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ABSTRACT
In this paper, we introduce ordered I-semihypergroups with involution and weakly prime I'- hyperideal,
then we investigate some properties of prime, semiprime and weakly prime I-hyperideals in ordered
I'-semihypergroup with involution. Also, we study intra-regular ordered I'-semihypergroups with involution.
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1. INTRODUCTION AND PRELIMINARIES

The notion of I'-semigroup was introduced by Sen [19]. The concept of prime and weakly prime ideal in
semigroups has been given by Szasz [21], and then Petrich [18] studied these notions for semigroups. Fur-
thermore, Kehayopulu [10], [11], [12] introduced prime, weakly prime ideals in ordered semigroups (partially
ordered semigroups) by extending the analogous concepts of ring theory that was given by McCoy [16] and
Steinfeld [20]. Khan et al [24] studied derivations of o-prime rings.

The concept of algebraic hyperstructures was given by Marty [15]. Algebraic hyperstructures are a standard
generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements
is an element, while in an algebraic hyperstructure, the composition of two elements is a set. The first association
between binary relations and hyperstructures appeared in Nieminem [17]. For comprehensive study on
semihypergroup by different algebraists, we refer [8], [4], [6], [3] and [1]. Kondo and Lekkoksung [13] studied
intra-regular ordered I'-semihypergroups. Later, Tang et al. [22] studied (fuzzy) quasi-I'-hyperideals in ordered
I'-semihypergroups.

Foulis [7] introduced the concept of involution semigroups. Later, Baxter [2] studied rings with proper involution,
and Drazin [5] studied regular semigroups with involution. Herstein [9] studied ring with involution, and Wu
[23] studied intra-regular ordered semigroups with involution.

In this paper, the notion of a weakly prime I'-hyperideal of a I'-semihypergroup with involution is introduced. A
weakly prime T'-hyperideal of a I'-semihypergroup is a generalization of a weakly prime ideal of a semigroup, a
generalization of a weakly prime hyperideal of a semihypergroup and a generalization of a I'-ideal of a I'-
semigroup.
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The notion of ordered I'-semigroup was introduced by Kwon and Lee [14]. An ordered I'-semigroup is an
ordered set (S, <) at the same time a I'-semigroup (S, I') such that a <b = aox < bax and xfa < xfb forall a,
bxeSand a, f €T.

Let S be a non-empty set and let P *(S) be the set of all non-empty subsets of S. A hyperoperation onS is

amape: SxS — P *(S)and the couple (S, °) is called a hypergroupoid. We denote by x -y, the hyperproduct of
elements x,y of S.

Let A and B be two non-empty subsets of S, then the hyperproduct of A and B is defined as:
A°B = Uaeapers a°h, X A= {XF A, Aex = A{x}.

Also, ATB = U{ayp |lacAbecBandy cI}.

Definition 1.1: [13] A hyperstructure (S, I', <) is called an ordered I'-semihypergroup if (S, I') is I'-
semihypergroupand < is a partial order relation on S such that the following condition hold:

X <y = ayx <ayy and xya <yya, for all x,y,a €S and y €T.

If A and B are non-empty subsets of S, then we say that A <B if for every a € A there exists b € B suchthat
a < b. Clearly, every ordered I'-semigroup is an ordered I'-semihypergroup. A non-empty subset A of an

ordered I'-semihypergroup (S, T, <) is called a I'-subsemihypergroup of S if ATA < A
2. ORDERED INVOLUTION I'- SEMIHYPERGROUPS
Here in this section we define ordered involution I'-semihypergroup and provided some related properties.

Definition 2.1: An ordered I'-semihypergroup (S, I', <) with a unary operation *: S — S is called an ordered
I'-semihypergroup with involution if

M) =x

(i) (xay) =y ox

for all X,y € S and a € I'. The unary operation * is called an involution. Furthermore, if for all a,b € S
with a<b = a” <b’, then we call * an order preserving involution.

