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ABSTRACT
We compute in this paper the matrix representations of group algebras of split metacyclic groups. The representations
are given in terms of circulant block matrices.
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PRELIMINARIES

Let F be a field. Aring A is an algebra over F (breifly F-algebra) if A is a vector space over F and the following
compatibility condition holds (sa) - b = s(a-b) = a- (sb) for any a,b € A and anys € F. A is also called associative
algebra (over F).

The dimension of the algebra A is the dimension of A as a vector space over F.

Theorem 1[1]: Let A be a n-dimensional algebra over a field F. Then there is a one to one algebra homomorphism
from A into M,, (F), the algebra of n-matrices over F.

LetG ={g, =1,9,,..., 9, } be afinite group of order n and F a field.

Define FG ={a;g, + a,g, + -+ a,g,:a; € F}. FG is n-dimentional vector space over F with basis G.
Multiplication of G can be extended linearly to FG by using group operation of G. Thus FG becomes an algebra over F
of dimention n. FG is called group algebra. The following identifications should be realized.

i) 0pge; =0p; =0foranyg € aG.

i) 1pge; = gpe forany g € G. In particular 1,1, = 1z, = 1.

iii) apl; = apgforany a € F.

A group G is metacyclic if it has a cyclic normal subgroup N such that G/N is cyclic. Eqivalently, G has cyclic
subgroups H and K such that H < G and G = HK [2].If H n K = {1} also, then G is called a split metacyclic group. If

G is a split metacyclic group, then G has a representation of the following form [3].
G ={a,B:a" =p™ =1,Ba = a"B) where r™ = 1 (mod n). |G| = nm.
The general element of G is of the forma* ¥, where0 <u<n, 0 <v <m.

By direct substitutions we have the following in G.

Lemma 2: i) BYa*B~" = a¥", ii) (a“1p"1)(a"2B"2) = a*1+7 " u2pvi+v2  where u, v,u,, vy, Uy, v, are integers.
A circulant matrix M on parameters a,, a4, ..., a,_; is defined as follows

aQy Ap_1r O

a Qa4

M(ay, aq, ..., 0y_1) = . .
Ap—1 Ap_p- o)

M is said to be circulant block matrix if it is of the form M(M,, M,, .-+, M,,). i.e it is circulant blockwise on the blocks
My, My, -, M,,.
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1\41 Mn... 1\42
M. M,--- M
Thus M=|.2* ! }

M, My, - M,
MAIN RESULTS

Theorem 3: Let F be a field and G = {a:a™ = 1) a cyclic group of order n. Then any element ay1 + a;a + -+ +
a,_,a™ ' of FG can be represented with respect to the ordered basis {1,a,---,a™ '} by the circulant matrix
M(ag, ay, -, ay—1).

Proof: Let w=aqayl+aa+-+a, a* ! be in FG. wa =qya +aa’+-+a, 11=a, 11+aya+-+
a, a"twat =g a1+ +a,_a" % =a;1+ aya+ -+ aga™ ! Then the matrix representation of
w with respect to the basis {1, a, -+, @™ '} is

Ay Ap-1" 4
a Qa4
a1 Ap_p- ay

which is M(ay, ay,++, a,_1).

Note that if the order of the basis elements is changed we obtain a different matrix of representation. The new matrix is
obtained by suitable interchanging of the columns of the matrix M (ay, a;, -+, a,_1)-

Now, let G be a split metacyclic group. Then G = {(a, B: a™ = ™ = 1,Ba = a” B) where r™ = 1 (mod n).

Consider the following natural basis of the group algebra FG, {1,a,,a™"%; B,aB, -, a" 1B; ;™ L ap™ 1, -,
a™1gm=1}. This basis can be written as follows {1,a,---,a® 1} U {1,q,--,a® 1} U - U{l,q, -, a* 1}pm L.

By construction each part {1,a,--,a" !}p'; 0<i<m—1 induces the matrix with respect to the basis
(1, a,, a1} = {117, BlaB, -+, Bla™ 1 B~1}. This basis can be simplified by using lemma 2. Call the matrix
obtained from the basis {1, a, -+, a™ 1}#" by MP'. Thus we have the following theorem about matrix representation of
the group algebra FG.

Theorem 4: Let F be a field and G a split metacyclic group as above. The representation of the general element
Y75 Xy a;a' B/ in FG is given by the circulant block matrix

m-—1 .
M (M(a), M# (ay),, MP" ™ (@ 1)) ;i = 0,1, n — 1.

Corollary 5: Let F be a field. Matrix representation of F(C,, x C,,), where (m,n) # 1 is given by
M(M(ay), M(ay), -, M(a; _1)) fori=01,-,n—1and a; €F.

Corollary 6: Let F be a field and D,, = (@, B:a™ = f? =1, Ba = a™ ') the dihedral group. Matrix representation
of the general element X" a;a’ + X=¢' b;a’p in FD,, is given byM (M(ao, aj, -, a,_1), MP (by, by, -, bn_l)).

APPLICATION

Consider the split metacyclic group G = {(a, B: a® = p* = 1,Ba = a?p) of order 12. The general element of FG,
where F is a field, is al + ba + ca? + dB + eaf + fa?B + gB? + haB? + ia?B? + jB3 + kap® + la?B3.

Let B = {1,a,a?} be the natural basis of FG. Then Bf = {1,a?,a}, B¥* = {1,a,a?},B*’ = {1,a?,a} by lemma 2.
The basis B, Bf, BF*, B#® induce by construction the following corresponding matrices.

a ¢ b d e f g i h jk l
M=[b a cl,Mﬁ= e f d|,MFP=|n g i| M=k 1 j|
c b a f d e i h g I j k

By theorem 4 the matrix representation of FG is given as follows
M M” MA M7
MM MEMEE ME ) = sy wE M
(VR VR V I Ve
M~ MP MP M
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which is
a b j ko g 1 h d e
b k | h g i e d
c b a I j k i h g d e
d e b j k1 g i h
e d b a k | h g i
d e c b a I j Kk i h g
M =
g 1 h d e b j k1
h g i e f d b kK 1
i h g d e c b a I ] Kk
i ok g i h d e b
k 1 h g i e d b
L1J ok i h g : d e c b a]
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