

LEFT AND RIGHT 2-ENGLE ELEMENTS OF DRIVATIVE OF GROUPS

¹H. Khosravi^{*}, ²H. Golmakani and ³H. M. Mohammadinezhd

^{1,2}Department Of Mathematics, Faculty Of Science, Mashhad Branch, Islamic Azad University, Mashhad, 91735-413, Iran

Email: Khosravi@mshdiau.ac.ir, H.golmakani@mshdiau.ac.ir, Hmohmmadin@math.birjand.edu

(Received on: 20-09-11; Accepted on: 05-10-11)

ABSTRACT

In this paper we study right and left 2-Engle elements in derivative of groups. In particular, we prove that $R_2(G')$ is a characteristic subgroup of G'. (let G be a group and G' be a derivative of G). As a consequence, in a special cases $[x, y]^{G'}$ is a abelian subgroup of G' and the inverse of a right 2-Engle element of G' is a left 3-Engle element of G'.

1. INTRODUCTION:

Let G be group and G be a derivative of G. Consider the set $R_2(G) = \{g \in G \mid [g, x, x] = 1 \text{ for all } x \in G\}$ of right 2-Engle elements of G. It is also known; see [1], that the inverse of a right 2-Engle element is a left 3-Engle element. For any two elements a and b of G we define inductivily [a, nb] the n-Engle commutator of the pair (a, b), as follows:

 $[a_{,0}b] = a, [a, b] = a^{-1}b^{-1}ab$ and $[a, {}_{n}b] = [[a_{,n-1}b],b]$ for all n > 0.

 $R_2(G)$ is a characteristic subgroup of G. It is known also that $R_2(G) \subseteq L_2(G)[3]$.

2. THE RESULTS:

Definition 1: Let [x, y] and [z, t] be two elements of $G \circ$. We define the commentator of the pair ([x, y], [z, t]), as follows:

 $[[x, y], [z, t]] = [x, y]^{-1}[z, t]^{-1}[x, y] [z, t].$

And define inductively

([x, y], n [z, t]) the n-Engle commentator of the pair ([x, y], [z, t]), as follows:

[[x, y], [z, t]] = [[[x, y], (n-1)], [z, t]], [z, t]] for all n > 0.

Definition 2: An element [x, y] of $G \circ$ is called a left n-Engle element if [[z, t], [x, y]] = 1 for all $[z, t] \in G \circ$. we denote by $L_n(G \circ)$, the set of all left n-Engle elements of $G \circ$ and an element [x, y] of $G \circ$ is called a right n-Engle element if [[x, y], [z, t]] = 1 For all $[z, t] \in G \circ$.

The set of all right n-Engle elements of G $\acute{}$, denote by $R_n(G\acute{})$.

Theorem 1: In any derivative of group G the inverse of right 2-Engle element is a left 2-Engle element. Thus $R_2(G\circ) \subseteq L_2(G\circ)$

Proof: Let $[x, y] \in R_2(G \circ)$, using the definition of $R_2(G \circ)$ we have

[[x, y], [x, y][z, t], [x, y][z, t]] = 1; $[z, t] \in G$

1 = [[x, y], [x, y][z, t], [x, y][z, t]] = [[x, y], [z, t], [x, y][z, t]]

 $=[[x, y], [z, t]]^{-1}([x, y][z, t])^{-1}[[x, y][z, t]]([x, y][z, t])$

 $= [[x, y], [z, t]]^{-1}[z, t]^{-1}[x, y]^{-1}[[x, y], [z, t]][x, y][z, t]$

Corresponding author: ¹H. Khosravi, *E-mail: Khosravi@mshdiau.ac.ir

= $[z, t]^{-1}[[x, y], [z, t]]^{-1}[x, y]^{-1}[[x, y], [z, t]][x, y][z, t]$

 $=[z, t]^{-1}[[x, y], [z, t], [x, y]][z, t]$

 $=[[x, y], [z, t], [x, y]]^{[z,t]}$

Since $[[x, y], [z, t], [x, y]^{[z, t]} = 1$

So [[x, y], [z, t], [x, y]] =1

By using three subgroup lemma [3] we have [[x, y], [z, t], [x, y]] = 1.

Thus [x, y]∈L₂(G[´]).

Theorem 2: In any derivarive of group G the inverse of a right Engle Element is a left Engle element and the inverse of a right n-Engle element is a left (n+1)-Engle element.

