric index of a graph G is defined as 
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In [5], Kulli introduced the general multiplicative reduced second Zagreb index of a graph, defined as  
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Recently, some other multiplicative indices, were studied, for example in [ 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] 
 
In this paper, multiplicative reduced F1 index, general multiplicative reduced second Zagreb index for some chemical 
networks such as nanocones, nanotubes. 
 
2. RESULTS FOR CARBON NANOCONE NETWORKS 
 
The family of nanocones, denoted by CNC5[n] is called one pentagonal nanocomes, where n is the number of hexagons 
layers and 5 shows the sides of polygon which acts as the core of nanocones. A 6-dimensional one pentagonal 
nanocone network is shown in Figure 1. 

 
Figure-1 

Let G be the graph of one pentagonal nanocone CNC5[n]. Then G has 5 (n+1)2 vertices and 215 25 5
2 2

n n+ +  edges. In 

G, there are three types of edges based on degrees of end vertices of each edge. The edge based on degrees of end 
vertices of each edge. The edge partition of G is given in Table 1. 
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DG(u), DG(v)\uv∈E(G) (2, 2) (2, 3) (3, 3) 

Number of edges 5 10n 215 5
2 2

n n+  

Table-1: Edge partition of G 
 
Theorem 1: The multiplicative reduced second Zagreb index of CNC5[n] is 
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Proof: Let G be the graph CNC5[n]. By using equation and Table 1, we deduce  
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We establish the following results by using Theorem 1. 
 
Corollary 1.1: The multiplicative reduced second Zagreb index of CNC5[n] is 
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Corollary 1.2: The multiplicative reduced second hyper Zagreb index of CNC5[n] is 
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Corollary 1.3: The multiplicative reduced modified second Zagreb index of CNC5[n] is 
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Corollary 1.4: The multiplicative reduced product connectivity index of CNC5[n] is  
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Corollary 1.5: The multiplicative reduced reciprocal product connectivity index of CNC5[n] is 
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Proof: Put a = 1, 2, –1, –½, ½ in equation (1), we get the desired results. 
 
Theorem 2: The multiplicative reduced F1-index of CNC5[n] is given by 
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Proof: Let G = CNC5[n] By using equation and Table 1, we deduce 
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Theorem 3: The multiplicative reduced ABC index of CNC5[n] is 
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Proof: Let G = CNC5[n]. By using equation and Table 1, we derive 
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Theorem 4: The multiplicative reduced geometric arithmetic index of CNC5[n] is 
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Proof: Let G = CNC5[n]. By using equation and Table 1, we obtain 
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Theorem 5: The multiplicative reduced arithmetic geometric index of CNC5[n] is 
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Proof: Let G = CNC5[n] By using equation and Table 1, we deduce 
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3. RESULTS FOR ARMCHAIR POLYHEX NANOTUBES 
 
Carbon polyhex nanotubes exist in nature with remarkable stability and posses very interesting thermal, electrical and 
mechanical properties. Cylindrical surface of these nanotubes is made up of entirely hexagons. We consider the family 
of armchair polyhex nanotubes which is denoted by TUAC6 [p,q]. A 2-dimensional network TUAC6 [p,q] is shown in 
Figure 2. 
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Figure-2 

 
Let G be the graph TUAC6 [p,q]. By calculation, G has 2p(q+1) vertices and 3pq + 2p edges. In G, there are three types 
of edges based on degrees of end vertices of each edge. The edge partition of G is given in Table 2. 

dG(u),dG(v)\uv ∈ E(G) (2, 2) (2, 3) (3, 3) 
Number of edges p 2p 3pq – p 

Table-2: Edge partition of TUAC6 [p,q]. 
 
Theorem 6: The general multiplicative reduced second Zagreb index of TUAC6 [p,q]. is 
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Proof: Let G = TUAC6 [p,q]. By using definition and Table 2, we derive 
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Corollary 6.1: The multiplicative reduced second Zagreb index of TUAC6 [p,q] is 
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Corollary 6.2: The multiplicative reduced second hyper Zagreb index of TUAC6 [p,q] is 
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Corollary 6.3: The multiplicative reduced modified second Zagreb index of TUAC6 [p,q] is 
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Corollary 6.4: The multiplicative reduced product connectivity index of TUAC6 [p,q] is 
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Corollary 6.5: The multiplicative reduced reciprocal product connectivity index of TUAC6 [p,q] is 
 [ ]( ) 3

6 , 2 .pqRRPII TUAC p q =  
 
Proof: Put a = 1, 2, –1, –½, ½ in equation (2) we obtain the desired results. 
 
Theorem 7: The multiplicative reduced F1 index of TUAC6 [p,q] is 
 [ ]( ) 2 9 2

1 6 , 2 2 .p pq pRF II TUAC p q −= ×  
 
Proof: Let G = TUAC6 [p,q]. By using definition and Table 2 we obtain 
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Theorem 8: The multiplicative reduced ABC index of TUAC6 [p,q] is 

 [ ]( )
( )1 3

2
6

1, .
2

pq p

RABCII TUAC p q
+

 =  
 

 

 
Proof: Let G = TUAC6 [p,q]. By using definition and Table 2, we derive 
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Theorem 9: The multiplicative reduced geometric-arithmetic index of TUAC6 [p,q] is 
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Proof: Let G TUAC6 [p,q]. By using definition and Table 2, we deduce 
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Theorem 10: The multiplicative reduced arithmetic geometric index of TUAC6 [p,q] is 
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Proof: Let G = TUAC6 [p,q]. By using definition and Table 2, we derive 
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4. RESULTS FOR ZIGZAG POLYHEX NANOTUBES 
 
In this section, we consider the family of zigzag polyhex nanotubes which is symbolized by TUAC6[p,q], where p is the 
number of hexagons in a row whereas q is the number of hexagons in a column. A 2-dimensional network of 
TUAC6[p,q] is presented in Figure 3. 
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Figure-3 

 
Let G be the graph of TUZC6 [p, q]. By calculation G has 2p(q+1) vertices and 3pq+2p edges. In G, there are two types 
of edges based on degrees of end vertices of each edge. The edge partition of G is given in Table 3. 

DG(u),DG(v)\uv ∈ E(G) (2, 3) (3, 3) 
Number of edges 4p 3pq – 2p 

Table-3: Edge Partition of TUZC6 [p, q] 
 

Theorem 11: The general multiplicative reduced second Zagreb index of TUZC6 [p, q] is 
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From Theorem 6, and by using definitions, we obtain the following results. 
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Theorem 12: The multiplicative reduced F1-index of TUZC6 [p, q] is 
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Proof: Let G = TUZC6 [p, q]. By using definition and Table 3, we obtain 
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Theorem 13: The multiplicative reduced ABC index of TUZC6 [p, q] is 
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Proof: Let G = TUZC6 [p, q]. By using definition and Table 3 we have 
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Theorem 14: The multiplicative reduced geometric arithmetic index of TUZC6 [p, q] is 
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Theorem 15: The multiplicative reduced arithmetic arithmetic index of TUZC6 [p, q] is 
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