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ABSTRACT 
The aim of present paper is to prove common fixed-point theorems for four self-mappings in fuzzy metric spaces using 
the common property (E. A.) satisfying an implicit relation.  
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INTRODUCTION 
 
The foundation of fuzzy mathematics is laid by Zadeh [16] with the introduction of fuzzy sets in 1965. This foundation 
represents a vagueness in everyday life. Subsequently several authors have applied various form general topology of 
fuzzy sets and developed the concept of fuzzy space. Kramosil and Michalek [9] introduced concept of fuzzy metric 
spaces. Grabiec [6] extended fixed point theorem of Banach and Eldestien to fuzzy metric spaces in the sense of 
Kramosil and Michalek [8]. George et al. [5] modified the notion of fuzzy metric spaces with the help of continuous      
t-norms. A number of fixed-point theorem have been obtained by various authors in metric spacesand  fuzzy metric 
spaces by using the concept of compatible, implicit relations, weakly compatible, R weakly compatible maps.           
(See, [2–15]). Saini and Gupta [11, 12] proved some fixed points theorems on expansion type maps and common 
coincidence points of R-Weakly commuting fuzzy maps in Fuzzy Metric Space. In this paper, the concept of implicit 
relation has been used for establishing common fixed-point results in a fuzzy metric space. This concept plays a vital 
role in the proof of the main results.  
 
2. BASIC DEFINITIONS AND PRELIMINARIES 
 
Definition 2.1: [13] A binary operation ∗: [0, 1] × [0, 1] → [0, 1] is called a t-norm * satisfies the following conditions: 

i. * is continuous, 
ii. * is commutative and associative, 
iii. a * 1 =a for all a ∈ [0, 1], 
iv. a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0,1]. 

               Examples of t-norm - a * b = ab and a * b = min{a, b}. 
 
Definition 2.2: [9] A 3- tuple (𝑋𝑋,𝑀𝑀,∗) is called fuzzy metric space if 𝑋𝑋 is an arbitrary non empty set, * is a continuous 
t-norm, and 𝑀𝑀, is fuzzy sets on 𝑋𝑋2 × [0,∞] satisfying the following conditions: 
For each x, y, z, ∈X and t, s > 0  

1. 𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) > 0 
2. 𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 1 𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑦𝑦 
3. 𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑀𝑀(𝑦𝑦, 𝑥𝑥, 𝑡𝑡) 
4. 𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) ∗ 𝑀𝑀( 𝑦𝑦, 𝑧𝑧, 𝑠𝑠) ≤ 𝑀𝑀(𝑥𝑥, 𝑧𝑧, 𝑡𝑡 + 𝑠𝑠) 
5. 𝑀𝑀(𝑥𝑥, 𝑦𝑦, . ): [0,∞) → [0,1] is  left continuous, 
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Example 2.3: [5]  Let (X, d) be a metric space. Define a * b = ab for all a, b ∈ [0, 1] and let M be fuzzy seton               
X² x (0, ∞) → [0,1] defined as follows: 

𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)= 𝑡𝑡
𝑡𝑡+𝑑𝑑(𝑥𝑥,𝑦𝑦)

   for all x, y ∈ X and all t > 0. 
This fuzzy metric induced by a metric d is called the standard fuzzy metric and (𝑋𝑋,𝑀𝑀,∗) is called fuzzy metric space. 
 
Lemma 2.1: [6]. For all,  𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋, 𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is non-decreasing. 
 
Lemma 2.2: [10] Let  (𝑋𝑋,𝑀𝑀, ∗) be a fuzzy metric space, if there exists k ∈ (0, 1) such that for all x, y ∈ X,  

𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)for all t > 0, then x = y. 
 