Thus $R(G\circ) \subseteq L(G\circ)$ and $R_{n+1}(G\circ) \subseteq L_{n+1}(G\circ)$

Proof: Let [x, y] and [z, t] be elements of Go . Using the fundamental commutator identities [2, 3] we obtain

 $[[x, y], {}_{n+1}[z, t]] = [[[x, y], [z, t]], {}_{n}[z, t]]$

$$= [[[z, t]^{-1}, [x, y]]^{[z,t]} \,_n[z, t]]$$

$$= [[[z, t]^{-1}, [x, y]], \,_n[z, t]]^{[z,t]}$$

$$= [[z, t][z, t]^{-[x,y]}, \,_n[z, t]]^{[z,t]}$$

$$= [[z, t]^{-[x,y]}, \,_n[z, t]]^{[z,t]}$$

$$= [[z, t]^{-[x,y]}, \,(n[z, t]^{[x,y]})^{-[x,y]}]^{[z,t]}$$

$$= [[z, t], \,_n[z, t]^{[x,y]}]^{-[x,y][z,t]}$$

since $[z, t] \in R_n(G \circ)$

so $[[z, t], [z, t]^{[x,y]}]^{-[x,y][z,t]} = 1$

therefore $[[x, y], _{n+1}[z, t]] = 1$.

Theorem 3: Let G be a group and G' be a derivative of G. The set of elements of $R_2(G')$ is a characteristic subgroup of G'.

Proof: Let $\alpha \in Aut(G)$ be an arbitrary automorphism and $[x, y] \in R_2(G')$. By definition of right 2-Engle element of G', for any $[z, t] \in G'$, we have

[[x, y], [z, t], [z, t]] = 1

So α[[x, y], [z, t], [z, t]] =1

 $\rightarrow [\alpha[x, y], \alpha[z, t], \alpha[z, t]] = 1$

 \rightarrow [[$\alpha(x), \alpha(y)$],[$\alpha(z), \alpha(t)$],[$\alpha(z), \alpha(t)$]]=1

Since $\alpha \in Aut(G)$, for any z, t $\in G$, there exists z', t' $\in G$ such that $\alpha(z) = z'$ and $\alpha(t) = t'$,

Therefore $[\alpha[x, y], [z', t'], [z', t']] = 1.$

Thus $\alpha[x, y] \in R_2(G')$.

¹H. Khosravi^{*}, ²H. Golmakani and ³H. M. Mohammadinezhd/ Left and Right 2-Engle Elements of Drivative of Groups / IJMA-2(10), Oct.-2011, Page: 1980-1984

Theorem 4: Let G be a group and G' be a derivative of G and $[x, y] \in R_2(G')$. Then $[x, y]^{G'}$ is abelian.

Proof: Let [x, y], [z, t], [m, n] be elements of G', so

$$\begin{split} [[x, y]^{[z,t]}, [x, y]^{[m,n]}] &= [[x, y]^{[z,t][m,n]^{-1}}, [x, y]]^{[m,n]} \\ &= [[x, y], [x, y], [z, t][m, n]^{-1}], [x, y]]^{[m,n]} \\ &= [[x, y], [x, y]]^{[[x,y], [z,t][m,n]^{-1}]} [[x, y], [z, t][m, n], [x, y]]^{[m,n]} \\ &= [[x, y], [z, t][m, n]^{-1}, [x, y]]^{[m,n]} \\ &= [[[z, t][m, n]^{-1}, [x, y]]^{-1}, [x, y]]^{[m,n]} \\ &= ([[[z, t][m, n]^{-1}, [x, y]], [x, y]]^{-1})^{[m,n][[z,t][m,n]^{-1}, [x, y]]^{-1}} \\ &= 1. \end{split}$$

The last identities holds since $R_2(G \circ) \subseteq L_2(G \circ)$ and, therefore $[x, y]^{G'}$ is abelian.

Definition 3: Let G be a group and G' be a derivative of G. Then the verbal subgroup, E_1 (G'), define as follows:

 $E_1(G') = \{ [x, y] \in G' : [[x, y][z, t], [m, n], [m, n]] = [[z, t], [m, n], [m, n]] \text{ For all } [z, t], [m, n] \in G' \}$

Remark: Now it is shown that there is a close connection between the elements of R₂ (G') and verbal subgroups of G'.

Theorem 5: Let G be a group and G' be a derivative of G. Then $E_1(G') = R_2(G')$.

Proof: By definition we have

 $E_1(G') = \{ [x, y] \in G' : [[x, y][z, t], [m, n], [m, n]] = [[z, t], [m, n], [m, n]] \text{ For all } [z, t], [m, n] \in G' \}$

 $R_2(G') = \{[x, y] \in G' : [[x, y], [z, t], [z, t]] = 1 \text{ For all } [z, t] \in G'\}.$

Now if $[x, y] \in E_1(G')$, then for all $[z, t], [m, n] \in G'$ we have

[[x, y][z, t], [m, n], [m, n]] = [[z, t], [m, n], [m, n]].

For z = t = 1 the identities hold. So for all $[m, n] \in G'$

[[x, y], [m, n], [m, n]] = 1.

