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ABSTRACT 

Change point problems are used in many application fields. A general approach to Bayes, hierarchical Bayes, and 

duplicate the results using non-Bayes approach, for random change point problem are presented. In Bayesian analysis, 

Markov Chin Monte Carlo (MCMC) methods have become a ubiquitous tool as the computer is more powerful. 

Although Spiegelhalter et al. 1996 propose code software using WinBUGS (standard Bayesian software’s package 

freely available, Spiegelhalter et al. 2003) to detect the change point of normal datasets using WinBUGS, their results 

yield not investigated well. We argue that a more realistic description of random change point problem as will be 

resolved in this article in some details and duplicate these results from non-Bayesian perspective using some of R 

packages (R Development Core Team, 2011). Because of the statistical performances of the Bayes estimates for the 

random change points are so sensitive for the prior elicitation that we should duplicate our results using the non-

Bayesian approach. Within these contexts we handle two textbook data examples to compare the results between two 

approaches, Bayesian and non-Bayesian statistics. 

 

Keywords: Bayesian analysis; Change and Joint point; Longitudinal data; Software; MCMC algorithms; Model 

comparison (DIC); Piecewise linear regression; breakpoint; segmented linear regression. 
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______________________________________________________________________________________ 

 
1. INTRODUCTION 

 
In statistical analysis, it is of interest to check if and when a functional relationship between an explanatory and a 

response variable remains unchanged over the whole domain of the explanatory variable or whether the functional form 

changes at certain unknown points, the so-called breakpoints (or change points). The problem of change point 

considered with increasing interest in the literature, see e.g., (Picard, et al., 2011) and references therein). Thus, testing 

for the existence of a breakpoint is often important task  (Haybach, et al., 1997). The problems of identifying changes 

at unknown times and of estimating the location of changes is known as ‘the joint point problem’ or ‘the change point 

problem’. The technique of joint point regression (also known as broke stick, hockey stick regression, piecewise 

regression, change of phase, or segmented) that explains the relationship between two variables by means of a 

segmented linear regression constrained to be continuous everywhere, in particular in those places where the slope of 

the regression function changes can detect the breakpoints everywhere in the relationship between the two variables.  
Applications of this technique are widely applied in many areas of interest. For example, in survival data analysis (see 

e.g., (Jensen, et al., 2008)) or incidence series in epidemiological studies (see e.g., (Czaikowski, et al., 2008)). In these 

applications, the number (if any) and the location of the changes in trends (known as change points or joint points) are 

usually unknown, the main goal being to assess their existence and determine their location. Historically, methods such 

as control charts have been used to detect changes in data; however, these charts often fall short in detecting change if 

the change in the data is subtle. The standard change point problem in regression models consists of two main 

problems. The first is testing the null hypothesis that no change in regimes has taken place against the alternative that 

observations were generated by two (or possibly more) distinct regression equations, and the second problem is 

estimating the two regimes that gave rise to the data that desired to detect the change points. There are two common 

models. First are models where the regression line is continuous at the break point and models where the regression line 

can be discontinuous.  In this paper, we only consider the continuous case. The standard method is that fitting 

piecewise regression models are prone to yield different parameter estimates depending on the assigned starting values.  
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This problem has a long history (see e.g., (Lerman, 1980); (Seber, et al., 2003); (Toms, et al., 2003); and others). The 

change point model starts with the broken stick model seen earlier, i.e. 

 1 2 3( ) ( )y x x cβ β β ε− += + + − +       (1) 

Where y is the response variable, x is the covariate, and c is the change point where the break occurs, �1 is the intercept, 

�2 is the slope before the change point c and �3 is the difference in slope after the change point. The slope after the 

change point is �2 + �3.  The variable ( )x c
+−  is a derived variable which takes the value of zero for values of x less 

than c and the values ( )x c−  for values of x greater than c, this is called a linear spline. When testing whether for the 

existence of the change point, the unknown change point is often a parameter present only under the alternative. The 

standard change point problem in regression models consists of 

 

(1) Testing the null hypothesis that no change in regimes has taken place against the alternative that observations were 

generated by two (or possibly more) distinct regression equations and; 

(2) Estimating the two regimes that gave rise to the data. 

In statistical inference, there are two broad categories of interpretations of probability: Bayesian inference and non-

Bayesian (frequentist) inference (see for details (Hall, 2011)). Hall introduces article, examples and a Package in R (R 

Development Core Team, 2011) as a handy summary for experienced Bayesians. From frequentist point of view, the 

hypothesis of interest is to test the null hypothesis that H0: �3 = 0, which indicates no change in slope between x < c and 

x > c. If the value of c is specified in advance, ordinary least-squares can be used to fit the model. Most computer 

packages can easily fit this model like JMP software (see e.g. http://www.jmp.com/applications/statistics/). There has 

been some overlap between estimation and testing. For example, Kosorok and Song (Kosorok, et al., 2007) test for the 

existence of a change point by trying to find the supremum of the score process and use Monte Carlo procedures to 

evaluate the properties of the test statistic. But perhaps testing and estimation should be separated, at least procedurally. 

Henderson (Henderson, 1990) demonstrates that reasonable estimates for the change point that come from testing 

procedures (such as maximizing a statistic over a range of potential values for the change point) might not be sufficient 

under the alternative hypothesis. In other words, there might be more information about the change point from the data 

than is contained in the estimates of the change point that are obtained from maximizing test statistics. There are two 

common models. First are models where the regression line is continuous at the change point and models where the 

regression line can be discontinuous (see for details (Hawkins, 1980)). In this paper, we only consider the continuous 

case. In many cases the location of the break is not known, and it is of interest to estimate the break point as well. The 

problems of identifying changes at unknown times and of estimating the location of changes is known as ‘the change 

point problem’. Numerous methodological approaches have been implemented in examining change point models, 

from the two points of view Bayesian and non-Bayesian (frequentist). Maximum-likelihood estimation (see e.g., 

(Fotopoulos, et al., 2001)), Bayesian estimation (Barry, et al., 1993), isotonic regression (see, e.g., (Wu, et al., 2001)), 

piecewise regression (see (Toms, et al., 2003)), quasi-likelihood (see e.g., (Braun, et al., 2000)) and non-parametric 

regression (see (Loader, 1996)) are among the methods which have been applied to resolving challenges in change 

point problem. Grid-searching approaches have also been used to examine the change point problem. A review of the 

literature (as of 2008) especially as it applies to regression problem is available at: 

http://biostats.bepress.com/cobra/ps/art44/.  This model is appropriate where there is an unexpected transition at the 

break point, but a smooth transition may be more realistic for some data. The drawback of model (1) appears clearly in 