Definition 2.4: [1] A pair (A, S) of self-mappings of a fuzzy metric space(𝑋𝑋,𝑀𝑀,∗)is said to satisfy the (E.A.) property if 
there exists a sequence{𝑥𝑥𝑛𝑛 } in X such that 

lim𝑛𝑛→∞ 𝐴𝐴𝑥𝑥𝑛𝑛 = lim𝑛𝑛→∞ 𝑆𝑆𝑥𝑥𝑛𝑛 = 𝑧𝑧  for some  𝑧𝑧 ∈ 𝑋𝑋.. 
 
Definition 2.5: [3] Two pairs (A, S) and (B, T) of self-mappings of a fuzzy metric space (𝑋𝑋,𝑀𝑀, ∗) are said to satisfy the 
common (E.A) property if there exist two sequences {𝑥𝑥𝑛𝑛 } and {𝑦𝑦𝑛𝑛} in X such that for all t > 0 

lim𝑛𝑛→∞ 𝐴𝐴𝑥𝑥𝑛𝑛 = lim𝑛𝑛→∞ 𝑆𝑆𝑥𝑥𝑛𝑛 = lim𝑛𝑛→∞ 𝐵𝐵𝑦𝑦𝑛𝑛 = lim𝑛𝑛→∞ 𝑇𝑇𝑦𝑦𝑛𝑛 =  𝑧𝑧 for some z∈ 𝑋𝑋 
 
Definition 2.6: [8] A pair (f, g) of self-mappings of a metric space (X, d) is said to be weakly compatible mappings if 
the mappings commute at all of their coincidence points, i.e., 

𝑓𝑓𝑓𝑓 = 𝑔𝑔𝑔𝑔 for some 𝑥𝑥 ∈ 𝑋𝑋implies  𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑔𝑔𝑔𝑔𝑔𝑔. 
 
IMPLICIT RELATION 
 
Let 𝑀𝑀5 denotes the set of all real valued continuous function 𝜙𝜙: [0,1]5 → R which are non- decreasing and satisfying 
the following conditions: 

(A) 𝜙𝜙(𝑢𝑢, 1, 𝑢𝑢, 1, 𝑢𝑢) ≥ 0 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 1 
(B) 𝜙𝜙(𝑢𝑢, 1,1, 𝑢𝑢, 𝑢𝑢) ≥ 0 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 1 
(C) 𝜙𝜙(𝑢𝑢, 𝑢𝑢, 1, 1, 𝑢𝑢) ≥ 0 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 1 

 
Example2.7: [10] Define 𝜙𝜙: [0,1]5 → R as  

𝜙𝜙 (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4, 𝑡𝑡5) = 11𝑡𝑡1 − 12𝑡𝑡2 + 6𝑡𝑡3 − 8𝑡𝑡4 + 3𝑡𝑡5 
 
Clearly 𝜙𝜙  satisfies all condition (A), (B), (C). Therefore 𝜙𝜙 ∈ M5. 
 
3. MAIN RESULTS 
 
We now establish the following results. 
 
Theorem 3.1: Let A, B, S and T be self-mappings of a fuzzy metric space (X, M,*) satisfying the following conditions 
that: 
(i) the pair (A, S) or (B, T) satisfies the property (E.A); 
(ii) for any x, y ∈ X, 𝜙𝜙 ∈ M5 and for all t > 0, there exists  𝛼𝛼 ∈ (0, 1)such that 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵, 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝑇𝑇𝑇𝑇, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡),𝑀𝑀�𝑇𝑇𝑇𝑇,𝐵𝐵𝐵𝐵, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑇𝑇𝑇𝑇, 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐵𝐵𝐵𝐵, 𝑡𝑡)) ≥ 0 
(iii) A(X) ⊂ T(X) orB(X) ⊂S(X). 
Then the pairs (A, S) and (B, T) share the common property (E.A). 
 
