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 ABSTRACT   
This investigation accomplishes the comparison of different non-Newtonian fluids such as Bingham Plastic, Herschel 
Bulkley, and Casson fluid flowing through an inclined stenosed artery. Details of flow characteristics of Bingham 
Plastic, Casson fluids along with the body acceleration, slip condition at the stenosed wall and asymmetric stenosis 
effect have been discussed in this paper while Siddiqui and Chhama [10] data has been used for Herschel Bulkley fluid. 
A comparison of flow quantities like plug core velocity, plug core radius, axial velocity, and effective viscosity has been 
investigated under the various rheological factors such as yield stress, inclination, stenosis size effect, slip, and body 
acceleration for different non- Newtonian fluids. It has been found that the axial velocity of Herschel Bulkley fluid is 
greater than Casson fluid and lower than Bingham Plastic fluid in normal as well as in stenosed artery while in core 
region where yield stress is more than wall shear stress, plug core velocity of Bingham Plastic fluid is more than that of 
Casson fluid and less than that of Herschel Bulkley fluid. 
 
Keywords —  Blood, Bingham Plastic fluid, Casson fluid, Herschel Bulkley fluid, Stenosis, Plug core radius, Plug core 
velocity. 
 
 
I. INTRODUCTION  
 
The circulatory flow inside the human body plays an eminent role in blood flow rheology. All body organs are 
influenced by the pattern of blood flow in the blood vessels under the circulatory system. Atherosclerosis (or stenosis) 
is a cardiovascular disorder that develops due to the abnormal blood flow in arteries during circulatory disorder. In the 
stenosis, the artery narrowed due to the presence of plaques inside the arterial wall. Therefore, blood flow is obstructed 
inside the artery. An unsteady flow of blood via a stenosed artery, assuming the blood to be Herschel-Bulkley fluid has 
been considered by [11]. Intravascular plaque and other waste substances which are accumulated inside and on the wall 
of blood vessels restricted the flow of blood [3]. Herschel Bulkley fluid could be a better representation of blood as 
compared to the Bingham Plastic fluid and Power-law fluid [1]. Casson and Herschel Bulkley fluids exhibit better fluid 
flow behavior in arteries of 0.1 mm diameter, while in lower diameter (below 0.065mm) arteries, Herschel Bulkley 
fluid recommended the more [6]. 

 
Fig. 1 Stenosis formation inside the artery 
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It is to be noted that Power-law, Bingham Plastic, and Newtonian fluids are the general case of Herschel Bulkley fluid 
and these fluids can be obtained from Herschel Bulkley fluid by selecting the appropriate range of parameters. Blood 
represents non-Newtonian behavior in the diseased state [2]. The portrayal of Casson and Herschel Bulkley fluids are 
almost similar, but in the medium range of shear rate, Casson fluid is more suitable for blood assumption [9]. Bingham 
plastic fluid exhibits more significant information about blood rheology [4], [5]. The effect of unsteady blood flow 
through a tube with axisymmetric and non-symmetric stenosis was considered in [12]. Sankar and Lee [8] presented the 
non-Newtonian pulsatile fluid flow model through stenosed arteries under the body acceleration’s effect. Body 
acceleration affects fluid characteristics like axial velocity, wall shear stress, flow rate, and resistance has revealed by 
Nagarani and Sarojamma [7].   
 
The comparative study of non-Newtonian pulsatile blood flow through an inclined stenosed artery has been 
investigated. Here (Siddiqui and Chhama, [10]), work has been considered for Herschel Bulkley fluid. Bingham Plastic 
and Casson fluid have been considered for blood assumption. A comparison of the various flow behavior patterns of 
these fluids has been done in this model. Nanoparticles and peripheral layer thickness can be studied as the alternate 
case of this model.  

 
II. MATHEMATICAL MODEL 
 
Consider a laminar, unsteady, fully developed, axially symmetric blood flow along the axial direction z′ in a stenosed 
inclined arterial segment, under the slip condition applied at the wall and body acceleration (see Fig. 1(a)). Blood flow 
is irregular and pulsatile because of the pressure gradient, present in the stenosed artery. Let ( , , )r zφ′ ′ ′  be the 
cylindrical polar coordinates, where r′  represents the radial coordinate, φ′  represents the azimuthal angle, and z′  
represents the axial coordinate. 
 
The expression for the radius of the artery is [Young and Tsai [12]]. 