Example 2.2: Consider a set S = {a, b, c} with the set of binary hyperoperations I = {o, 5, y} and the order
7 511 :

a ‘ a b c (7] ‘ a b c v ‘ a b c
alfabt S ¢ alfact S ¢ al S {ab} ¢
bl S Hab} c bl S {bc ¢ bl{apt S <
c c c c c c c c c c c c

<:={(a a), (b, b), (c, @), (¢, b), (c, c)}

We give the covering relation < and the figure of S as follows:
<={(c,a),(c,b)}

/

7

C

Then (S, T, <) is an ordered I'-semihypergroup. Now we define the involution * by a~ = b (hence b” = a)
and ¢” = c. It is easy to check that S is an ordered I'-semihypergroup with order preserving involution *.

Throughout the paper, we shall denote ordered involution T'-semihypergroup (S, T, <, *) by S.
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Definition 2.3: A non-empty subset A of an ordered involution I'-semihypergroup S is called a sub TI'-
semihypergroup of S if ATA € A and A" € A.

Definition 2.4: A non-empty subset | of an ordered involution T"-semihypergroup S is called a left (resp.,
right) I'-hyperideal of S if the following conditions hold:

(i) ITS <1 (resp., ST'l < 1),
(i) 1" =1,
(iiilJael,b<aforbeS=bel

A hyperideal 1 of S is both a right and left I'-hyperideal of an ordered involution I'-semihypergroup S.
A right, left or I'-hyperideal | of S is called proper if 1-=S. We denote by L(s), R(s) and I(s) the

left T'-hyperideal, right I'-hyperideal and the I'-hyperideal generated by s. Obviously, L(s) = (s U SI's],
R(s) = (susI'S], I(s) = (suUSI'susI'S USTsT'S].

If (S, T, <) is an ordered I'-semihypergroup and A < S, then (A] is the subset of S defined as follows:
(A]={s &S :s<a, for some a < A}.

Definition 2.5: Let S be an ordered involution T'-semihypergroup and P < S. Then P is called prime if
A,B S, AI'B < P implies A" P or B'c P.

Example 2.6: Consider a set H = {a, b, c, d, e} with the set of binary hyperoperations I' = {f, y} and the
order 7 <7 :

6|la b c d e vy HNia b c d e
ala a a a e ala a a a e
b|la a a a e bla a a a e
cla a a {a,b} e c|la a {ag b} a e
d|a a {qg b} a e dla a a {a,b} e
el|le e e e e ele e e e e

=={(a,a),(a c), (a d), (b,c), (b, b), (b, d),(c,c),(d,d), (e e)}

We give the covering relation < and the figure of H as follows:

<={(a,¢), (a,d), (b, c), (b, d)}

& c d

a
Then (S, T, <) is an ordered I'-semihypergroup. Now we define the involution* by a” =a, b” =b, ¢" =d (hence

d" = c) and e" = e. It is easy to check that H is an ordered involution I'-semihypergroup with order
preserving involution *. Here {e} and {a, b, c, d, e} are prime.

Definition 2.7: Let S be an ordered involution I"-semihypergroup and P<S. Then P is called semiprime if
for any subset A of S, ATA < P implies A" < P.

Definition 2.8: Let S be an ordered involution I'-semihypergroup and P < S. Then P is called weakly prime
if for T-hyperideals A, B of S such that AI'B < P implies A" =P or B" < P.
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We start with the following Lemma which is trivial and is essential for proving subsequent results.

Lemma 2.9: Suppose that S is an ordered involution I'-semihypergroup. Then we have the following:
(i) A< (A] for any A< S.
(ii) (A] < (B] for any A = B < S. (iii)(A]T'(B] < (AT'B] for all A,B < S.

(iv) ((A]] = (A] for all A = S.
(v) For any right (left, two-sided) I'-hyperideal 1 of S, (1] =1.
(vi)If 1 and J are I'-hyperideals of S, then (IT'J] and | NJ are also I'-hyperideals of S.

(vii) For any s € S, (SI'sI'S] is a I'-hyperideal of S.

Lemma 2.10: Suppose that S is an ordered involution T'-semihypergroup such that the involution * admits
order.Then we have:

(i) (brsSra]” = (@’TSrb] for any a,b € S.

(ii)(Srars]” = (sra'rsj for any a €S.
(iii) 1" is a I'-hyperideal of S for any I'-hyperideal | of S.