Proof: Suppose that the pair (A, S) satisfies property (E.A), then there exists a sequence {𝑥𝑥𝑛𝑛} in X such that  

lim𝑛𝑛→∞ 𝐴𝐴 𝑥𝑥𝑛𝑛 = lim𝑛𝑛→∞ 𝑆𝑆 𝑥𝑥𝑛𝑛 = 𝑧𝑧 for some z ∈ X. Since A(X) ⊂T(X), 
 
therefore, for each 𝑥𝑥𝑛𝑛 , there exist 𝑦𝑦𝑛𝑛 in X such that A𝑥𝑥𝑛𝑛 = 𝑇𝑇𝑦𝑦𝑛𝑛 . This gives, 

lim
𝑛𝑛→∞

𝐴𝐴 𝑥𝑥𝑛𝑛 = lim
𝑛𝑛→∞

𝑆𝑆 𝑥𝑥𝑛𝑛 = lim
𝑛𝑛→∞

𝑇𝑇𝑦𝑦𝑛𝑛 = 𝑧𝑧. 
 
 Now, we claim that lim𝑛𝑛→∞ 𝐵𝐵𝑦𝑦𝑛𝑛 = 𝑧𝑧. 
 
Applying inequality (ii), we obtain 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝑥𝑥𝑛𝑛 ,𝐵𝐵𝑦𝑦𝑛𝑛 , 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑦𝑦𝑛𝑛 , 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛 , 𝐴𝐴𝑥𝑥𝑛𝑛 , 𝑡𝑡),𝑀𝑀�𝑇𝑇𝑦𝑦𝑛𝑛 ,𝐵𝐵𝑦𝑦𝑛𝑛 ,𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑦𝑦𝑛𝑛 , 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛 , 𝐵𝐵𝑦𝑦𝑛𝑛 , 𝑡𝑡)) ≥ 0 
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Taking limit as 𝑛𝑛 → ∞ 

𝜙𝜙(𝑀𝑀�𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛 , 𝛼𝛼𝛼𝛼� ,𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡), 𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡),𝑀𝑀 �𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛 ,𝛼𝛼 2� 𝑡𝑡� ,𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡) ∗ 𝑀𝑀 �𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛 , 𝑡𝑡�) ≥ 0 
 
Since 𝜙𝜙 is non-decreasing in the first argument, we have 

𝜙𝜙(𝑀𝑀�𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛 , 𝑡𝑡� , 1,1,𝑀𝑀 �𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛 , 𝑡𝑡� ,𝑀𝑀 �𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛, 𝑡𝑡�) ≥ 0 
 
Using (B), we get 

𝑀𝑀�𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛 , 𝑡𝑡� ≥ 1  
Hence  

𝑀𝑀�𝑧𝑧, lim
𝑛𝑛→∞

𝐵𝐵𝑦𝑦𝑛𝑛 , 𝑡𝑡� = 1. 
Therefore lim

𝑛𝑛→∞
𝐵𝐵𝑦𝑦𝑛𝑛 = 𝑧𝑧. 

 
Hence the pairs (A, S) and (B, T) share the common property (E.A). 
 
Similarly, if the pair (B, T) satisfies property (E.A) and B(X) ⊂ S(X), then pairs (A, S) and (B, T) share the common 
property (E.A).  
 
Theorem 3.2: Let A, B, S and T be self-mappings of a fuzzy metric space (X, M,*) satisfying the following conditions 
that: 
(i) for any x, y ∈ X, 𝜙𝜙 ∈ M5 and for all t > 0, there exists 𝛼𝛼 ∈(0,1) such that 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵, 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝑇𝑇𝑇𝑇, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡),𝑀𝑀�𝑇𝑇𝑇𝑇,𝐵𝐵𝐵𝐵, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑇𝑇𝑇𝑇, 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐵𝐵𝐵𝐵, 𝑡𝑡)) ≥ 0 
(ii)  the pairs(A, S) and(B, T) share the common property (E.A); 
(iii) S(X) and T(X) are closed subsets of X. 
Then each of the pairs (A, S) and (B, T) have a point of coincidence. Moreover, A, B, S and T have a unique common 
fixed point provided both the pairs (A, S) and (B, T) are weakly compatible. 
 