( ) ( ) ( )1

0

( )
1 ,

1, otherwise

m
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mz d z d
R z

L d d L
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                                                                                   (1)                                                                                 

Where ( )R z′ ′ , 0R′  denotes the radius of the stenosed artery and the normal artery. Here d ′ , sL′  denotes the stenosis 
location and stenosis length inside the artery. Stenosis is radially symmetric at m = 2 and stenosis shape parameter 
is 2m ≥ has been considered in this study. Where the parameter η′  is defined as 

( 1)

0 ( 1)
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Where the maximum height of the stenosis isδ ′ at 1 ( 1)/ −′ ′ ′= + m
sz d L m  such that 0/ 1.Rδ ′ ′ <<  

 

 
Fig. 1 (a) The geometry of an inclined artery with axially non-symmetric stenosis. 
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The momentum equations governing the fluid flow are simplified in equations (2) and (3) as (Schlichting and Gersten 
[15]) 

( ) ( ) ( ) sin
1 ( )τ ρ γ

 ′∂ ∂ ′∂ ′ ′ ′− − + = −  ′ ′ ′∂ ∂ ′∂  
′ ′ a

s a
p vr g
z r r t

B t                                                                                  (2)
                                                                                                                    

 

0p
r
′∂
′∂
=                                                                                                                       (3)                                                                                                                                      

Where γ  indicates the inclination angle, av′ indicates the axial velocity along z′  direction, g indicates the acceleration 

due to gravity, ρ′ indicates the density, P′ indicates the pressure, t′  indicates the time, sτ ′ indicates the wall shear 
stress. 
 
Also, ( )

a
B t′ ′  indicates the periodic body acceleration in the axial direction, mathematically equation (4) expresses this 

body acceleration.  
 

( )0( ) cos
baa

B t = +ω ta φ′ ′′ ′    (4)                                                                                                                                                                                                                                                                                                                                      

Where the symbol 0a  denotes the amplitude of body acceleration and ϕ denotes the phase angle of body acceleration 

with respect to the pressure gradient. here2ba b bf fω π′ ′ ′=  denotes the frequency (in Hz). Also, we can assume the 

small bf ′ , so that the wave effect may be neglected. 
 
The pressure gradient is expressed below  

( ) ( )0 1, cos , 0pa
p

t A A
z

tz tω
′−∂

′ ′=′ ′ ′
′

+ ≥
∂

                                                                                                (5)                                                            

 
Where 1A  indicates the amplitude of the fluctuating component, 0A  indicates the pressure gradient in steady-state, 

and both the functions 1 0,A A are functions of z′ . Here ω′ pa indicates the frequency of oscillation of the unsteady flow 

and 2pa pfω π ′=′ , with pf ′  as the pulse rate frequency. Also, neglecting the radial velocity as it has a small magnitude.  
 
The constitutive equation of Bingham Plastic fluid is  

0 , if

0, if
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                                                                                             (6)                                                                                                                

 
The constitutive equation of Casson fluid is  
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                                                                                       (7)                                                                                       

Where yθ ′ indicates the viscosity and 0µ′ indicates the yield stress of fluid. The velocity gradient vanishes in the core 

region (i.e. ysτ θ′ ′< ), shows the plug flow region, and fluid flow behavior has been observed in the region ysτ θ′ ′≥ . 
 
The boundary conditions are  

si) At  is finite.r = 0 ,  τ′ ′                                                                                                                                                (8)                                                                           

( )ii) At a asv vr = R z , =′ ′ ′ ′′                                                                                                                                          (9)                                                                                       
Where asv′  indicates the axial slip velocity at the obstructed wall of the artery. 
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Considering the following dimensionless variables: 
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Where α indicates the pulsatile Reynolds number. 
 
With the help of non-dimensional variables, equation (2) can be written as 
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Bingham Plastic fluid's constitutive equation in non-dimensionalize form is  
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Casson fluid's constitutive equation in non-dimensionalize form is 
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The non-dimensionalize form of boundary conditions (8), (9) are 

                                                                                                                                     (14)                                                                   
                                                                                                                                                                                                                                   

(i ),i) At = =a a sr R z v v                                                                                                                                             (15)                                                                  
 
The stenosis geometry in dimensionless form is  
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The volumetric flow rate in the dimensionless form is defined below 
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III.  ANALYSIS OF THE MODEL 
 
Now we expand equations (11)-(13) about α2 as non-dimensionalize equations (11)-(13) have α2 term which is time-
dependent. The axial velocity va, wall shear stress τs, plug core radius Rpc, plug core velocity vpc, and plug core shear 
stress τpc in terms of α2 (where α2<< 0) are expressed as follows. 
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1avα z,r,t +….                                                                                              (19)                                                                
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i) At  is finite   sr = 0 ,  τ
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With the use of equations (19) and (20) in equation (11) and equating the constant terms and 2α  terms, we get  
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 Integrating equation (24) between 0 and R0pc, using boundary condition (14)  
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Integrating equation (24) between r and R0pc , and using equations (14) and (26) 
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Using equations (19) and (20), in constitutive equations (12) and (13) 
 