Bayesian approach, which is that convergence problems can occur in locating c when the data are sparse around the 

neighborhood of c. The so-called bent-cable model is also used to describe natural phenomena which exhibit a 

potentially sharp change in slope. The model comprises two linear segments, joined smoothly by a quadratic bend. The 

bent-cable regression model was recently developed by (Chiu, et al., 2006). The bent-cable regression model fits a 

smooth transition between the two linear parts of the model.  The model comprises two linear segments, joined 

smoothly by a quadratic bend. The class of bent cables includes, as a limiting case, the popular piecewise-linear model 

(with a sharp knot), and otherwise known as the broken stick. The latter is also applicable to regression models where 

the x variable is time and auto-correlation may be present (see (Chiu, et al., 2010)).  There are many segmentation 

algorithms are based on Bayesian inference or on the penalized maximum likelihood principle which can be viewed as 

a Bayesian strategy with appropriate prior knowledge. Although frequentist procedures for change point analysis 

estimate specific locations of change points, the Bayesian procedure offers a probability distribution - the probability of 

a change point at each location in a sequence. To assist the reader, we present briefly a basic method for detecting the 

change points using the both perspectives Bayesian and non-Bayesian. We then describe the Bayesian approach using 

the free software WinBUGS and we duplicate this detection using some of methods in non-Bayesian methods. The 

Bayesian perspective may be necessary are the following: 

(1) Models with many random effects (easily set up and estimate difficult models); 

(2) Models using exotic probability distributions (most probability models become exotic when coupled with random 

effects, e.g., there currently are limited frequentist tools available for fitting negative binomial regressions with 

random effects.); 

(3) There are many parameters to estimate; 

(4) Models in which the estimated variances of some of the random effects are small and/or the number of replicates is 

small. 
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One or more of these four conditions is typical in many fields in applications in real problems (e.g. in ecology). The 

only real problem from a practical change point problem with using Markov chain Monte Carlo in model estimation is 

not the intensive computational, but that it is difficult to assign a suitable uninformative prior for c (i.e. need defense of 

priors or sensitivity analyses of prior specification; no guarantee of Markov Chain convergence) . Therefore we try to 

detect the change point using the non-Bayesian approach and then we use the Bayesian approach to help us for 

detecting a suitable prior distribution for that change points, trying to answer the question which states that  “Is 

MLE/frequentist approach simply Bayesian statistics in change point problem with an uninformative prior ?” . There 

are many packages in R which could be helping us to detect the change points (see e.g., (Killick, et al., 2011) and 

references herein). For example, (Erdman, et al., 2010), propose a package for the change point problem.  In their work, 

they offer a new R implementation of the Bayesian change point procedure, which was proposed by (Barry, et al., 

1993) used product partition models as distributions over possible segmentations of time-series data.  

In change point problem, the statistical performances of the Bayes estimates for the random change points are so 

sensitive for the prior elicitation that we should duplicate our results using the non-Bayesian approach. Within these 

contexts, first we review the change point problem through handling two textbook data examples to compare the results 

between two approaches, Bayesian and non-Bayesian statistics. The two textbook examples can be considered a 

hierarchical linear model (HLM) or linear mixed model (LMM), or Random Coefficients model. 

 
2.  CHANGE POINT PROBLEMS AS MIXED MODELS 
 

To illustrate the use of WinBUGS to fit statistical models in change point problems well, we introduce a standard 

statistical model that was historically known as mixed models. In the current version of the R environment (R 

Development Core Team, 2011) a number of packages can fit the change point problem, for example (Muggeo, 2011), 

present a general methodology of segmented relationships in regression models, (Zeileis, et al., 2011) present 

methodologies in Testing, monitoring and dating structural changes in (linear) regression models. Another useful 

package in detecting change points is available with the segclust R package to perform segmentation and 

segmentation/clustering as presented in the Biometrics paper (Picard, et al., 2007). (Sonderegger, 2011) offer a package 

which include methods with straightforward functions within R environment to help the user to detect the change point 

location, such as ‘bent.cable’, ‘locally.weighted.polynomial’, ‘piecewise.linear’ functions. These methods provide 

statistics for inferences, from non-Bayesian viewpoint, about whether the dependent variable y varies over independent 

variable x and when changes occur in the time x-axis. This paper follows (Spiegelhalter, et al., 1996) to show how to do 

the Bayesian analysis of change point models using WinBUGS and we also use some of the above mentioned in R 

packages in an attempt to duplicate the results of the frequentist analysis. There are a large variety of change point 

detection problems that present themselves in the analysis of time series and dynamical systems. We focus entirely on 

fitting the analysis of change point model as mixed models using WinBUGS. BUGS (Spiegelhalter, et al., 1996) is 

specialized software package for implementing MCMC-based analyses of full probability models in which all 

unknowns are treated as random variables. The BUGS project began at the Medical Research Council Biostatistics Unit 

in Cambridge in 1989. Since that time the software has become one of the most popular statistical modeling packages, 

with, at the time of writing, over 30,000 registered users of WinBUGS worldwide. BUGS have been just one part of the 

tremendous growth in the application of Bayesian ideas over the last 20 years, see (Lunn, et al., 2009). Prior to the 

widespread introduction of simulation-based methods, Bayesian ideas could only be implemented in circumstances in 

which solutions could be obtained in closed form in so-called conjugate analyses, or by ingenious but restricted 

application of numerical integration methods. The importance of the software has been acknowledged in ‘An 

International Review of U.K. Research in Mathematics’ (http://www.cms.ac.uk/irm/irm.pdf). It turns out that 

WinBUGS can become quite a powerful and flexible tool for Bayesian analysis, and only requires a relatively small 

investment on the part of the user. Once the (applied) user understands the logic of model building with WinBUGS, 

Bayesian analysis is conducted quite easily and many built-in features can be accessed to produce an in-depth and 

interactive analysis of detecting the change points. In addition, execution is reasonably fast, even of complicated 

models with large amounts of data and model extensions can easily be accommodated in a modular fashion. The 

WinBUGS software (together with a user manual) can be downloaded (the current fee is zero) from the website 

(http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml).  

