Double Full Subsets By m Of Z

¹H. Khosravi* and ²H. Golmakani

^{1,2}Department Of Mathematics, Faculty Of Science, Mashhad Branch, Islamic Azad University, Mashhad, 91735-413, Iran

Email: Khosravi@mshdiau.ac.ir, H.golmakani@mshdiau.ac.ir, Hmohmmadin@math.birjand.edu

(Received on: 18-09-11; Accepted on: 02-10-11)

ABSTRACT

Let A be a subset of Z such that $A = A^+ U A^-$, where $A^+ = \{a_1, ..., a_k\}$, $A^- = \{-a_k, ..., -a_1\} = \{b_k, ..., b_1\}$ and $a_i \ge 0$, $a_1 < ... < a_k$. We say that A is double full by m if $\sum A^+ = [m]$ and $\sum A^- = [-m]$ for a positive integer m, where $\sum A^+$ is the set of all positive integers and $\sum A^-$ is the set of all negative integers. We show that a set A^+ is full if and only if $a_1 = 1$ and $a_i \le +$... $a_{i-1} + 1$ for each i, $2 \le i \le k$ and A^- is full if and only if $b_1 = -1$ and $b_i \ge b_1 + ... + b_{i-1} - 1$ for each i, $2 \le i \le k$.

We also prove that for each integer $m \notin \{\pm 2, \pm 4, \pm 5, \pm 8, \pm 9\}$ there is an double full by m set. We also give formula for F(m), the number of m full sets of Z^+ and F(-m), the number of -m full sets of Z.

Keywords: Double Full, Double Full By m, Partition Of Integer

1. INTRODUCTION:

Let n be a positive integer and denote by D (n) and σ (n) the set of its positive divisors and the sum of its positive divisors, respectively.

Let A be a subset of Z. Define the sum set of A, dented by $\sum A^{+,-}$

$$\begin{array}{l} \sum A^{+} = \; \{\; a_{i_{1}} + \cdots + a_{i_{r}} ; a_{i_{1}} < \cdots < a_{i_{r}} \; , 1 \leq r \leq \\ \sum A^{-} = \{\; b_{i_{1}} + \cdots + b_{i_{r}} ; b_{i_{1}} > \cdots > b_{i_{r}} \; , 1 \leq r \leq k \} \end{array}$$

For what positive integer m does there exist a set $A = A^+ \cup A^-$ with $\sum A^+ = [m]$ and $\sum A^- = [-m]$, where $[m] = \{1, \dots, m\}$ and $[-m] = \{-1, \dots -m\}$?

We show that each integer $m \notin \{\pm 2, \pm 4, \pm 5, \pm 8, \pm 9\}$ has this property and determine the numbers:

$$\alpha$$
 (m) = min{|A| : $\sum A^{+} = [m]$ }.

$$\beta(m) = \max\{|A| : \sum A^{+} = [m]\}.$$

$$L(m) = \min \{ \max A^+ : \sum A^+ = [m] \}.$$

$$U(m) = \max \{ \max A^+ : \sum A^+ = [m] \}.$$

We define α (-m), β (-m), L (-m) and U (-m) similar as above.

Example 1: If m=1, then $A=\{1\}$ is 1 full subset of Z^+ .

Example 2: If m=3, then A= {1, 2} is 3 full subset of Z^+ , because (i) $a_1=1$ and $\sum A=[3]$, (ii) $a_2=2 \le a_1+1=2$

Example 3: If m=-6 then A= $\{-1,-2,-3\}$ is -6 full subset of Z^{-} , because (i) a_1 =-1 and $\sum A = [-6]$, (ii) a_2 =-2 $\geq a_1$ -1=-1-1 and a_3 =-3 $\geq a_1+a_2$ -1=-4.

Example 4: If $A = \{\pm 1, \pm 2\}$, then A is double full subset of Z, because $A = \{-2, -1\}$ is -3 full subset of Z^- and $A^+ = \{1, 2\}$ is 3 full subset of Z^+ , this means that A is double full by 3.

2. THE RESULTS:

Definition 1: Let m be a positive integer. A subset $A = A^+ \cup A^-$ of Z is called double full by m if $\sum A^+ = [m]$ and $\sum A^- = [-m]$. A is called double full if it is double full by m for some positive integer m.

Theorem 1: A subset $A = A^{+} \cup A^{-}$ of Z where $A^{+} = \{a_{1}, ..., a_{k}\}, A^{-} = \{-a_{k}, ..., a_{1}\} = \{b_{k}, ..., b_{1}\}$ with $a_{1} < ... < a_{k}$.