Bingham model gives 

0∂
∂

av =
r 0

2 θ − 
 y s

τ                                                                                                                                     (28)                                                              

1∂
∂

av =
r 12− sτ                                                                                                                                                 (29)                                                                                               

 
Casson model gives 

0 2−
∂
∂

av
r

=
00 2 θθ −  sys + yτ τ                                                                                                               (30)                                                             

1∂
∂

av
r

=
12− sτ

0
1

θ
−

 
 
 

y
sτ                                                                                                                            (31)                                                                   

 
Applying the expansion of va and τs from equations (19) and (20) in boundary equations (14) and (15) we have 

0 1, i)  are finite  At s sr = 0 ,  τ τ                                                                                                                              (32)                                                     

0 1, 0( ),ii) At == = a sa avr R z v v                                                                                                                       (33)                                                                                                                                                                                                                                                                       
 

Integrating equation (28) between r and R, and by using equations (27) and (33), we have 0av  of Bingham model is 

( )2 2
0 ( ) 2 ( )θ+ − − −a as K t R r R ryv = v                                                                                                      (34)                                                            

From equation (34), the first approximation 0 pcv of the plug core velocity of the Bingham model can be obtained as  
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Now integrating equation (30) between r and R, and by using equations (27) and (33), we have 0av of  the Casson 
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From equation (36), the first approximation 0 pv  of the plug core velocity of the Casson model is as follows 
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Using equations (34), (35) and boundary conditions (32), (33) in equation (25) we get the solutions for 1 1,s pcτ τ   for the 
Bingham model as 
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Using equations (36), (37) and boundary conditions (32), (33) in equation (25) we get the solutions for 1 1,s pcτ τ   for the 
Casson model as 
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From equation (29) and equation (38), 1av  and 1pcv  for the Bingham model is 
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With the help of equations (34), (35) and (42), (43) in (19) and (22), the axial velocity av  and plug core velocity pcv  
for the Bingham model is 

( )
4 422 2 2 2( ) ( 3 )( ) 2 ( )

4 4a as
K t r RK t R r R r r Ryv = v θ α

 ′ +
+ − − − + − 

 
                                           (44)  

                                                                         

( )
4 4

2 02 2 2 2
0 00

( 3 )( )
( ) 2 ( )

4 4
pc

pc pcpc as pc
R RK t

K t R R R R R Ryv = v θ α
 +′
 + − − − + −
  

                                           (45)                                     

From equations (27), (31), and (40), 1av  and 1pcv  for the Casson model is 
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With the help of equations (36), (37) and (46), (47) in equations (19) and (22), the axial velocity av , plug core velocity 

pcv  for the Casson model is 
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Neglecting α2 terms and higher powers of α terms from equation (21), and with the use of equation (26), 0 pcR term of 

pcR is 

0 ( )opc y

y
pc K t

r R
θτ

θ

=
= =

                                                                                                                                (50)                                                    
 
Using equations (26), (27) and (38), (39) in equations (20) and (23), the wall shear stress ,s pτ τ for the Bingham model 
is 

3
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Using equations (26), (27) and (40), (41) in equations (20) and (23), the wall shear stress ,s pτ τ for the Casson model is 
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With the help of equation (17) and expression of axial velocity of Bingham Plastic fluid and Casson fluid, we get 
volumetric flow rate bQ  for Bingham model and cQ  for Casson model as 

( ) ( ) { }
2

2 3 3 4 4 6 6 4 2
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4 ( )2 ( ) ( 2 ) 3
3 12b as pc pc pc pcy

K tQ = R v R R R R K t R R R Rα
θ

′
− − + − − + −                                                        (55)                                                                             

1 2 3 4= + + +c c c ccQ Q Q Q Q                                                                                                                        (56) 
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Neglecting higher powers of α terms and α4 terms from the equation (21), the R1pc term of the plug core radius is  
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τ
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With the help of equations (21), (39), and (50), the pcR  for Bingham model is 
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With the help of equations (21), (41), and (50), the pcR  for Casson model is 
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In dimensionless form, the effective viscosity for the Bingham model and Casson model, with the help of equations 
(18), (55), and (56) can be obtained as 

( )( ) ( ){ }4 11 cos t bb z eμ = QR −+                                                                                                                   (60) 
 