Therefore $[x, y] \in R_2(G')$ and $E_1(G') \subseteq R_2(G')$

Conversely .If $[x, y] \in R_2(G')$, then for all $[z, t] \in G'$

[[x, y], [z, t], [z, t]] = 1

Now we have $[[x, y][z, t], [m, n], [m, n]] = [[[x, y], [m, n]]^{[z,t]}[[z, t], [m, n]], [m, n]]$

 $= [[[x, y], [m, n]]^{[z,t]}, [m, n]]^{[[z,t],[m,n]]} [[z, t], [m, n], [m, n]]$ $= [[[x, y], [n, m]][[x, y], [m, n], [z, t]], [m, n]]^{[[z,t],[m,n]]} [[z, t], [m, n], [m, n]]$ $= [[x, y], [m, n], [m, n]]^{[[z,t],[m,n]][[x,y],[m,n],[z,t]]}$

 $[[x, y], [m, n], [z, t], [m, n]]^{[[z,t],[m,n]]} [[z, t], [m, n] [m, n]].$

By using of assumption of last theorem, equal to [[z, t], [m, n], [m, n]].

So $[x, y] \in E_1(G')$ and therefore $R_2(G') \subseteq E_1(G')$ © 2011, IJMA. All Rights Reserved (I)

¹H. Khosravi^{*}, ²H. Golmakani and ³H. M. Mohammadinezhd/ Left and Right 2-Engle Elements of Drivative of Groups / IJMA-2(10), Oct.-2011, Page: 1980-1984

Now with (I) and (II) we have the result.

Theorem 6: Let G, G' be group and derivative of group, respectively. And $[z, t] \in G'$, $[x, y] \in R_2(G')$. Then (i) $[x, y]^{G'}$ is abelian.

(ii) For all $r, s \in N$ [[x, y], [z, t]] ^{rs} = [[x, y]^r, [z, t]^s].

Proof: (i) Its shown in Theorem 4.

(ii) We proceed by induction in two times.

As a first time, we proved by induction

 $[[x, y], [z, t]^{n}] = [[x, y]^{n}, [z, t]].$

For n=1, being obvious.

Assume the result holds for n-1, i.e,

 $[[x, y], [z, t]]^{n-1} = [[x, y]^{n-1}, [z, t]].$

Then we have $[[x, y]^{n}, [z, t]] = [[x, y]^{n-1} [x, y], [z, t]]$

 $= [[x, y]^{n-1}, [z, t]]^{[x,y]} [[x, y], [z, t]]$ $= [[x, y]^{n-1}, [z, t]][[x, y]^{n-1}, [z, t], [x, y]][[x, y], [z, t]].$

By assumption, we have

$$\begin{split} [[[x, y]^{n-1}, [z, t], [x, y]] &= [[[x, y], [z, t]]^{n-1}, [x, y]] \\ &= [[z, t], [x, y]]^{n-1} [x, y]^{-1} [[x, y], [z, t]]^{n-1} [x, y]. \end{split}$$

We know that $R_2(G') \subseteq L_2(G')$, so if $[x, y] \in R_2(G')$, then $[x, y] \in L_2(G')$. Therefore, for each $[z, t] \in G'$ we have [[z, t], [x, y], [x, y]] = 1.

So [[z, t], [x, y]] commutes with [x, y] and $[x, y]^{-1}$

Therefore

 $[[[x,y]^{n-1},[z,t],[x,y]]=[x,y]^{-1}[[z,t],[x,y]]^{n-1}[[x,y],[z,t]]^{n-1}[x,y]=1$

So we have

 $[[x, y]^{n}, [z, t]] = [[x, y]^{n-1}, [z, t]][[x, y], [z, t]]$

$$= [[x, y], [z, t]]^{n-1}[[x, y], [z, t]]$$

$$= [[x, y], [z, t]]^{n}$$

As a second time, we proved by induction

$$[[x, y], [z, t]^{n-1}] = [[x, y], [z, t]]^{n-1}$$

No we have

$$\begin{split} [[x, y], [z, t]^{n}] &= [[x, y], [z, t]^{n-1}[z, t]] \\ &= [[x, y], [z, t]][[x, y], [z, t]^{n-1}]^{[z, t]} \\ &= [[x, y], [z, t]][[x, y], [z, t]^{n-1}][[x, y], [z, t]^{n-1}, [z, t]] \end{split}$$

As a similar to the last case, proved

 $[[x, y], [z, t]^{n-1}, [z, t]] = 1$

So

 $[[x, y], [z, t]^{n}] = [[x, y], [z, t]][[x, y], [z, t]]^{n-1} = [[x, y], [z, t]]^{n}$

ACKNOWLEDGMENTS:

The authors thank the research council of Mashhad Branch, (Islamic Azad University) for support.

REFERENCES:

[1] M. Deaconescu, G. L. Walls, "{Right 2-Engle Elements and Commuting Automorphisms of Groups", J. Algebra 238,479-484(2001).

[2] A. Abdollahi, "Left 3-Engle elements in groups", J. Pure Appl. Algebra 188(2004)1-6.

[3] D. J. S. ROBINSON," A course in the theory of groups". Berlin-Heidelberg-New York (1982).