 

Therefore, in this section we explain why one can view change point problems as mixed models and the following 

section will be devoted to illustrate the use and flexibility of WinBUGS for Bayesian change point modeling of the 

Stagnant band height data example, which has introduced by Spiegelhalter et al. (Spiegelhalter, et al., 1996). In their 

example, they follow the seminal paper by Carlin et al. (Carlin, et al., 1992) to describe the change linear regression 

problem using WinBUGS. Now; consider the regression model 

 ( )
ij ij ij

y f x ε= +  (2) 

where ij
ε are independent and identical distribution  (response errors) such that ~ (0, )

ij
N εε σ and ( )

ij
f x is a 

smooth function;  ij
x could be random but their distribution is left to be unspecified and could be degenerate 

distribution (a probability distribution of a random variable which always has the same value, e.g., ij
x  could be equally 
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spaced). (Chiu, et al., 2006) give an extensive list of work using conventional continuous change point models. A 

popular one is the piecewise-linear (broken-stick) model, which, as discussed by these authors, can be inappropriate in 

the absence of clear scientific theory or evidence that supports an abrupt change as presumed by the model’s kink. In 

contrast, as it will be outlined in this article, it is straightforward to use the WinBUGS software to change the 

assumptions of the model and compare the results to obtain the best one fit to the analyzed data and we recommend to 

duplicate the results with that methods because the prior distribution for the change point is so sensitive as we will see 

in the two examples given in this paper. 

  

As an illustration of the change point problem in Fig. 1 a graphical representation of several break-points corresponding 

to different locations of the change points is shown. As can clearly be seen, it is assumed that we have a sequence of 

observations for subject i ( ),x y and that j
c , 1, 2,..., ,j m= be 1m +  points at the x-axis so that the interval 

0[ , ]
m

c c  contain all j
x , for simplicity, it may be assumed that the points are equidistant, i.e., 1j j

c c δ−− = . For the 

change point analysis, we wish to find the 1j +  values  j
d   in the y-axis so that the broken line defined by the j + 1 

points ( , )
j j

c d  ‘fit’ the set of points ( ),x y . This fitting is meant in terms of minimizing the total square error among 

the set of original points ( ),x y and the fitted broken line ( , )
j j

c d so that the square difference between y and ŷ  in 

the y-axis is minimum. The general form of the change-point problem is to determine the unknown location ( , )
j j

c d , 

based on an ordered sequence of observations 1 2( , ,..., )
m

x x x . In the regression literature, the change-point model is 

also referred to as two-or multiple-phase regression, switching regression, segmented regression, two-stage least 

squares (Shaban, 1980), or broken-line regression. 

 

To provide an illustration of the type of data will be analyzed to detect the change point location, consider the data 

matrix of responses as follows: 

11 22

11 12 1 1

21 22 2 2

1 2

1 2 12

event 1 event 2 event  event 

subject 1

subject 2

ij nm

j m

j m

i i ij im

n n nm

x x j x m x

y y y y

y y y y

i y y y y

n y y y y

= = = =� �

� �

� �

� � � � � � �

� �

� � � � � � �

� �

     

 

The first subscript refers to an event (could be the time) and the second to subject. This constitutes a null model and in 

general we will wish to include further variables, notably age or time. Suppose we wish to express the response, as a 

function of time measured at each a certain event. The multivariate continuous responses ij
y

 
are recorded on subjects 

at each event we will generally wish to model the average time relationship for each response and the covariance matrix 

among the responses as a function of time. This is readily done by considering the multivariate response structure as a 

further, lowest, level in the data hierarchy with measurements nested within events. There are several advantages to 

considering the joint modeling of several responses. The ability to estimate their covariance matrix as a function of time 

allows one to study the distribution of any function of the responses with respect to time. For example, when studying 

issues of prior determination it may be useful to see whether the correlation between two variables a given time apart is 

greater when one is the prior variable rather than the other. Likewise, it provides a general prediction procedure for one 

measurement, conditional on any set of observed prior measurements.  

 

Fig. 1: Definition Sketch 



Ayman A. Mostafa* and Anis Ben Ghorbal/ Bayesian and non-Bayesian analysis for random change point problem using 

standard computer packages/ IJMA- 2(10), Oct.-2011, Page: 1963-1979 

© 2011, IJMA. All Rights Reserved                                                                                                                                                   1967  

3.  CHANGE POINT PROBLEM AS A MIXED MODEL 
 

This section is concerned with modelling data where measurements of one or more attributes are repeated on the same 

set of individuals over time (longitudinal or cross-sectional data). Statistical analysis for cross-sectional or longitudinal 

data with data missing in no monotonic patterns is very difficult. For analyzing longitudinal data with no ignorable and 

no monotone missing responses, a full likelihood method is complicated algebraically, especially with the change point 

problem and often requires intensive computation, especially when there are many follow-up times. As an alternative, 

in this section we explain a uniform and straightforward procedure using WinBUGS software to deal with cross-

sectional or longitudinal with observations, which could be missing, with in arbitrary non monotonic patterns, 

estimating regression parameters with the change point problem using available observations based on the regression 

model of interest and parametric working models. The model specification will be developed for the case where a 

single or multiple continuous measurements are made on several occasions for a sample. This will then be extended to 

consider the case of multiple measurements at each time point and mention will be made of extensions to latent variable 

models and to continuous response data. To begin with we look at the simple, restricted, data structure where there are 

a fixed number of measurement occasions and each individual has a measurement at each occasion. 

 
 3.1 Comparing Bayesian and frequentist results in change point problem 
 

To compare between Bayesian and frequentist results in change point problem, our basic strategy in this Section will be 

how to find non-Bayesian change point and then turn to find Bayesian change point estimates numerically using 

dedicated Bayesian software WinBUGS that implement Markov chain Monte Carlo (MCMC) methodology. BUGS is 

an acronym for ‘Bayesian inference Using Gibbs Sampling’. Gibbs sampling is a specific MCMC method. The Gibbs 

sampler yields a Markov chain whose stationary distribution is the posterior distribution.  

