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ABSTRACT 
Recently, a novel class of degree based topological indices was introduced, the so called Banhatti-Sombor indices. In 
this paper, we introduce the second Banhatti-Sombor index, second reduced Banhatti-Sombor index, second δ-
Banhatti-Sombor index of a graph and compute exact formulas for some chemical networks such as armchair polyhex 
nanotubes, zigzag polyhex nanotubes and carbon nanocone networks. 
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1. INTRODUCTION 
 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). Let dG(u) be the degree of a vertex u 
in a graph G. Let δ(G)  be the minimum degree among the vertices of G. For undefined terms and notations, we refer 
[1]. 
 
Chemical Graph Theory is branch of Mathematical Chemistry which has an important effect on the development of 
Chemical Sciences. A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the 
bonds. Topological indices are useful for establishing correlation between the structure of a molecular compound and 
its physicochemical properties. Numerous topological indices [2] have been considered in Theoretical Chemistry and 
have found some applications, especially in QSPR/QSAR research, see [3, 4]. 
 
In [5], Gutman proposed the Sombor indices and they are defined as 
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where |V(G)| = n and |E(G)| = m. 
 
Recently, some Sombor indices were studied, for example, in [6, 7, 8, 9, 10, 11, 12, 13 14, 15, 16, 17, 18, 19, 2o, 21, 
22, 23, 24]. 
 
Inspired by work on Sombor indices, Kulli [25] introduced the first Banhatti-Sombor index, first reduced Banhatti-
Sombor index and first δ-Banhatti-Sombor index of a graph and they are defined as 
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We now introduce the second Banhatti-Sombor index, second reduced Banhatti-Sombor index and second δ - Banhatti-
Sombor index of a graph and they are defined as 

( )
( ) ( )( )

1
2

2 2 2
1 1 ,

uv E G G G

BSO G
d u d v

−

∈

 = + 
 

∑  

( )
( )( ) ( )( )( )

1
2

2 2 2
1 1 ,

1 1uv E G G G

RBSO G
d u d v

−

∈

 = + 
− −  

∑  

( )
( ) ( )( ) ( ) ( )( )( )

1
2

2 2 2
1 1 .

1 1uv E G G G

BSO G
d u G d v G

δ
δ δ

−

∈

 = + 
− + − +  

∑  

 
In this paper, we compute the second Banhatti-Sombor index, second reduced Banhatti-Sombor index, second δ- 
Banhatti-Sombor index for certain networks. For nanotubes, networks, see [26]. 
 
2. OBSERVATIONS 
 

(1) If δ(G) = 1, then δΒSO2(G) is the second Banhatti-Sombor  index BSO2(G). 
(2) If δ(G) = 2, then δΒSO2(G) is the second reduced Banhatti-Sombor index RBSO2(G). 

 
3. RESULTS FOR ARMCHAIR POLYHEX NANOTUBES 
 
Carbon polyhex nanotubes exist in nature with remarkable stability and posses very interesting thermal, electrical and 
mechanical properties. Cylindrical surface of these nanotubes is made up of entirely hexagons. We consider the family 
of armchair polyhex nanotubes which is denoted by TUAC6 [p,q]. A 2-dimensional network TUAC6 [p,q] is shown in 
Figure 1. 

.  
Figure-1 

 
Let G be the graph TUAC6 [p,q]. By calculation, G has 2p(q+1) vertices and 3pq + 2p edges. In G, there are three types 
of edges based on degrees of end vertices of each edge. The edge partition of G is given in Table 1. 
 

dG(u),dG(v)\uv ∈ E(G) (2, 2) (2, 3) (3, 3) 
Number of edges p 2p 3pq – p 

Table-1: Edge partition of TUAC6 [p,q] 
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In the following theorem, we compute the second Banhatti-Sombor index of TUAC6 [p,q]. 
 
Theorem 1: The second Banhatti-Sombor index of  TUAC6 [p,q] is given by 

 2 6[p, q]BSO TUAC 9 12 32 .
2 13 2

pq p
       

 

 
Proof: By using definition and cardinalities of the edge partition of TUAC6 [p,q], we have 
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In the following theorem, we determine the second reduced Banhatti-Sombor index of TUAC6 [p,q]. 
 
Theorem 2: The second reduced Banhatti-Sombor index of  TUAC6 [p,q] is given by  
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1 43 2 2
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Proof: From definition and by using cardinalities of the edge partition of TUAC6 [p,q], we obtain 
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In the following theorem, we determine the second δ-Sombor index of  TUAC6 [p,q]. 
 