- (i) A^+ is full if and only if $a_1=1$ and $a_i \le a_1+...+a_{i-1}+1$ for each i, $2 \le i \le k$ and
- (ii) A is full if and only if $b_1=-1$ and $b_i \ge b_1+...+b_{i-1}-1$ for each i, $2 \le i \le k$.

Proof: Let $A=A^+ \cup A^-$ be double full and $\sum A^+ = [m]$, $\sum A^- = [-m]$ for a positive integer m.

- (i) Its shown in [3].
- (ii) Clearly $b_1=1$. If $b_i > b_1+...+b_{i-1}-1$ for some j, $2 \le j \le k$, then $b_1+...+b_{i-1}-1$ is not of a sum of distinct elements of A^- .

But $-m = b_1 + ... + b_k \le b_1 + ... + b_{j-1} - 1 \le -1$. This contradicts to the fact that $\sum A^{-} = [-m]$.

Conversely, suppose that $b_1=-1$ and $b_i \ge b_1+...+b_{i-1}-1$ for each $i, 2 \le i \le k$. We claim that $\sum A^* = [b_1+...+b_k]$.

We prove this by induction on k. For k=1 the result is obvious. Suppose that the result is true for k-1. Then $\sum A^{-} \setminus \{b_k\} = [b_1 + ... + b_{k-1}].$

Now suppose that $b_1+...+b_k \le L \le b_1+...+b_{k-1}-1$ and write $L=b_k+b$. If b=0, then $L=b_k = \sum A^-$ and if $b\ne 0$, then $b=(b_1+...+b_{k-1})=\sum A^-\setminus\{b_k\}$. Thus $L=\sum A^-$.

Proposition 1(i): Let $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, with $p_1 < \dots < p_r$ primes, be a positive integer. Then $D(n) = \{d \subseteq Z^+: d|n\}$ is full if and only if $p_1 = 2$ and $p_i \le_{\sigma} (p_1^{\alpha_1} \dots p_r^{\alpha_r}) + 1$ for each $i, 2 \le i \le r$, and

(ii) Let $n=-p_1...p_r$, with $p_1<...< p_r$ primes, be a positive integer. Then

 $D\left(n\right) = \left\{d \stackrel{\textstyle \frown}{=} Z^{\text{-}} : dln\right\} \text{ is full if and only if } p_{i} = 2 \text{ and } p_{i} \leq_{\sigma} (p_{1}{}^{\alpha_{1}} \dots p_{r}{}^{\alpha_{r}}) + 1 \text{ for each } i, 2 \leq i \leq r.$

Proof (i): If D (n) is m full, then m = (n) since $p_1^{\alpha_1} \dots p_r^{\alpha_r} | n$ and $p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}} \neq n$.

We have $_{\sigma} (p_1^{\alpha_1}...p_{i-1}^{\alpha_{i-1}}) < _{\sigma}(n)$.

Hence $_{\sigma}(p_1^{\alpha_1}...p_{i-1}^{\alpha_{i-1}})+1$ is a member of $[_{\sigma}(n)]$. Thus if

 $p_i >_{\sigma} (p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}}) + 1$ for some i, then the member $_{\sigma} (p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}}) + 1$ is a member of $[_{\sigma}(n)]$ which is not a sum of distinct elements of D(n). On the other hand, if the condition $p_i <_{\sigma} (p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}}) + 1$ for each i, $2 \le i \le r$, is satisfied, then using an argument similar to the one used in theorem 1, we can inductively prove that each element of $[_{\sigma}(n)]$ can be written as a sum of distinct elements of D(n).

(ii) This part proved just like as part (i).

Definition 2: Define F (m) is number of m full sets of Z⁺ and F (-m) is the number of -m full sets of Z⁻.

Theorem 2: Let m be a positive integer. There is a set A such that $\sum A^+ = [m]$ and $\sum A^- = [-m]$ if and only if $m \neq \{2,4,5,8,9\}$.

Proof: Its shown in [3].

Example 5 D: (6) = $\{1, 2, 3, 6\}$ is 12 full subset of Z^+ , because (i) P_1 =2 and (ii) $3 \le \sigma(2) + 1$.

Example 6 D: $(-6) = \{-6, -3, -2, -1\}$ is -12 full subset of Z^- , because (i) $p_1 = 2$ and (ii) $3 \le \sigma(2) + 1$ or $-3 \ge -\sigma(2) - 1$.

Example 7: For m=12 and m=-12 note that $A^+=D(6)=\{1,2,3,6\}$ and $A^-=D(-6)=\{-6,-3,-2,-1\}$ are 12 full and -12 full subsets of Z, respectively. Therefore, $A=A^+\cup A^-$ is double full by 12 set of Z.

