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ABSTRACT: 

Recently, a novel class of degree based topological indices was introduced, the so called Banhatti-Sombor indices. In 
this paper, we introduce the multiplicative first Banhatti-Sombor index, multiplicative first reduced Banhatti-Sombor 
index, multiplicative first δ-Banhatti-Sombor index of a graph and compute exact formulas for some nanostructures. 
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1. INTRODUCTION 
 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). Let dG(u) be the degree of a vertex u 
in a graph G. For undefined terms and notations, we refer [1]. 
 
Chemical Graph Theory is branch of Mathematical Chemistry which has an important effect on the development of 
Chemical Sciences. A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the 
bonds. Topological indices are useful for establishing correlation between the structure of a molecular compound and 
its physicochemical properties. Numerous topological indices [2] have been considered in Theoretical Chemistry and 
have found some applications, especially in QSPR/QSAR research, see [3, 4]. 
 
In [5], Kulli introduced the first Banhatti-Sombor index, first reduced Banhatti-Sombor index, first δ-Banhatti-Sombor 
index and they are defined as 
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where δ(G) is the minimum degree among the vertices of G. 
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Recently, some Sombor indices were studied, for example, in [6, 7, 8, 9, 10, 11, 12, 13, 14]. 
 
Inspired by work on Sombor indices, we put forward the multiplicative first Banhatti-Sombor index, multiplicative first 
reduced Banhatti-Sombor index and multiplicative first δ-Banhatti-Sombor index of a graph and they are defined as 
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where δ(G) is the minimum degree among the vertices of G. 
 
In this paper, we compute the multiplicative first Banhatti-Sombor index, multiplicative first reduced Banhatti-Sombor 
index, multiplicative first δ-Banhatti-Sombor  index of some families of benzenoid systems. 
 
2. OBSERVATIONS 
 

(1) If δ(G) = 1, then δΒSO1 II(G) is the multiplicative first Banhatti-Sombor index ΒSO1 II(G). 
(2) If δ(G) = 2, then δΒSO1 II(G) is the multiplicative first reduced Banhatti-Sombor index  RBSO1II(G). 

 
3. TRIANGULAR BENZENOIDS 
 
In this section, we consider a family of triangular benzenoids. This family of benzenoids is denoted by Tp, where p is 

the number of hexagons in the base graph. Clearly Tp has ( )1 1
2

−p p hexagons. The graph of T4 is shown in Figure 1.  

 
 

Figure-1: The graph of T4 
  

Let G be the graph of a triangular benzenoid Tp. The graph G has p2 + 4p +1 vertices and 
( )3 3

2
+p p

edges. From 

Figure 1, we see that the vertices of G are either of degree 2 or 3. Therefore δ(G)= 2. By calculation, we obtain that G 
has three types of edges based on degrees of end vertices of each edge as follows:  
 E1 = {uv ∈ E(G) | dG(u) = dG(v) = 2},  |E1| = 6. 
 E2 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}, |E2| = 6p – 6. 

 E3 = {uv ∈ E(G) | dG(u) = dG(v) = 3},  |E3| = 
( )3 1
2

−p p
. 

 
In the following theorem, we compute the multiplicative first Banhatti-Sombor index of Tp. 
 
Theorem 1: The multiplicative first Banhatti-Sombor index of a triangular benzenoid Tp is given by 
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Proof: By using definition and cardinalities of the edge partition of Tp, we have 
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In the following theorem, we determine the multiplicative first reduced Banhatti-Sombor index of Tp. 
 
Theorem 2:  The multiplicative first reduced Banhatti-Sombor index of a triangular benzenoid Tp is given by 
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Proof: From definition and by using cardinalities of the edge partition of Tp, we obtain 

  
6 1 3(6 6) ( 1)
2 2 4

1 2 2 2 2 2 2
1 1 1 1 1 1

1 1 1 2 2 2

p p p

pRBSO II T
                            

 

            

1 3(6 6) ( 1)6 2 4
2

5 12 .
4 2

p p p               
 

In the following theorem, we determine the multiplicative first δ-Banhatti-Sombor index of Tp. 
 
Theorem 3: The multiplicative first δ-Banhatti-Sombor index of a triangular benzenoid Tp is given by 
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Proof: By observation (2) and Theorem 2, the result follows. 
 
4. BENZENOID RHOMBUS 
 
In this section, we consider a family of benzenoid rhombus. This family of benzenoids is denoted by Rp. The benzenoid 
rhombus Rp is obtained from two copies of a triangular benzenoid Tp by identifying hexagons in one of their base rows. 
The graph of R4 is depicted in Figure 2.  

 
 

Figure-2: The graph of R4 
  
Let G be the graph of a benzenoid rhombus Rp. The graph G has 2p2 + 4p vertices and 23 4 1p p+ − edges. From 
Figure 2, it is easy to see that the vertices of Rp are either of degree 2 or 3. Thus δ(Rp) = 2. By calculation, we obtain 
that G has three types of edges based on degrees of end vertices of each edge as follows:  
 E1 = {uv ∈ E(G) | dG(u) = dG(v) = 2},  |E1| = 6. 
 E2 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}, |E2| = 8p – 8. 
 E3 = {uv ∈ E(G) | dG(u) = dG(v) = 3},  |E3| = 3p2 – 4p + 1. 
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In the following theorem, we compute the multiplicative first Banhatti-Sombor index of Rp. 
 