Proof:

(i) Supposethatx € (bI'Sra]”. As x° € (bI'Sr'a], x” < baspa for s € S and o, f € I. Thenx <
(baspa)” = a'Bs"ab” = a’TSI'b" since * is an order preserving involution. So, x € (a'TSI'b] and therefore,
we obtain (bI'ST'a]” < (@'TSI'b"]. Furthermore, if x € (@' TSI'b’], then x < a’aspb” for some s € S and a,
p €T. So, X <bas fa < bI'ST'a since a aspb” = (bys'da)” for a, .y, 0 € I'. This shows that X~ € (bI'ST'a]

and x € (bI'SI'a]”. So, (aT'SI'b"] < (br'ST'a]”. Hence, (bI'ST'a]” = (@'T'ST'b7].
(ii) The proof is similar to (i).

(iii)  Suppose that | is a I'-hyperideal of S. As SI'l < I, we obtain (ST'I)” < I”. So, I'T'S” <
1. As * isan involutionon S, (s’)" = sforeverys € S,andso S" = S. Therefore, I'T'S = I”. In the
same way as IT'S < I, we obtain SI"I” < I”. Suppose thata € I°, and b< a, thenb" <a”. Since a” € |
and 1 is a I'-hyperideal. Therefore, b" €1, and so b € I" and hence I” is a I'-hyperideal of S.

Theorem 2.11: Suppose that S is an ordered I'-semihypergroup such that S admits an order preserving
involution

*. A T'-hyperideal of S is prime if and only if it is both weakly prime and semiprime. Furthermore, if S is
commutative, then the prime and weakly prime I'-hyperideals coincide.

Proof: Let I be a prime hyperideal of S. Then it is obviously weakly prime and semiprime.

Conversely, let P be an ideal of S which is weakly prime and semiprime. Suppose aab < P for a € I', we need to
prove that 8- € P or b” € P. By Lemma 2.9, (bI'STa]l(bI'SI’'a] < (Srar'bI'S] < (STPI'S] < (P] = P.
So, P is semiprime and it follows that (bI'ST'a]” < P. Now we have

(Sra’T'SII(SI'b' T'S]=(SIra’TSI'SI'bTS]

(ST (@' TSI'b")I'S]
(SI'((SI'b")'T'a) T'S]
= (SI'(bI'SI'a) ' T'S]

< (SI(bI'Sra]’'T's]
< (SIPTS]
cP.

i

We note that (ST'a'T'S], (SI'b'T'S] are I'-hyperideals, and P is weakly prime. So (STa'T'S]" < P or
(ST'b'T'S]” < P . Hence, by Lemma 2.10, (Sr'aI'S] < P or (SI'bI'S] < P . Now to show that P is prime, we
simply need to prove that if (STal'S] < P then a” € P. The other statement can be proved similarly. If (ST'aI'S]
< P, then we have

I(@)'1(@)'l(a) = (a U ST'a U aI'S U SI'aI'S]® < ((a U SI'a U aI'S U Srar's)®] < (SI'(a u Sraualr's u
Srar's)I's] < (Srars] < P. So, I(a)'(I(@)'l(@)] = (@) rd@rl@)] < ((1@)°*]1 < (P]1=P

by Lemma 2.10. We know that P is weakly prime and 1(a), (I(a)I"l(a)] are hyperideals. This implies that
(1(@)" < Por(I(a)I'l(@)] <P.Let(l(a))” < P. Therefore,a” € (I(a))” < P.
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Again, let (I(@)I'I(@)]" < P. So a'ya” < (I(@)I'l(a))" < (I(@)T'1(@)]" < P for y € T since aya < 1(a)l'l(a)

and soa=(a")" € P since P is semiprime. Now P is a hyperideal shows that aya < P , therefore, a” € P as P is
semiprime. Now we prove the last statement. Suppose P is a hyperideal of S. If P is prime then clearly P
is weakly prime.

Conversely, Suppose that P is weakly prime. Let ayb < P or y € I". As S is commutative, we obtain 1 (a)I"1(b)
= (auSTauvalrS uSsSrarsir(b uSrb Ubr's USrbrs] < ((auvusSrauars uSrarsji'(b uSrb ubrs u
SI'bI'S)] < (aab U ST aph] for a, p € I'. We note that (aab U ST aph] < (P] = P for a, f € I". Therefore,

1(@)I'1(b) < P, and so we obtain (1(@))" <P or (1(b))" <P since P is weakly prime. Hencea” € Por b €
P and it follows that P is prime.