Theorem 3 (i): If $\alpha(m) = \min\{|A| : \sum A^+ = [m]\}$, $\beta(m) = \max\{|A| : \sum A^+ = [m]\}$. Then

$$\alpha(m) = [\log_2(m+1)],$$

$$\beta(m) = \max\{l: \frac{l(l+1)}{2} \le m\}.$$

(ii) If $m \neq \{2,4,5,8,9,14\}$ and $L(m) = \min\{\max A : \sum A^+ = [m]\}$ and $m = \frac{n(n+1)}{2} + r$, where r = 0,1,...,n, then

$$L\left(m\right) = \begin{cases} n & r = 0 \\ n+1 & 1 \leq r \leq n-2 \\ n+2 & 1 \leq r = n-1 \text{ or } n \end{cases}$$

(iii) If $n \ge 20$ and $U(m) = max \{max A: then <math>\sum A^+ = [m] \}$, then $U(m) = [\frac{m}{2}]$.

Proof: Its shown in [2].

Theorem 4:.Let m be a positive integer and F(m, i) denote the number of m full sets A with max A=i, where $L(m) \le i \le U(m)$, then

$$F\left(m,i\right) = \sum_{j=L}^{\min \left\{U\left(m-i\right),i-1\right\}} F\left(m-i,j\right)$$

Proof: Its shown in [3].

Example 8:.By definition for L (m) and U (m), in [1]. We have

m	1	3	6	7	10	11	12	13	14	15	16	17	18	19	20
L(m)	1	2	3	4	4	5	5	6	7	5	6	6	6	7	7
U(m)	1	2	3	4	4	5	6	7	7	8	6	7	8	9	10

Theorem 5 (i): Let me be a positive integer and denote the number of m full sets A by F (m). Then

$$F(m, i) = \sum_{i=L(m)}^{U(m)} F(m, i)$$

(ii)
$$F(m) = F(-m)$$

Proof (i): Its shown in [3].

(ii) Its obvious by definition.

Corollary 1: By theorem 5, the number of double full by m sets of Z are $2\sum_{i=L\ (m)}^{U(m)} F\ (m,i)$.

Example 9: By definition of F (m), the first few values of F (m) are

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
F(m)	1	0	1	0	0	1	1	0	0	1	1	2	2	1	2	1	2	3	4	5

Example 10: For evaluate F(21) by using theorem 4 and theorem 5, we have

$$\begin{split} F\left(21\right) &= \sum_{j=L\,(21)}^{U(21)} F\left(21,i\right) = \sum_{i=6}^{12} F\left(21,i\right) = F\left(21,6\right) \ + F\left(21,7\right) \ + \cdots + F\left(21,12\right) \\ &= F\left(15,5\right) + F(13,6) + F(13,7) + F(12,5) + F(12,6) + F(11,5) + F(10,4) = 7. \end{split}$$

This means that, there are the seven 21 full sets are

$$\{1,2,3,4,5,6\},\{1,2,4,6,8\},\{1,2,3,7,8\},\{1,2,4,5,9\},\{1,2,3,6,9\},\{1,2,3,5,10\},\{1,2,3,4,11\}$$

Example 11: For evaluate F (-6), by using theorem 4 and theorem 5, we have

F(-6) = F(6), so by theorem 5, we have

¹H. Khosravi* and ²H. Golmakani/ Double Full Subsets By m Of Z/IJMA- 2(10), Oct.-2011, Page: 1949-1952

$$\begin{split} F\left(6\right) &= \sum_{j=L}^{U(6)} F\left(6,i\right) = \sum_{i=3}^{3} F\left(6,i\right) \\ &= \sum_{j=L}^{\min \left\{U(6-3),3-1\right\}} F\left(6-3,j\right) = \sum_{j=2}^{2} F\left(3,j\right) = F\left(3,2\right) \\ &= \sum_{j=L}^{\min \left\{U(1),1\right\}} F\left(1,j\right) = \sum_{1}^{1} F\left(1,1\right) = 1 \end{split}$$

This means that, there is a -6 full set such that define as follows; $A = \{-1,-2,-3\}$

Example 12: The number of double full by 6 sets of Z is one and define as follows; $A = \{\pm 1, \pm 2, \pm 3\}$.

3. ACKNOWLEDGMENTS:

The authors thank the research council of Mashhad Branch, (Islamic Azad University) for support.

4. REFERENCES:

- [1] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2011.
- [2] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), 1409–1418.
- [3] L. Naranjani and M. Mirzavaziri, Full subsets of N, Journal of integer sequences, Vol.14 (2011), Article 11.5.3.