( )( ) ( ){ } 1
1 2 3 4

4 1 cos t c c cc czμ = e Q Q Q QR −+ + + +                                                                                                          (61) 
 
IV. RESULTS AND DISCUSSION 

         
The significant results have been observed with the help of MATLAB, and some fixed parameters. (Young and Tsai 
[12]; D.W. Liepsch [13]; Ookwara and Ogowa [14]). Fig.2 shows the axial velocity versus radial distance graph under 

the effect of γ and ,a sv for different fluids with the use of fixed values δ = 0.1, F = 0.2, ϕ = 0.2, n = 0.95, ω = 1, e = 1, 
m = 2, α = 0.2, t = 1. From Fig. 2 it has been analyzed that the vas and γ augmented the axial velocities of all fluids, and 
the axial velocity profile of Herschel Bulkley fluid is more than Casson fluid while less than Bingham Plastic fluid in 
an obstructed artery. Fig.3 shows the variation of δ on the axial velocity and radial distance graph with the use of values 
B = 1, F = 0.2, n = 0.95, α = 0.2, e = 1, ω = 1, m = 2, t = 1, vas = 0.1 for different fluids. It has been found that in the 
stenosed artery, the velocity of Bingham Plastic fluid is more than that of Herschel Bulkley fluid and Casson fluid. 
Fig.3 also reveals that the velocity of all fluids diminishes as stenosis height increases. Fig.4 depicts the axially non 
symmetric stenosis shape effect on axial velocity versus radial distance graph for different fluids and for fixed values     
γ = 300, θy = 0.1, F = 0.2, α = 0.2, e = 1, n = 0.95, ω = 1, t = 1, vas = 0.1 Fig.4 reveals that as stenosis shape rises from  
m = 2 to m = 10, axial velocity hikes. Fig.5 sketches the time and the plug core velocity graph for γ = 300, F = 0.2,            
ϕ = 0.2, e = 0.05, δ = 0.1, ω = 1, n = 0.95 for different fluids. It has been optimized that in the core region, the velocity 
of Bingham Plastic fluid is more, in comparison to Casson fluid whereas less, in comparison to Herschel Bulkley fluid.  
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Also, velocity diminishes very slightly as time rises from 0 to 3 and then velocity rises as time rises from 3 to 6.  
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Fig.6 shows the stenosis height and plug core radius graph and Fig. 7 describes the body acceleration and plug core 
radius variation, for different fluids to check the impact of θy  and α values for the fixed values F = 0.2, n = 0.95,           
ϕ = 0.2, e = 1, δ = 0.1, ω = 1, t = 1. Fig.6 and Fig. 7 shows that the plug core radius of Bingham Plastic fluid is greater 
in comparison to Casson fluid while less in comparison to Herschel Bulkley fluid. Fig. 6 reveals, plug core radius 
minimizes, on rising the stenosis height value. Whereas Fig. 7 illustrated that increasing the Reynolds number hikes the 
plug core radius. Also, Fig. 6 and Fig. 7 explain that raising the stenosis height and body acceleration minimizes the 
plug core radius. Fig. 8 shows the variation of viscosity with slip for different fluids. It has been observed that the 
viscosity of Casson fluid is greater than Herschel Bulkley fluid but lesser than Bingham Plastic fluid on increasing the 
slip. 
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V. CONCLUSION 
 
This study investigated the blood rheology of non-Newtonian fluid. The following significant remarks have been 
concluded here as 

1. It has been found, that the axial velocity of Herschel Bulkley fluid is more in comparison to Casson fluid 
while lower in comparison to Bingham Plastic fluid in normal as well as in obstructed artery. 

2. Slip velocity and inclination hike the axial velocity of all fluids while the increase of stenosis height reduces 
the velocity.  

3. Change in stenosis shape parameter from m = 2 to m = 10, increases the velocity.  
4. Plug core velocity increases on increasing the body acceleration. Plug velocity of Bingham Plastic fluid is 

greater in comparison to Casson fluid whereas less in comparison to Herschel Bulkley fluid.  
5. Plug core radius of Bingham Plastic fluid is more in comparison to Casson fluid while less in comparison to 

Herschel Bulkley fluid. 
6. The rise in yield stress and Reynolds number raises the plug core radius and a rise in stenosis height and body 

acceleration diminishes the plug core radius slightly. 
7. Effective viscosity decreases as slip velocity increases for all the fluids and viscosity of Casson fluid is greater 

in comparison to Herschel Bulkley fluid while lesser than the Bingham Plastic fluid.  
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