This will be illustrated using an example concerned with the prediction of log flow rate of water down an inclined 

channel (in g. /cm.sec.)  given a series of  the log of the height of the stagnant surface layer  (in cm) for a sample of 

29N = different surfactants, taken from (Bacon, et al., 1971), who report that data during the investigation of the 

behavior of stagnant surface layer height in a controlled flow of water. In this case, one of our response measurements, 

flow rate of water down an inclined channel, is made at the level of the subject and the height of the stagnant surface 

layer is made at the event level. Muggeo (Muggeo, 2011) used such data in his package ‘segmented’ within the R 

Environment. These data is given in Table 1. Like R packages, WinBUGS is capable of handling missing observations.  

In Table 1, we present the missed observation as WinBUGS team writes ‘NA’. NA is the one of the few non-numbers 

that we could include in the table without generating an error during write the code program for the both R packages 

and WinBUGS.  

���Stagnant band height data example, from non-Bayesian perspective  

The graph in Fig. 1 and the estimated degrees of freedom both indicate a slight deviation from linearity (glmmBUGS 

package is used to estimate degrees of freedom; the glmmBUGS package is a bridging tool between generalized linear 

mixed models (GLMM’s) in R and the WinBUGS language, see (Patrick, 2010), for more details). The graph suggests 

that there may be two regions as it was outlined in (1). Further, based on the Fig.  2 & Error! Reference source not 

found., we deduce that the change point for the data occur at 0c ≈ . The largest log-likelihood was achieved using a 

breakpoint of 0c ≈ . It is useful to plot the log-likelihood as a function of c yielding what we call a profile log-

likelihood, as in Error! Reference source not found.. From Bayesian approach, these data were analyzed by 

(Spiegelhalter, et al., 1996), who identify the change point for these data and they do not take the repeated measures in 

their consideration. Further, they consider the problem as a non-hierarchical (standard linear regression with a change 

point).   

As a simple demonstration that the change point could be handled well using WinBUGS well, inference on the change 

points will be described in the following example. Denote by ij
y and ij

x the log flow rate of water down an inclined 

channel (in g. /cm.sec.) and the height of the stagnant surface layer (in cm) for rate i at time j  (in this example 

ij j
x x= ).   (Spiegelhalter, et al., 1996) do not take the repeated measures in their considerations and consider that 

there is only one change point, c.  Now suppose we have a probability model for these data. Take the jth measurement 

on the ith height and following formulation by (Spiegelhalter, et al., 1996), the regression model is as follows:  

1 2 ( ) 3 ( )

2

( )

( ) ( ) ( )

~ ( , )

ij j

j j j

ij ij

y m x

m x x x c

y N

β β β

µ σ

− +

� =
��

= + + −�
�
��

 (3) 
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Equation (3) is the likelihood of our data; one drawback of this model is that convergence problems can occur in 

locating c when the data are sparse around the neighborhood of cj. Khan (Khan, 2010) developed the bent-cable 

regression using MCMC which could be used and studied by the same method in this paper. In general, the statistical 

model for this framework can be written as follows: 

( )

1 2 ( ) 3 ( )

2

2

2

( )

( ) ( ) ( )

~ ( , )

~ (0, )

~ (0, )

ij j ij

j j j j j j

ij ij

j b

ij

y m x

m x x c x c b

y N

b N

N ε

ε

β β β

µ σ

σ

ε σ

− +

� = +
�

= + − + − +�
�
�
�
�
�
�

 (4) 

Here, the continuous predictor ( )j
x is the times-ordered of observations j

x and ij
y is the corresponding vector of 

response, 1, 2,...,i n= and 1, 2, ...,j m= , such that the total number of observations is 

1 1

n m

ij

i j

N n
= =

=�� . The 

number i
n  is the within-subject sample size; it is the number of observations on subject i. Without loss of generality, 

in this paper, we will consider the sum of i
n  is equal to m. Therefore if m is equal to one, then we have univariate. 

Hence, we have a sample of n subjects with i indexing subjects and running from 1 up to n. The total number of 

observations is then n m× . Also, we suppose that there exist m change points, cj occurs through 

(1) (2) ( )...
m

x x x< < <  such that the mean of the change is constant between two changes and different from a 

change to another. Let
 j
c be the change point at for the observation. Here  ( )( )

j j
x c −−  is equal to ( )( )

j j
x c− if 

( )j jx c< and ( )( )j jx c +−  is equal to ( )( )j jx c− if ( )j jx c≥ . 1 2 3( , , )β β β β=  be the vector of fixed effects. 

2β and 3β  represent the overall slope before and after the change-points j
K and 1β  is the all over intercept. Let j

ω

be the random effects for observation ,j and ij
ε be independent errors. Hence, the parameters of the model (4) are β , 

{ }
1

m

j j
c

=
, 

2

b
σ , 

2

b
σ , 

2

εσ . Technically the { }
1

m

j j
b

=
are not parameters but instead are considered to be unobserved 

random variables for which we form ‘predictions’ instead of ‘estimates’. β , j
b and ij

ε  are all assumed independent. 

Hence, we have a sequence of independent observations { }
1

, ,  1, 2,...,
m

j ij j
x y i n

=
= satisfying model (4). In this 

example, it is assumed that ij
y distributed as normal (also called ‘Gaussian’) distribution with mean and variance 

given by  

1 2 3( ) ( ) ( )

( )

ij ij j j j j

ij

E y x c x c

V y

µ β β β

τ

− += = + − + −��
�

=��
 (5) 

Here, (5) is the expected and variance of the change in curve fitting between the change-points.  