Proposition 2.12: Suppose that S is an ordered I'-semihypergroup with order preserving involution *. Then
the following statements are equivalent.

(i) (A'TA"] = A for any I'-hyperideal A of S.

(i) A" NB" = (A'B] for any I'-hyperideals A, B of S.

(i) 1@) N1b) = (1) T(1(b))7] for any a,b € S.

(iv)I(@) = (1@Hri@")] for any a € S.

(v)a € (SraTsrarsj] for any a € S.

Proof: (i) = (ii). As A", B” are I'-hyperideals, by our assumption and Lemma 2.9, we obtain (AI'B] <
(Ar'S] < (A] = ((ATA]] = (ATA"] < (A"] = A". In a similar fashion, we have (AI'B] < (SI'B] < (B] =
((B'TB']] = (B'TB"] < (B']=B". So (AI'B] < A" N B". Moreover, AN B" is a hyperideal shows that
A"NB = ((A"NB)TA" NB)7=(ANB)(A N B)] < (AI'B]. Thus we obtain (AI'B] < A" N B~ and
A" NB” < (AI'B]. Hence A" NB™ = (AI'B].

(ii) = (iii). By Lemma 2.10, we have (1(a))” and (1(b))" are I'-hyperideals. Hence follows the result.

(iii) = (iv). As I(a) = ((1(a))'T(1(a))"] by our assumption, we simply need to show that (I(a))" =
I(@"). Obviously a” € (I(a))". Therefore, I1(a") < (I(a))” since (I(a))” is a I'-hyperideal. Now suppose that x €
(1(a))". We have x” € I(a) = (a U aI'S U S'a U STar'S]. This shows that X" < a or X" < aav or X" <
vaa orx’ <vaafw for some v, w € S and «, § €T. So, x<a or x<Vas SSla" or x<aav <arS$
or X' <w'aa fv° < SI'a’TS for some v, w €S and @ f €T, and so x € (&7] or x € (S'a] or x € (aTS]
or x € (SIraTS]. So, x € (@] U (STra ] U (@TS] U (SI'aTS] < (a° uSra” uaTS uSraTs] = I(@).
Thisimplies (1(a))” < 1(@"). Hence (1(a))" = I(a").

(iv) = (v). For this, we show (1) I(a) = ((1(@")°T'I(a)], and (2) ((1(a"))° T'l(a)] < (Sra’Tsra’rs].
This will imply that a € I(a) < (ST'a’ TSI'a’T'S].

(1) By Lemma 2.9, and our assumption, we obtain I(a) = (I(@)I'l(@)] = ((I(@T'1@]r((@T1@)]]
c ((I@ri@a@ri@ri@a)]] = (d@ri@ri@ari@)].

Moreover,
(l(@Tri@ri@ri(@] = ((IHriE@HICIEHTIE@HITIE@HTIE@)HITI(@)]
<((1@)°TI(a)]
< (Sr'l(a)T'l(a) < (1(a)]
= I(a) such that I(a) < ((1(a"))°T'1(a)] < I(a). So, I(a) = ((1(a"))°TI(a)].

(2) As (1(a))® < (Sral'] by Theorem 2.11, we obtain (I(a))® = (1(a))’T'l(a)I'l(a) < (Sral'S]I'(a U
al'S U STa U ST'al'SJI'(S] < (Srarsr(a uar's uSra U Srars)rsj. Obviously, Sl'(a ual'sS U Srau
STrars)rs c< srars, and so, (Srarsr(a U aIrs u Srra U SrarsS)yrs] < (Srarsrsrars] <
(Srarsrars]. So, (I1(a))® < (Srarsrarsj and therefore, (1(a"))° < (Srarsra’rsj. *
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We have

((1@°Tr1@)] < (SraTsraTsiri@dri(a)]
c ((STa’TSra’rsirs]]

c (SraTsra’rsrsj

c (Srarsra‘rsj

Therefore, ((1(a"))°r'I(a)] < (Sra’T'Sra’rs].

