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ABSTRACT 
A topological index is a numeric quantity from structural graph of a molecule. In this paper, we introduce the 
multiplicative Sombor index, multiplicative modified Sombor index, multiplicative reduced Sombor index and 
multiplicative reduced modified Sombor index of a graph. Furthermore we compute these multiplicative Sombor 
indices for certain nanotubes. 
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1. INTRODUCTION 

 
We consider only finite, simple connected graph with vertex set V(G) and edge set E(G). The degree dG(u) of a vertex u 
is the number of vertices adjacent to u. For undefined term and notation, we refer the book [1].  
 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical Graph 
Theory is a branch of Mathematical Chemistry, which has an important affect on the development of the Chemical 
Sciences. Topological indices are useful for establishing correlation between the structure of a molecular compound 
and its physicochemical properties. Several topological indices [2] have been considered in Theoretical Chemistry and 
have found some applications, especially in QSPR/QSAR study, see [3, 4, 5]. 
 
The Sombor index [6] was introduced and defined it as 
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The modified Sombor index was introduced by Kulli at al. in [7], defined as 
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Recently, some Sombor indices were studied in [8, 9, 10, 11, 12]. 
 
Inspired by work on Sombor indices, we introduce the multiplicative Sombor index, multiplicative modified Sombor 
index, general multiplicative first (a, b)-KA index of a graph as follows: 
 
The multiplicative Sombor index of a graph G is defined as 
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The multiplicative modified Sombor index of a graph G is defined as 
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The multiplicative first and second (a, b)-KA indices of a graph G were defined by Kulli in [13], as 
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Motivated by the definition of the reduced indices, we introduce the multiplicative reduced Sombor index, 
multiplicative reduced modified Sombor index, general multiplicative reduced first (a, b)-KA index of a graph as 
follows: 
 
The multiplicative reduced Sombor index of a graph G is defined as 

        
 

2 21 1 .


    G G
uv E G

RSOII G d u d v  

 
The multiplicative reduced modified Sombor index of a graph G is defined as 
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The multiplicative reduced first and second (a, b)-KA indices of a graph G are defined as 
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Recently some reduced indices were studied in [14, 15, 16] and also some multiplicative indices were studied in [ 17, 
18, 19, 20, 21, 22]. 
 
In this paper, we compute the multiplicative Sombor index, multiplicative modified Sombor index, multiplicative 
reduced Sombor index, multiplicative reduced modified Sombor index, multiplicative first (a, b)-KA index, 
multiplicative reduced first (a, b)-KA  index of HC5C7[p, q] and SC5C7[p, q] nanotubes. For nanotubes, see [23]. 
 
2. Results For HC5C7 [p, q] NANOTUBES 
 
In this section, we focus on HC5C7 [p, q] nanotubes in which p is the number of heptagons in the first row and q rows of 
pentagons repeated alternately. The 2-dimensional lattice of nanotube HC5C7[8, 4] is shown in Figure 1. 
 

 
Figure-1: 2-D lattice of HC5C7 [8, 4] nanotube. 

 
Let G be the graph of a nanotube HC5C7[p, q]. By calculation, G has 4pq vertices and 6pq – p edges. Also by 
calculation, there are two types of edges based on the degree of the vertices of each edge as given in Table 1. 
 

dG(u), dG (v)\ uv  E(G) (2, 3) (3, 3) 
Number of edges 4p 6pq – 5p 

Table-1: Edge partition of G 
 
In the following Theorem, we compute the general multiplicative first (a, b)-KA index of a nanotue HC5C7[p, q]. 
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Theorem 1: The general first (a, b)-KA index of HC5C7[p, q] nanotubes is given by 
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Proof: Let G = HC5C7 [p, q]. By definition and by using Table 1, we deduce  
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Using Theorem 2, we establish the following results. 
 
Corollary 1.1: The multiplicative Sombor index of HC5C7 [p, q] is 
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Corollary 1.2: The modified Sombor index of HC5C7 [p, q] is 
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In the following Theorem, we determine the general multiplicative reduced first (a, b)-KA index of HC5C7[p, q]. 
 
Theorem 2: The general reduced first (a, b)-KA index of HC5C7[p, q] is given by 
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Proof: Let G = HC5C7 [p, q]. By definition and by using Table 1, we deduce  
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The following results are obtained from Theorem 2. 
 
Corollary 2.1: The multiplicative reduced Sombor index of HC5C7 [p, q] is 
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Corollary 2.2: The multiplicative reduced modified Sombor index of HC5C7 [p, q] is 
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2. RESULTS FOR SC5C7[p,q] NANOTUBES 
 
In this section, we focus on SC5C7[p, q] nanotubes, in which p is the number of heptagons in the first row and q rows of 
vertices and edges are repeated alternately. The 2-dimensional lattice of nanotube SC5C7[8,4] is shown in Figure 2. 

 
Figure-2: 2-D lattice of nanotube SC5C7[8,4] 
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Let G be the graph of SC5C7[p, q]. By calculation, we obtain that G has 4pq vertices and 6pq – p edges. Also by 
calculation, there are three types of edges based on the degree of end vertices of each edge as given in Table 2. 

 
dG(u), dG(v)\ uv  E(G) (2, 2) (2, 3) (3, 3) 

Number of edges q 6q 6pq – p – 7q 
Table-2: Edge partition of G 

 
In the following theorem, we compute the general multiplicative first (a,b)-KA index of SC5C7[p,q]. 
 
Theorem 3: The general multiplicative first (a, b)-KA index of SC5C7[p, q] nanotubes is given by 
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Proof: Let G = SC5C7 [p, q]. By definition and Table 2, we deduce  
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From Theorem 3, the following results are established. 
 
Corollary 3.1: The multiplicative Sombor index of SC5C7 [p, q] is 
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Corollary 3.2: The multiplicative modified Sombor index of SC5C7 [p, q] is 
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In the following theorem, we determine the general multiplicative reduced first (a, b)-KA index of SC5C7[p, q]. 
 
Theorem 4: The general multiplicative reduced first (a, b)-KA index of SC5C7[p, q] is given by 
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Proof: Let G = SC5C7 [p, q]. By definition and using Table 2, we obtain  
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From Theorem 4, we establish the following results. 
 
Corollary 4.1: The multiplicative reduced Sombor index of SC5C7 [p, q] is 

         6 73
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Corollary 4.2: The multiplicative reduced modified Sombor index of SC5C7 [p, q] is 

   
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4. CONCLUSION 
 
In this study, we have introduced the multiplicative Sombor index, multiplicative modified Sombor index, 
multiplicative reduced Sombor index, multiplicative reduced modified Sombor index, multiplicative first (a, b)-KA 
index, multiplicative reduced first (a, b)-KA index of a molecular graph. Also these multiplicative indices for  HC5C7 
[p, q] and SC5C7 [p, q] nanotubes are computed.  
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