( | )
ij j

y c in (4) follows a mixed-effects model (or just mixed models), and are often appropriate for representing 

clustered, and therefore dependent, data – arising, for example, when data are collected hierarchically, when 

observations are taken on related individuals (such as siblings), or when data are gathered over time on the same 

individuals. Combining all n subject-specific regression models above into one model to get the common formulation 

of the linear mixed model for clustered data is the Laird-Ware (Laird, et al., 1982) model as follows: 

 

 Y=X�+Zb+�  (6) 

where X is a model matrix for the fixed effects, includes baseline covariates, possibly time-varying covariates, and the 

before change point and after change point vectors, � is a vector of fixed and unknown parameters,  Z is a model 

matrix for the random effects, b is a vector of random effects, and �  is a vector of random errors.  Linear mixed 

models may be expressed in different but equivalent forms. For example, the Laird-Ware model may also be expressed 

in terms of a particular cluster by including a subscript i , denoting the linear mixed model for the i
th cluster (

1, 2, ..., )i n= .Alternatively but equivalently, in matrix form, (6) could be written as 
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where 

• iy  is the 1m ×  observation vector for the ith subject; 

• ix  is the m p×  model matrix for the fixed effects within subject i; 

• �  is the 1p ×  a vector of population-average regression coefficients called fixed effects; 

• iZ  is the m q×  model matrix for the random effects for observations between subject i; 

• 
i

b  is the 1q ×  is a vector of subject-specific regression coefficients for cluster i, the 
i

b  describe how the evolution 

of the ith cluster deviates from the average evolution in the population; 

• i
ε  is the 1m ×  vector of residual (errors) for observations in cluster i; 

• Ψ  is the m q× covariance matrix for the random effects; 

• 
2

m
Iσ  is the m m× covariance matrix for the errors in cluster i with m

I is the   order- m identity matrix. 

 

By defining characteristic of a longitudinal study, which is that individuals are measured repeatedly through time, the 

linear mixed effects model in (6) or (7) provide an effective approach to longitudinal data analysis. There are a lot of 

longitudinal data in a variety of disciplines such as social science, medical science, economics, agriculture and industry. 

Longitudinal data require special statistical methods because the set of observations on the same individual tends to be 

inter-correlated. This correlation must be taken into account to draw valid scientific inference.           

   

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

x  
-1.39 -1.08 -0.94 -0.8 -0.63 -0.25 -0.12 0.01 0.11 0.25 0.34 0.44 0.59 0.7 0.85 0.99 1.19 

y
 

1.12 0.99 0.92 0.9 0.81 0.65 0.6 0.51 0.44 0.33 0.25 0.13 -0.01 -0.13 -0.3 -0.46 -0.65 

1.12 1.03 NA NA 0.83 0.67 0.59 NA 0.43 0.3 0.24 NA NA -0.14 -0.33 -0.43 NA 

NA NA NA NA NA NA NA NA 0.43 NA NA NA NA NA NA NA NA 

      

Table 1: Stagnant band height data; x: log (flow rate in g./cm.sec.), y : log (band height in cm.)  

Source: Carlin et al. (1990) (Data contains between 1 and 3 observations per x “ragged array”)  

 

Fig.  2: Scatterplot, estimated degrees of freedom with a smoothed function (solid) estimated fit to the stagnant data 

 

 

Fig. 3: break-point and profile log-likelihood for the breakpoint estimated fit to the stagnant data.  
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3.3 Stagnant band height data example, from Bayesian perspective  

We begin by using the WinBUGS programming language to formulate the likelihood of our data (4), under our chosen 

model (5), along with prior distributions for the model parameters. To complete the Bayesian specification, suitable 

priors have to be assigned to all model parameters in the likelihood function. The following priors were used, 

6

1 2 3

2 2

, , ~ N(0,10 )

, ~ Gamma(0.001,0.001)b ε

β β β

σ σ− −

��
�
��

 (8) 

The second parameter of the normal distribution in (8) is the variance.  In many applications a normal prior distribution 

centered at zero with standard error equal to 1000 is sufficiently improper (non-informative, objective or default) prior.  

If there are reasons to suspect, either using alternative estimation methods or prior knowledge, that the true parameter is 

in another region of the space, then the prior should be adjusted accordingly.  The parameterization of the Gamma 

distribution in (8) with shape parameter 0a  and scale parameter 1a  is chosen so that its mean is 0 1/ 1a a =  and its 

variance is 
2

0 1/ 1000a a = .  Two other possible prior distributions for variance components, the first one is the 

uniform prior on [ ]0, L , where L is chosen very large, and the second is also the uniform distribution on  [ ],L L−  

for the log of variance.  The practitioner should try a few dispersed priors in a sensitivity analysis to the choice of 

priors.  

We now describe the WinBUGS program that follows closely the description of the Bayesian parametric model in 

equations (4), (5) and (8). The entire program is provided in Appendix A.1. While this program was designed for the 

stagnant band height data, it can be used for other general mixed effect-effects model with change points with just 

minor adjustments. Many features of this program will be repeated in the next example in the next Section and changes 

will be described, as needed. Equation (4) is the likelihood part of the model (see details in Appendix A.1.). In 

WinBUGS, models are expressed in code through the distributions of the observations and parameters together with 

their independence structure. Equation (4) is the likelihood part of the model.  

Based on the information we give to WinBUGS software (see Appendix A.1) set up the appropriate Gibbs sampler (or 

some alternative MCMC method) that yields Markov chains that we in turn will track. Convergence to the posterior 

distributions was assessed by using two different initial values of model parameters and visually inspecting several 

chains corresponding to the model parameters in Table 1. Convergence was attained in less than 10, 000 simulations, 

but we discarded the first 30,000 burn-in simulations in. For inference we used 20, 000 simulations and a thinning to 

every 25th draw and then, we monitored all parameters of the model. WinBUGS has a number of tools for reporting the 

posterior distribution. A simple summary (Table 2) can be generated showing posterior mean, median and standard 

deviation with a 95% posterior credible interval, for the quantities of primary interest in change point problem. 

Parameter names are related in an obvious way to the model in both equations (3) and (4). A fuller picture of the 

posterior distribution can be provided using the density option in the Sample Monitor Tool, within the WinBUGS 

software, which draws a kernel density estimate of the posterior distribution of any chosen parameter, as in Error! 

Reference source not found.. 