Theorem 3: The second δ-Sombor index of  TUAC6 [p,q]  is given by  

 2 6
1 4[p,q] 3 2 2 .
2 5

BSO TUAC pq p
       

  

 
Proof: By observation (2) and Theorem 2, the result follows. 
 
4. ZIGZAG POLYHEX NANOTUBES 
 
The zigzag polyhex nanotube is denoted by TUZC6 [p, q], where p  is the number of hexagons in a row whereas q is the 
number of hexagons in a column. A 2-dimensional network of TUZC6 [p, q] is depicted in Figure 2. 
 

 
Figure-2 

 
Let G be a graph of a (p, q) dimensional zigzag polyhex nanotube. The graph G has 2p(q+1) vertices and 3pq + 2p 
edges. In G, there are two types of edges based on degrees of end vertices of each edge. By calculation, the edge 
partition of G is given in Table 2. 
 

dG(u), dG(v) \ uv  ∈ E(G) (2, 3)   (3, 3) 
Number of edges 4p 3pq – 2p 

Table-2: Edge partition of  TUZC6 [p, q] 
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In the following theorem, we compute the second Banhatti-Sombor index of TUZC6 [p, q]. 
 
Theorem 4: The second Banhatti-Sombor index of TUZC6 [p, q] is given by 

 2 6[p,q]BSO TUZC 
9 24 6
2 13 2

pq p
     

 

 
Proof: By using definition and by cardinalities of the edge partition of TUZC6 [p, q], we have 
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In the following theorem, we determine the second reduced Banhatti-Sombor index of TUZC6 [p, q]. 

 
Theorem 5: The second reduced Banhatti-Sombor index of  TUZC6 [p, q] is given by 

 2 6[p,q]RBSO TUZC 
83 2 2 2
5

pq p
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Proof: From definition and by using cardinalities of the edge partition of TUZC6 [p, q], we obtain 
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In the following next theorem, we compute the second δ-Banhatti-Sombor index of TUZC6 [p, q]. 

 
Theorem 6: The second δ-Banhatti-Sombor index of  TUZC6 [p, q] is given by 

 2 6
8[p,q] 3 2 2 2 .
5

BSO TUAC pq p
        

 
Proof: By observation (2) and Theorem 5, we get the desired result. 
 
5. CARBON NANOCONE NETWORKS 
 
An n-dimensional one-pentagonal nanocone is denoted by CNC5 [n], where n is the number of hexagons layers 
encompassing the conical surface of the nanocone and 5 denote that there is a pentagon on the tip called its core. A 6-
dimensional one-pentagonal nanocone network is depicted in Figure 3. 
 

 
Figure-3 
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Let G be an n-dimensional one-pentagonal nanocone network CNC5[n], n ≥ 2. Then G has 5(n+1)2 vertices and 

215 25 5
2 2

n n   edges. In G, there are three types of edges based on degrees of end vertices of each edge. By 

algebraic method, this edge partition is given in Table 3. 
 

dG(u), dG(v) \ uv  ∈ E(G) (2, 2) (2, 3) (3, 3) 

Number of edges 5 10n 215 5
2 2

n n+  

Table-3: Edge partition of CNC5[n] 
 

In the following theorem, we compute the second Banhatti-Sombor index of  CNC5[n]. 
 

Theorem 7: The second Banhatti-Sombor index of  CNC5[n] is given by 

 2 5[n]BSO CNC 245 60 15 5 2.
2 2 1 3 2 2

n n
      

 

 
Proof: By using definition and cardinalities of the edge partition of CNC5[n], we have 
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In the following theorem, we compute the second reduced Banhatti-Sombor index of  CNC5[n]. 

 
Theorem 8: The second reduced Banhatti-Sombor index of  CNC5[n] is given by 

 2 5[n]RBSO CNC 215 20 5 5 .
2 5 2 2

n n
        

 
Proof: By using definition and cardinalities of the edge partition of CNC5[n], we have 
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1 1 1 1[n] 5 10
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In the next theorem, we compute the second δ-Banhatti-Sombor index of CNC5[n]. 

 
Theorem 9: The second δ-Banhatti-Sombor index of  CNC5[n] is given by   

 2 5[n]BSO CNC 215 20 5 5 .
2 5 2 2

n n
      

 

 
Proof: By observation (2) and Theorem 8, the result follows. 
 
6. CONCLUSION 
 
In this study, we have introduced the second Banhatti-Sombor index, second reduced Banhatti-Sombor index, 
second δ-Banhatti-Sombor  index of a graph and have computed exact formulas for armchair polyhex nanotubes, 
zigzag polyhex nanotubes and carbon nanocone networks. 
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