Theorem 4: The multiplicative first Banhatti-Sombor index of a benzenoid rhombus Rp is given by 
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Proof: From definition and by cardinalities of the edge partition of Rp, we deduce 
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In the following theorem, we determine the multiplicative first reduced Banhatti-Sombor index of Rp. 
 
Theorem 5: The multiplicative first reduced Banhatti-Sombor index of a benzenoid rhombus Rp is given by 
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Proof: By using definition and by cardinalities of the edge partition of Rp, we derive 
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In the following next theorem, we compute the multiplicative first δ-Banhatti-Sombor index of Rp. 
 
Theorem 6: The multiplicative first δ-Banhatti-Sombor index of Rp is given by 

   
21 1(8 8) (3 4 1)6 2 2

21
5 12 .
4 2

p p p

pBSO II R
                

 

 
Proof: By observation (2) and Theorem 5, the result follows. 
 
5. BENZENOID HOURGLASS 
 
In this section, we consider a family of benzenoid hourglass, which is denoted by Xp. This family is obtained from two 
copies of a triangular benzenoid Tp by overlapping hexagons. The graph of benzenoid hourglass is presented in Figure 
3.  
 

 
 

Figure-3: The graph of benzenoid hourglass 
  
Let G be the graph of a benzenoid hourglass Xp. This graph G has 2(p2 + 4p – 2) vertices and 23 9 4p p+ − edges. 
From Figure 3, we see that the vertices of Xp are either of degree 2 or 3. Thus δ(Xp) = 2.  
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By algebraic method, we find that G has three types of edges based on degrees of end vertices of each as follows:   
 E1 = {uv ∈ E(G) | dG(u) = dG(v) = 2},  |E1| = 8. 
 E2 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}, |E2| = 12p – 16. 
 E3 = {uv ∈ E(G) | dG(u) = dG(v) = 3},  |E3| = 3p2 – 3p + 4. 
 
In the following theorem, we compute the multiplicative first Banhatti-Sombor index of Xp. 
 
Theorem 7: The multiplicative first Banhatti-Sombor index of a benzenoid hourglass Xp is given by 
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Proof: From definition and by cardinalities of the edge partition of Xp, we obtain 
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In the following theorem, we compute the multiplicative first reduced Banhatti-Sombor index of Xp. 
 
Theorem 8: The multiplicative first reduced Banhatti-Sombor index of a benzenoid hourglass is given by 
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Proof: From definition and by cardinalities of the edge partition of Xp, we deduce 
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In the next theorem, we determine the multiplicative first δ-Banhatti-Sombor index of Xp. 
 
Theorem 9: The multiplicative first δ-Banhatti-Sombor index of a benzenoid hourglass Xp is given by 
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Proof: By observation (2) and from Theorem 8, we obtain the desired result. 
 
6. JAGGED RECTANGLE BENZENOID SYSTEMS 
 
In this section, we focus in the molecular graph structure of a jagged rectangle benzenoid system. This system is 
denoted by Bm,n for all m, n ∈ N. Three chemical graphs of a jagged rectangle benzenoid system are presented in    
Figure 4. 

 
 

Figure-4 
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Let G be the graph of a jagged rectangle benzenoid system Bm,n. By calculation, we obtain that G has 4mn + 4m + 2n – 2 
vertices and 6mn + 5m + n – 4 edges. From Figure 4, it is easy to see that the vertices of G are either of degree 2 or 3. 
Thus δ(G)=2. By calculation, we obtain that the edge set of Bm, n can be divided into three partitions as follows:   
 E1 = {uv ∈ E(G) | dG(u) = dG(v) = 2},  |E1| = 2n + 4. 
 E2 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}, |E2| = 4m + 4n – 4. 
 E3 = {uv ∈ E(G) | dG(u) = dG(v) = 3},  |E3| = 6mn + m – 5n – 4. 
 
In the following theorem, we determine the multiplicative first Banhatti-Sombor index of Bm, n. 
 
Theorem 10: The multiplicative first Banhatti-Sombor inverse index of Bm, n is given by 

 
1 1 1(2 4) (4 4 4) (6 4)
2 2 2

1 ,
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m nBSO II B
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Proof: From definition and by cardinalities of the edge partition of Bm, n, we obtain 

  
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In the following theorem, we compute the multiplicative first reduced Banhatti-Sombor index of Bm,n. 
 
Theorem 11: The multiplicative first reduced Banhatti-Sombor index of Bm,n  is given by 
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Proof: From definition and by cardinalities of the edge partition of Bm, n, we obtain 
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In the following next theorem, we determine the multiplicative first δ-Banhatti-Sombor index of Bm, n 
 
Theorem 12: The multiplicative first δ-Banhatti-Sombor index of Bm,n is given by 

   

1 1(4 4 4) (6 5 4)1 2 2(2 4)
21 ,

5 12 .
4 2

m n mn m n
n

m nBSO II B
    

               
 

 
Proof: From observation (2) and Theorem 11, we get the desired result. 
 
7. CONCLUSION 
 
In this study, we have introduced the multiplicative first Banhatti-Sombor index, multiplicative first reduced Banhatti-
Sombor index, multiplicative first δ-Banhatti-Sombor index of a graph and have computed exact formulas for certain 
benzenoid systems. 
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