Table 2: WinBUGS output for the for stagnant band height data (see Appendix A.1): posterior statistics for parameters 

of main interest in change point problem 
parameter Mean SD MC error 2.5% Median 97.5% Start Sample 

beta[1] 0.618 0.03435 0.001323 0.5481 0.6187 0.6832 30001 40000 

beta[2] 0.3064 0.03413 0.001268 0.2439 0.3052 0.3762 30001 40000 

beta[3] −1.058 0.05029 0.001885 −1.164 −1.057 −0.9644 30001 40000 

average.c −0.0023 0.01284 3.80E-04 −0.03028 −0.0019 0.02374 30001 40000 

Table 2: WinBUGS output for the for stagnant band height data, see Appendix A. 1: posterior statistics for parameters 

of main interest in change point problem 

 

 
Fig. 3: WinBUGS output for the for stagnant band height data: posterior densities for parameters in Table 2 
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The autocorrelation function for the chain of each dimensions parameter (as shown in Fig. 3) can also indicate of the 

posterior distribution that is mixing slowly. Slow mixing is often associated with high posterior correlation between 

parameters. The plots indicate that all parameters are mixing well with autocorrelation vanishing before 100 lags in 

each case. The correlation tool (the correlation option in the inference menu within WinBUGS software) can produce 

scatterplots of every parameter against every other parameter to indicate correlation or a correlation coefficient can be 

estimated from the current output. Graphical representations of the posterior distribution can indicate problems with the 

performance of the MCMC algorithm. More sophisticated methods for convergence detection can be implemented in R 

environment, see (Plummer, et al., 2011). WinBUGS produces output that is formatted for direct use with such package 

and allows the behavior of the chain to be investigated using some popular functions and statistical tests.  

 
Fig.  4: WinBUGS output for the for stagnant band height data: autocorrelation functions of the chain 

WinBUGS automatically implements the DIC (Spiegelhalter, et al., 2003) model comparison criterion. This is a 

portable information criterion quantity that trades off goodness-of-fit against a model complexity penalty. In 

hierarchical models, deciding the model complexity may be difficult and the method estimates the ‘effective number of 

parameter’, denoted here by 
D

P . D is the posterior mean of the deviance (–2 ×  log likelihood) and D̂ is a plug-in 

estimate of the latter based on the posterior mean of the parameters. The DIC is computed as DIC = D + D
P = D̂ + 2

D
P . Lower values of the criterion indicate better fitting models. Table 3 Table 3 records the values computed, in the 

format given by WinBUGS. For our purposes here, we will focus only on the DIC value. The method was designed to 

be easy to implement using a sample from the posterior distribution and the interested reader is directed to 

(Spiegelhalter, et al., 2003) for a lively discussion of its merits and its relation to the more usual Bayes factor.  

 D  D̂  DIC pD 

y −78.67 −89.13 −68.22 10.46 

total −78.67 −89.13 −68.22 10.46 

Table 3: WinBUGS output for the for stagnant band height data: DIC with random effect D  = post.mean of −2log L;  

D̂  = −2Log L at post.mean of stochastic nodes 

There are many parameters of interest in code program in Appendix A.1, which may be useful in implementation of 

hierarchical Bayesian models in WinBUGS. For example,   Variance Partition Coefficient (VPC) (see e.g., (Kostoulas, 

et al., 2009)) can be calculated. Sensitivity to priors for the change point should be studied well. There are various other 

options for displaying the posterior distributions for other parameters. For example, the compare…menu item, in 

WinBUGS Software, brings up the comparison Tool that draw caterpillar plot. When p.pred (see the code WinBUGS, 

in Appendix A.1) was monitored, it is found that the y[2,14] is the outlier, from  Table 1, that is at 14d = , we have 

ˆ 0.14y = − . 

The posterior distribution for the change points is plotted in Fig. 5. Finally;  

Table 4 give estimates of other parameters of interest an Fig. 6 gives us our final most important of interest her, the 

change point problem. 
parameter Mean SD MC error 2.5% Median 97.5% Start Sample 

R2 0.9848 5.28E-03 1.69E-04 0.9723 0.9857 0.9925 30001 40000 

VPC 0.7812 0.2209 0.005431 0.1761 0.8669 0.9877 30001 40000 

y.pred[2,14] -0.04563 0.08184 0.001824 -0.2163 -0.0421 0.1074 30001 40000 

Table 4: WinBUGS output for the for stagnant band height data: Some of posterior statistics for the other parameters in 

code WinBUGS program in Appendix A.1 
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Fig. 5: Plot of the posterior mean values of the change points j
c  

 

Fig. 6: Estimated change point model with breakpoint 0.002c = −  

 

4. THE CORONARY SINUS POTASSIUM DATA 
 

We now consider the coronary sinus potassium concentration data measured on 36 dogs published by (Grizzle, et al., 

1969) and (Wang, 1998). We repeat the above proposed analysis to show that the flexibility of R packages with 

WinBUGS for detecting the change points easily. The measurements on each dog were taken every 2 minutes from 1 to 

13 minute (7 observations per dog) after occlusion (i.e., an artificially induced heart attack). The 36 were divided into 4 

treatment groups, which will be treated as a categorical predictor in regression equation. The coronary sinus potassium 

concentration data are an example of longitudinal data.  

 
4.1 The Coronary sinus potassium data example, from non-Bayesian perspective  
 

That is, they are repeated measurements taken on the same experimental units over time. A plot of the coronary sinus 

potassium concentration versus time points measurements were made (see Fig. 6 Fig. 7, for the four groups and Fig. 7, 

for the first group only) by subject shows there is considerable variation between subjects in both the intercept and the 

slope of the linear trend. In such data we have the following variables: 

 

• y: is a numeric vector denote to measurements of coronary sinus potassium concentrations; 

• group: a vector of group index for the four groups of dogs; 

• time (x): a numeric vector of time points measurements were made. All methods in packages in R environment 

have been used (see Fig. 7 and 8) , prove that ‘The threshold change point occur at: 0.7395216’ i.e., change point 

occurs at time equal to 0.73 approximately (see e.g., Sonderegger, 2011).  

 

Figure 6: Estimated change point model with breakpoint 1 0.7395216c =  
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Fig. 7: Estimated change point model with breakpoint 1 0.7395216c =   

 

 
 

Fig.  8: Scatterplot, Bent cable method, locally weighted polynomial and piecewise linear methods for the coronary 

sinus potassium concentration data 

 
 

Fig. 9: Scatterplot, Bent cable method, locally weighted polynomial and piecewise linear methods for the coronary 

sinus potassium concentration data, for the first group 
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4,2 The Coronary sinus potassium data example, from Bayesian perspective  

In this section, we show how to implement such a complex model in WinBUGS using model (4). After running the 

code software in the Appendix A. 2, it is straightforward to monitor the main nodes of interest, and repeat the analysis 

as the previous example. Let us, now show the importance of the hierarchical model in the change point problem. It is 

noted from  

Table 5 that  

 

• the variability in the intercept in the hierarchical model; 

• how the residual variance (
2σ ) is reduced when random effects; 

• The effect of hierarchical model on the change point problem, i.e., when working with the non-hierarchical 

model and choose a suitable prior for the change point of interest, the results are the same from both 

hierarchical and non-Bayesian perspectives. 