Proof: Since the pairs (A, S) and (B, T) share the common property (E.A), there exist two sequences {𝑥𝑥𝑛𝑛} and {𝑦𝑦𝑛𝑛}in 
X such that lim𝑛𝑛→∞ 𝐴𝐴 𝑥𝑥𝑛𝑛 = lim𝑛𝑛→∞ 𝑆𝑆 𝑥𝑥𝑛𝑛 =  lim𝑛𝑛→∞ 𝐵𝐵𝑦𝑦𝑛𝑛 = lim𝑛𝑛→∞ 𝑇𝑇𝑦𝑦𝑛𝑛 = 𝑧𝑧 for some z ∈ 𝑋𝑋.S(X) is closed subset of X, 
there exists a point u ∈ X such that z = Su. 
 
We, now claim that Au = z. By (i), we have 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴,𝐵𝐵𝑦𝑦𝑛𝑛 ,𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝑇𝑇𝑦𝑦𝑛𝑛 , 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡),𝑀𝑀�𝑇𝑇𝑦𝑦𝑛𝑛 ,𝐵𝐵𝑦𝑦𝑛𝑛 ,𝛼𝛼 2� 𝑡𝑡�, 
𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑇𝑇𝑦𝑦𝑛𝑛 , 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑆𝑆,𝐵𝐵𝑦𝑦𝑛𝑛 , 𝑡𝑡)) ≥ 0 

 
Taking limit as n → ∞, 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡), 𝑀𝑀(𝑧𝑧, 𝐴𝐴𝐴𝐴, 𝑡𝑡), 𝑀𝑀�𝑧𝑧, 𝑧𝑧, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡) ∗ 𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡)) ≥ 0 
 
As 𝜙𝜙 is non-decreasing in the first argument, we have 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡), 1,𝑀𝑀(𝑧𝑧, 𝐴𝐴𝐴𝐴, 𝑡𝑡), 1,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡)) ≥ 0 
 
Using implicit relations (A), we have 

𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡) ≥ 1  
 
Hence                  M(Au, z, t) =1. 
 
Therefore, Au = z = Su which shows that u is a coincidence point of the pair (A, S). 
 
Since T(X) is also a closed subset of X, therefore, lim𝑛𝑛→∞ 𝑇𝑇𝑦𝑦𝑛𝑛 = 𝑧𝑧 in T(X) and hence there exists 𝑣𝑣 ∈ 𝑋𝑋 such that          
Tv = z = Au = Su. Now, we show that Bv= z. 
 
By using inequality (i), we have 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴,𝐵𝐵𝑣𝑣, 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝑇𝑇𝑣𝑣, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡),𝑀𝑀�𝑇𝑇𝑣𝑣, 𝐵𝐵𝑣𝑣, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑇𝑇𝑣𝑣, 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑆𝑆,𝐵𝐵𝑣𝑣, 𝑡𝑡)) ≥ 0 
it follows 

𝜙𝜙(𝑀𝑀(𝑧𝑧, 𝐵𝐵𝑣𝑣, 𝛼𝛼𝛼𝛼), 𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡),𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡),𝑀𝑀�𝑧𝑧, 𝐵𝐵𝑣𝑣, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡) ∗ 𝑀𝑀(𝑧𝑧, 𝐵𝐵𝑣𝑣, 𝑡𝑡)) ≥ 0 
 
As 𝜙𝜙is a non-decreasing in the first argument, we have 

𝜙𝜙(𝑀𝑀(𝑧𝑧, 𝐵𝐵𝑣𝑣, 𝑡𝑡), 1,1,𝑀𝑀(𝑧𝑧, 𝐵𝐵𝑣𝑣, 𝑡𝑡),𝑀𝑀(𝑧𝑧, 𝐵𝐵𝑣𝑣, 𝑡𝑡)) ≥ 0 
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Using implicit relations (B), we get 

𝑀𝑀(𝑧𝑧,𝐵𝐵𝑣𝑣, 𝑡𝑡) ≥ 1. 
 