(v) = (i). Let x € (ATA"]. Then x < yaz for some y,z€ A" and a €T. By our assumption,y
€ (SIy'TSIY'T'S], then y < oy fuzyy dus for some u; €S, i=1,2,3 and o, B, 7,6 €. In asimilar
fashion, z < viaz Bvyyzdvs for some v; € S, i = 1, 2, 3 and a f 1y JcI. Therefore,

yoz < Uy yuzdy Ousdvilz vaysz y1vs © STY'TS © STATS < Afora, B, 7,6, 6, A, u, v, y1, 72 €. S0, x €
(A] since x < yaz, and so (ATA"] < (A] = A. If x € A, then we obtain x < wyax Bwyyx dws for some
w; €S,i=1,223anda B y, 6 € I' since x € (SIXTSIX'TS]. It is now obvious that wyax fw, € A" and
X'aws € A" as A" is an ordered I'-hyperideal of S by Lemma 2.10. S0 x < wyax fwayx Aws € A'TA” for a, 3,
7,4 €T and so A < (AI'A"]. Hence A = (ATA"].

Theorem 2.13: Suppose that S is an ordered I'-semihypergroup having order preserving involution *. The
I'- hyperideals of S are weakly prime if and only if A* = (A'A] for any I'-hyperideal A of S and any two
I'-hyperideals are comparable under the inclusion relation.

Proof: Let the I'-hyperideals of S be weakly prime. Suppose that A, B are any I'-hyperideals of S. As B is a I'-
hyperideal and (AI'B"] is weakly prime. Thus AI'B” < (AI'B"] shows that A"< (AI'B"] or BS(AI'B].If
A" < (AI'B'], then A" < (SI'B"] < (B"] = B" and so (A")" < (B")". This means A < B. If B = (AI'B],
then B = (AI'S] < (A] = A. It now follows that A and B are comparable. We claim A" = (AT'A]. As
(AT'A] is weakly prime and ATA < (AI'A], we obtain A® < (AI'A]. Also, suppose that x&(AT'A].
Thenx < ajaa, < ATA for some a;,a, € Aand a € T'. As A" < (AT'A], we obtalin a’ < uav; S ATA
and zza* < UyBv, S ATA for some Uy, Uy, Vi, V, € Aand o, # € T. Thus a; < (Uyavy)” and a, < (UzBvy)”.

This shows that x < ajaa; < (Uffv1) p(Vidv2)” S (ATA)'T(ATA)" = ATATATA" < A" since A" is a
hyperideal for o, 8,7, 6 € T. It follows that x € (A"] = A". So, (ATA] € A",

Conversely, assume A, B and P are hyperideals of S such that ATB €P. As A" = (AT'A], we obtain A" N B”
= (AI'B] by Proposition 2.12. As A and B are comparable, two cases arise. If A < B, thenA” < B”,
and so, A" = A" NB" = (AIB] < (P]=P by Proposition 2.12. Also if B < A, then B < A", and so B”
=A"NB" = (AI'B] < (P] = P. Hence P is weakly prime.

Proposition 2.14: Suppose that S is an ordered involution T'-semihypergroup. Then S is intra-regular
if andonly if the I'-hyperideals of S are semiprime.

Proof: Let I be a I'-hyperideal of S having sas < | for some s € S and o« € I". As S is intra regular, we
obtain s* € (ST'sysI'S] < (SI'IT'S] = (1] = I for y € T and therefore 1 is semiprime.

Conversely, let s € S. It is now obvious that (SI's'ys'TS] is a I'-hyperideal. Therefore, (sI's'ys'TS] is
semiprime by our assumption. This shows that sys = (s ys")" < (SI's s I'S] since (s as )A(s ys”) < SI's 05’ T'S
© (SI's'AsTS] for a, B,y,6,4 € T. So, s € (SI's‘asTS] and so s'as” < (SI's'Bs'TS] fora, p €T.
Hence s € (SI's"as'T'S] and it follows that S is intra-regular.