 

non-hierarchical model hierarchical model 

1β  4.755 (4.572, 4.935) 
αη  4.767 (4.388,5.133) 

2

ασ  0.2605 (0.1471,0.422) 

2β  −1.413 (−3.966, −0.3934) 
2β  −1.073 (−2.407, −0.4882) 

c1 0.6713 (0.3182, 0.9785) c1 0.7296 (0.4566, 0.9707) 

2∆  −1.072 (−1.289, −0.8513) 2∆  −1.068 
(−1.577, −0.5522) 

3∆  −0.4794 (−0.7089, −0.2493) 3∆  −0.4741 
(−0.9831, 0.08042) 

4∆  −0.6841 (−0.907, −0.4586) 4∆  −0.6831 
(−1.179, −0.164) 

2σ  
0.409 (0.3424, 0.4877) 2σ  

0.1853 (0.1533, 0.2238) 

 

Table 5: Posterior mean (95% credible interval) for the non-hierarchical and hierarchical models fitted to the coronary 

sinus potassium concentration data 

 

 
  

 Fig. 10: Trace plots of the Markov chains for the change point, in case hierarchical model 

 

 
 

Fig. 11: Trace plots of the Markov chains for the change point, in case non-hierarchical model 
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Fig. 12: WinBUGS output for the for stagnant band height data: posterior densities for parameters in hierarchical 

model, in  

Table 5 

Fig. 10 shows plots of the two Markov chains for the change point parameter, 1c . Observe that trajectories are 

thoroughly interdigitating indicating that the chains have mixed fairly well. The fact that the two chains are traversing 

the same range of y-values provides evidence that the chains are now sampling from the posterior distribution of  1c . 

The fact that the individual chains are jumping around a lot indicates very little autocorrelation in the chains. This is 

good because it implies that the returned observations are nearly independent meaning that our effective sample size is 

close to the actual sample size, on the contrary for these, see  

Fig. 11, in case of no-hierarchical model, which is not mixing well. Finally; Fig. 12 gives us a fuller picture of the 

posterior distribution of the kernel density estimate of the posterior distribution of the chosen parameter in  

Table 5 for the non-hierarchical model. 

 
5. CONCLUDING REMARKS 

 

The following remarks are concluded from the above Sections: 

 

(1) The best strategy for having success in fitting change point problem is to use the approaches, Bayesian and non-

Bayesian; 

(2) The flexibility of free software, WinBUGS with many packages of R to handle the change point problem clearly 

and easy. BUGS code looks just like R code but with important differences, which must be studied well (  
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(3) The easy way to handle WinBUGS with any other packages in R environment, which include about 3065 available 

contributed packages such that it is increasing weekly, in the all fields to deal with the statistics, in general (i.e. it 

easy to run WinBUGS from R). 

(4) A landmark in the development of Bayesian analysis is the 2009 book by Ntzoufras (simply titled ‘Bayesian 

Modeling Using WinBUGS’). As far as we know, it is the only book-length treatment on the topic to date. For 

instance, in their Book (Ch. 9) survey the idea of the basic concepts in Bayesian hierarchical models, hierarchical 

models, generalized linear mixed model formulation, with simple illustrative examples. While there is much to 

commend this work, for the most part it is relatively complex to implement. This may be an impediment to 

practitioners who wish to use such techniques in change point problem. 

(5) The prior distribution for the change point using such technique in this paper needed further research.  
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#---------------------------------------------------------------------------------------------------------------------------------------------- 

Appendix A. 1: (The example in Section 3) 

#---------------------------------------------------------------------------------------------------------------------------------------------- 

    Model; #WinBUGS Code 
{ 

# The number of subjects, N = n*m = 29 given observations in the data Set in Table 1 and add 22 
#missed observations could be estimated from the following Model = 51, is a constant in the 
program 
for(i in 1 : n) { 
for(j in 1:m)  { 
y[i,j] ~ dnorm(mu[i,j], tau)      # likelihood for observed data 
#y[i,j] ~ ddexp(mu[i,j], tau) 
#link and linear predictor 
#mu[i] <- alpha + beta[J[i]] * (x[j] - c)+b[j]#Spiegelhalter et al. 1996 used this link 
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# It is preferred to use the following link: 
mu[i,j] <- beta[1] + beta[2]*(x[j]- c[j])*min(x[j]-c[j],0)+beta[3]*(x[j] - c[j])*step(x[j] - c[j])+b[i] 
p.pred[i,j] <- step(y[i,j] - y.pred[i,j]) # post. mean = p-value 
res[i,j]<- (y[i,j]-mu[i,j])   # residual 
sres[i,j]<- (y[i,j]-mu[i,j])/sigma   #standardised residual 
p.sres[i,j] <- phi(res[i,j]) # p-value 
# predictive p-value 
y.pred[i,j] ~ dnorm(mu[i,j], tau) # re-predict each obs. 

} 
b[i]~dnorm(0,tau.b)    #x means (Random effects) 

} 
for(k in 1:3) { 
beta[k] ~ dnorm(0.0,1.0E-6) 

} 
for(j in 1:m) { 
c[j]~dnorm(0,tau.c) 

}  
tau ~ dgamma(0.0001, 0.0001)  
sigma <- 1 / sqrt(tau) 
#prior 1 for the change points c[j] 
#K[j]~dnorm(0,tau.c)I(0,) # CAUCHY TRICK 
#c[j]<-abs(K[j])/sqrt(tau.c) 
#Prior 2 For the change-points c[j] 
#c[j]~dunif(-1.3,1.1) 
s2<-1/tau;      #Is the ‘level 1’ variance (i.e. variance of Normal likelihood) 
s2.b<-1/tau.b;  #Is the ‘level 2’ variance (i.e. Random effects variance) 
VPC<-s2/(s2+s2.b)#intra-cluster correlation (ICC) coefficient 
R2 <- 1 - pow(sd(res[1:n,1:m])/sd(y[1:n,1:m]), 2 ) 
tau.c~dgamma(0.0001,0.0001) 
# hyperpriors on random effects mean and variance 
tau.b~dgamma(0.0001,0.0001); 
average.c<-mean(c[]) 
typical.y <- beta[1] + beta[2]*min(mean(x[])-average.c,0) + beta[3]*step(mean(x[])-average.c) 

