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ABSTRACT 
In this paper, extended exponentiated Weibull distribution is considered for Bayesian analysis. The expressions for 
Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and           
Al-Bayyati’s loss functions by using quasi and gamma priors. 
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1. INTRODUCTION 
 
The extended exponentiated Weibull distribution has been proposed by Mahmoudi et al. [1]. They observe that it 
contains exponentiated Weibull and extended generalized exponential distribution as special cases and it can be used 
quite effectively for analyzing lifetime data. The probability density function of extended exponentiated Weibull 
distribution is given by 

 ( ) ( ) ( )
1 1 1

11 1 1 0
θ

θ λθ λ λ
−

−  = − − − >  
c cf x; cx cx ; x .                  (1) 

 
The joint density function or likelihood function of (1) is given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ which is given 
as: 
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2. BAYESIAN METHOD OF ESTIMATION 
 
The Bayesian inference procedures have been developed generally under squared error loss function 
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The Bayes estimator under the above loss function, say, sθ
∧

 is the posterior mean, i.e, 

  ( )S Eθ θ
∧

= .                        (6)  
Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using symmetric loss function. 
Norstrom [4] introduced precautionary loss function is given as 

 

2

L ,
θ θ

θ θ
θ

∧

∧

∧

 −    = 
 

.                       (7)  

The Bayes estimator under this loss function is denoted by Pθ
∧

 and is obtained as: ( )
1
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∧
 =   .               (8) 

 
Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss 
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Also, the loss function ( )L δ  has been used in Dey et al. [6] 

and Dey and Liu [7], in the original form having 1p .=  Thus ( )L δ  can written be as: 

( ) ( ) 1eL b log ;  b>0.δ δ δ= − −                         (9) 

The Bayes estimator under entropy loss function is denoted by Eθ
∧

 and is obtained by solving the following equation 
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Wasan [8] proposed the K-loss function which is given as: 
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Under K-loss function the Bayes estimator of θ is denoted by Kθ
∧

 and is obtained as: 
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Al-Bayyati [9] introduced a new loss function which is given as: 
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Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by Alθ
∧

 and is obtained as: 
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Let us consider two prior distributions of θ to obtain the Bayes estimators. 
(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may use the quasi 
density as given by 
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= > ≥                      (15) 

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 
 
(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter θ given by 
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3. POSTERIOR DENSITY UNDER ( )1g θ  
 
The posterior density of θ under ( )1g θ , on using (2), is given by 
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Theorem 1: On using (17), we have 
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Proof:  By definition, 

( ) ( )c cE f x dθ θ θ θ= ∫   
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From equation (18), for 1c = , we have 
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From equation (18), for 2c = , we have 
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From equation (18), for 1c = − , we have 
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From equation (18), for 1c c= + , we have 
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4. BAYES ESTIMATORS UNDER ( )1g θ   
 
From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by 

 ( ) ( )
1

11

1
1 1 1 c

n

S i
i

n d log cxθ λ
−−∧

=

  = − + − −     
∑ .                  (23) 

From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is obtained as: 
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From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function comes out to be 
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5. POSTERIOR DENSITY UNDER ( )2g θ    

Under ( )2g θ , the posterior density of θ, using equation (2), is obtained as: 
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Theorem 2: On using (28), we have 
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Proof:  By definition, 
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From equation (29), for 1c = , we have 
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From equation (29), for 2c = , we have 
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From equation (29), for 1c = − , we have 
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From equation (29), for 1c c= + , we have 
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6. BAYES ESTIMATORS UNDER ( )2g θ   
From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is obtained as: 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function comes out to be 
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CONCLUSION 
 
In this paper, we have obtained a number of estimators of parameter of extended exponentiated Weibull distribution. In 
equation (4) we have obtained the maximum likelihood estimator of the parameter. In equation (23), (24), (25), (26) 
and (27) we have obtained the Bayes estimators under different loss functions using quasi prior. In equation (34), (35), 
(36), (37) and (38) we have obtained the Bayes estimators under different loss functions using gamma prior. In the 
above equation, it is clear that the Bayes estimators depend upon the parameters of the prior distribution. We therefore 
recommend that the estimator’s choice lies according to the value of the prior distribution which in turn depends on the 
situation at hand. 
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