Proposition 2.15: Suppose that S is an ordered involution T'-semihypergroup. If S is intra-regular, then
(ST'xayI'S] =(SI'x By'T'S] for some x,y €S and «, f €T.
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Proof: Suppose that x,y € S. As S is intra-regular, it follows that

xay S (ST(xBy) y(xdy) TS] = (SIY 71X y2y 7sX T'S] S (SI'X ay T'S]

for a, B, 7, yu 72 ys € I. Therefore, xay < ufx’yy du, for some u;, u, € S. Therefore, Usoxfyyus <
Usou10x Ay MUgviy < SIX ay' TS < (SI'X ay' TS] forany us, us € S and a, 8, 7. 6, 6, A € I'. This shows that
SI'xayI'S < (SI'x ay'T'], therefore, (STxayI'S] < ((STX ay'TS]] = (SI'x aI'S] by Lemma 2.9. We obtain
(SI'X"ay'TS] < (ST'xpyI'S]. Hence, (ST'xayI'S] = (STX By'TS] for a, p € T.

Proposition 2.16: Suppose that S is an ordered I'-semihypergroup with order preserving involution *.

If the
I'-hyperideals of S are semiprime, then

(i) I(s) = (SI'sI'S] for any s € S, and
(it) I(xay) = 1(X) NI(y) for any x,y €S and a €T

Proof: (i) Suppose that s € S. Recall that (SI'sT'S] is a I'-hyperideal and so is semiprime. Since
(sas)a(sas) =(sas)? = s* = (SI'sI'S] gives s“as” = (sas)” < (SI'sI'S] for o € I'. In a similar fashion, s
€ (ST'sI'S] so that I(s) < (SI'sI'S]. Moreover, (SI'sI’'S] < (s U sI'S U ST's U ST'sI'S] = I(s). Hence,
1(X) = (SI'XI'S]. (ii)As xay = I(X)I'S = I(x), we obtain I(xay) < I(X). Also I(xay) = I(y) since
xay S ST'I(y) <I(y). So, I(xay) < 1(X) NIY). If z € I(X) NI(y), then z & (SI'XI'S] N (SI'YI'S]
by (i), and soz < ujaxfu, and z < viayfv, for some ug, Uy, vy, Vo, € S and for o, f € T.

Reca}l (ya1V2a2u1a3X)2 =l(ya4V2a5u1a6X)a7(ya8V2agulalox) o= (SanllyFS] = |(x0(12y) for a1, az, as, as, as, ag,
ar, og, ag, aipa11, 0 € I and that I(xay) is semiprime. So, (yav,fuiyx)” < l(xay). So, Z'az <

(UroxBuz) y(ViayBvs)” = U a(yBvayuidx) v < l(xay), and so Zaz. < (I(xay)] = l(xay) for a, B, 7,0, 0 €
I'. This implies that

z € l(xay), then 1(x) N I(y) < I(xay).
Theorem 2.17: Suppose that S is an ordered involution I'-semihypergroup such that the involution admits

the order. Then the T'-hyperideals of S are prime if and only if S is intra-regular and any two I'-hyperideals
are comparable under the inclusion relation.

Proof: If the T'-hyperideals are prime, then they are weakly prime and hence they are comparable by The-
orem 2.13. Suppose that s € S. Recall that (SI's’as'TS] is a [-hyperideal by Lemma 2.9 and hence prime. So,
(sas)a(sas) = s* = (ST's"as T'S] since (s)*a(s")* < (S's'fAs'TS] for o, # € I'. In a similar fashion, we
have (s"as”) = (s')? < (SI's'as'TS] and s € (SI's as'T'S]. It follows that S is intra-regular.

Conversely, assume that S is intra-regular and any two I'-hyperideals are comparable under the
inclusion relation <. Suppose that T is any I'-hyperideal of S and aab < T, where a,b €S and a €T.
Claima” € T orb” € T. By Proposition 2.14, I(a) is semiprime. Thus, we have aaa < I(a) implies a” € I(a).

n

We can similarly prove b™ € I(b). By our assumption, we obtain 1(a) < I(b) or 1(b) < I(a).

n

If 1(a) < 1(b), thena'el(a) = 1(a) N1(b) = I (aab) < T by Proposition 2.16. If 1(b) < 1(a), then we
obtain b™ € 1(b) = 1(@) N1 (b) = 1 (ach) < T.
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