} 
DATA (LIST) 
list(n = 3,m = 17,y = structure(.Data 

=c(1.12,0.99,0.92,0.9,0.81,0.65,0.6,0.51,0.44,0.33,0.25,0.13,−0.01, −0.13, −0.3, −0.46, −0.65, 
1.12,1.03,NA,NA,0.83,0.67,0.59,NA,0.43,0.3,0.24,NA,NA,0.14,-0.33,-0.43,NA,  
NA,NA,NA,NA,NA,NA,NA,NA,0.43,NA,NA,NA,NA,NA,NA,NA,NA),.Dim = c(3, 17)), 

 x = c(−1.39, −1.08, −0.94, −0.8, −0.63, −0.25, 

−0.12,0.01,0.11,0.25,0.34,0.44,0.59,0.7,0.85,0.99,1.19))  
INITS 

list(beta = c(−0.5, −0.5, 1.0), tau.c = 8, tau=2,tau.b = 1); 
list(beta = c(1,2, 2), tau.c = 5,tau=2, tau = 3,tau.b=2). 
 
#---------------------------------------------------------------------------------------------------------------------------------------------- 

Appendix A. 2 (The example in Section 4) 

#---------------------------------------------------------------------------------------------------------------------------------------------- 
Model {#WinBUGS Code 
 
for (i in 1:36) { 
for (j in 1:7)   { 
# Fixed effects regression model for Dog data 
y[i,j] ~ dnorm(mu[i,j], tau)   
mu[i,j] <-beta[1]+beta[2]*(x[j] - c1)*min(x[j]-c1,0)+delta[group[i]]+alpha[i] 

} 
#alpha[i]<-beta[1]+U[i] 
alpha[i]~dnorm(mu.alpha,tau.alpha)   

} 
c1~dunif(0.25,1) 
#c2~dunif(0,1) 
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delta[1] <- 0 # set coefficient for reference category to zero 
delta[2] ~ dnorm(0, 0.00001) 
delta[3] ~ dnorm(0, 0.00001) 
delta[4] ~ dnorm(0, 0.00001) 
tau.alpha~dgamma(0.001, 0.001) 
tau ~ dgamma(0.001, 0.001) 
# Priors  
beta[1]<-0 # corner-point constraint 
beta[2] ~ dnorm(0, 0.00001)  # regression coefficients 
mu.alpha~ dnorm(0, 0.00001) 
sigma2 <- 1/tau  # variance of residual error 
sigma2.alpha <- 1/tau.alpha  # variance of intercept 

} 
DATA (LIST) 
y[,1] y[,2] y[,3] y[,4] y[,5] y[,6] y[,7] group[] 
4.00 4.00 4.10 3.60 3.60 3.80 3.10 1.00 
4.20 4.30 3.70 3.70 4.80 5.00 5.20 1.00 
4.30 4.20 4.30 4.30 4.50 5.80 5.40 1.00 
4.20 4.40 4.60 4.90 5.30 5.60 4.90 1.00 
4.60 4.40 5.30 5.60 5.90 5.90 5.30 1.00 
3.10 3.60 4.90 5.20 5.30 4.20 4.10 1.00 
3.70 3.90 3.90 4.80 5.20 5.40 4.20 1.00 
4.30 4.20 4.40 5.20 5.60 5.40 4.70 1.00 
4.60 4.60 4.40 4.60 5.40 5.90 5.60 1.00 
3.40 3.40 3.50 3.10 3.10 3.70 3.30 2.00 
3.00 3.20 3.00 3.00 3.10 3.20 3.10 2.00 
3.00 3.10 3.20 3.00 3.30 3.00 3.00 2.00 
3.10 3.20 3.20 3.20 3.30 3.10 3.10 2.00 
3.80 3.90 4.00 2.90 3.50 3.50 3.40 2.00 
3.00 3.60 3.20 3.10 3.00 3.00 3.00 2.00 
3.30 3.30 3.30 3.40 3.60 3.10 3.10 2.00 
4.20 4.00 4.20 4.10 4.20 4.00 4.00 2.00 
4.10 4.20 4.30 4.30 4.20 4.00 4.20 2.00 
4.50 4.40 4.30 4.50 5.30 4.40 4.40 2.00 
3.20 3.30 3.80 3.80 4.40 4.20 3.70 3.00 
3.30 3.40 3.40 3.70 3.70 3.60 3.70 3.00 
3.10 3.30 3.20 3.10 3.20 3.10 3.10 3.00 
3.60 3.40 3.50 4.60 4.90 5.20 4.40 3.00 
4.50 4.50 5.40 5.70 4.90 4.00 4.00 3.00 
3.70 4.00 4.40 4.20 4.60 4.80 5.40 3.00 
3.50 3.90 5.80 5.40 4.90 5.30 5.60 3.00 
3.90 4.00 4.10 5.00 5.40 4.40 3.90 3.00 
3.10 3.50 3.50 3.20 3.00 3.00 3.20 4.00 
3.30 3.20 3.60 3.70 3.70 4.20 4.40 4.00 
3.50 3.90 4.70 4.30 3.90 3.40 3.50 4.00 
3.40 3.40 3.50 3.30 3.40 3.20 3.40 4.00 
3.70 3.80 4.20 4.30 3.60 3.80 3.70 4.00 
4.00 4.60 4.80 4.90 5.40 5.60 4.80 4.00 
4.20 3.90 4.50 4.70 3.90 3.80 3.70 4.00 
4.10 4.10 3.70 4.00 4.10 4.60 4.70 4.00 
3.50 3.60 3.60 4.20 4.80 4.90 5.00 4.00 
END 
list(x=c(.000000,.166667,.333333,.500000,.666667,.833333,1.000000)) 
INITS 
list(alpha = c(1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1, 1), 
beta = c(NA,3), c1 = 0.5802, delta = c(NA, -2, 4,4), mu.alpha = 2, tau = 2, tau.alpha = 0.5) 
list(alpha = c(2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2), beta = c( 
NA,3), c1 = 0.52, delta = c(NA, 2, -4,-4), mu.alpha = 2, tau = 2, tau.alpha  

 

**************** 
 