Hence                   𝑀𝑀(𝑧𝑧, 𝐵𝐵𝐵𝐵, 𝑡𝑡) = 1 
 
Therefore, Bv= z = Tv, which shows that v is a coincidence point of the pair (B, T). 
 
Moreover, since the pairs (A, S) and (B, T) are weakly compatible and Au = Su, Bv= Tv, therefore,  Az = ASu= SAu= Sz, 
Bz= BTv= TBv= Tz. 
 
Next, we claim that Az = z for showing the existence of a fixed point of A. By using inequality (i), we have 
 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴,𝐵𝐵𝑣𝑣, 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝑇𝑇𝑣𝑣, 𝑡𝑡), 𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡),𝑀𝑀�𝑇𝑇𝑣𝑣,𝐵𝐵𝑣𝑣, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑇𝑇𝑣𝑣, 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐵𝐵𝑣𝑣, 𝑡𝑡)) ≥ 0 
it follows that  

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝛼𝛼𝛼𝛼), 𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡),𝑀𝑀(𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝑡𝑡),𝑀𝑀�𝑧𝑧, 𝑧𝑧, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡) ∗ 𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡)) ≥ 0 
 
Since 𝜙𝜙is a non-decreasing in the first argument, we have 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡), 𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡), 1,1,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡)) ≥ 0 
 
On using implicit relations (C), we get 

𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑧𝑧, 𝑡𝑡) ≥ 1 
 
Hence, M(Az, z, t) =1. Therefore, Az = z = Sz. 
 
Similarly, we can prove that Bz= Tz= z. Hence, Az = Bz= Sz= Tz= z, which implies that z is a common fixed point of      
A, B, S and T. 
 
Uniqueness: Let w be another common fixed point of A, B, S and T. Then by using (i), 

𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴,𝐵𝐵𝑤𝑤,𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝑇𝑇𝑤𝑤, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡),𝑀𝑀�𝑇𝑇𝑤𝑤, 𝐵𝐵𝑤𝑤,𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑇𝑇𝑤𝑤, 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐵𝐵𝑤𝑤, 𝑡𝑡)) ≥ 0 
it follows that  

𝜙𝜙(𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝑡𝑡),𝑀𝑀(𝑧𝑧, 𝑧𝑧, 𝑡𝑡),𝑀𝑀�𝑤𝑤, 𝑤𝑤, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝑡𝑡) ∗ 𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝑡𝑡)) ≥ 0 
 
Since 𝜙𝜙is a non-decreasing in the first argument, we have 

𝜙𝜙(𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝑡𝑡),𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝑡𝑡), 1,1, 𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝑡𝑡)) ≥ 0 
 

Using implicit relations (C), we have 
𝑀𝑀(𝑧𝑧,𝑤𝑤, 𝑡𝑡) ≥1. 

 
Hence 𝑀𝑀(𝑧𝑧, 𝑤𝑤, 𝑡𝑡) =1. 
 
Therefore, z = w, i.e., mappings A, B, S and T have a unique common fixed point.  
 
Taking B = A and T = S in the Theorem 3.2. yields following corollary: 
 
Corollary 3.1: Let A and S be self-mappings of a fuzzy metric space(X, M,*) satisfying the following conditions that 

(i) the pair (A, S) share the property (E.A); 
(ii) for any x, y ∈ X, 𝜙𝜙 ∈ M5 and for all t > 0, there exists 𝛼𝛼 ∈ (0, 1) such that 
(iii) 𝜙𝜙(𝑀𝑀(𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝛼𝛼𝛼𝛼),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡), 𝑀𝑀�𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝛼𝛼 2� 𝑡𝑡�,𝑀𝑀(𝐴𝐴𝐴𝐴, 𝑆𝑆𝑆𝑆, 𝑡𝑡) ∗ 𝑀𝑀(𝑆𝑆𝑆𝑆, 𝐴𝐴𝐴𝐴, 𝑡𝑡)) ≥ 0 
(iv) S(X) is a closed subset of X. 

Then A and S each have a point of coincidence. Moreover, if the pair (A, S) is weakly compatible, then A and S have a 
unique common fixed point. 
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