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ABSTRACT 
We propose a COVID-19 model with vaccination. We have divided the total population into three subclasses: the 
susceptible population, vaccinated population and infective population. A separate class V(t) of cumulative density of 
corona virus in environmental reservoir is also taken into consider. Susceptibles are assumed to become COVID-19 
infected via contacts with infectives and virus present in the reservoir. Model is analyzed using stability theory of 
differential equations. Both the infection-free and the endemic equilibria are found and their stability are investigated. 
Using Lyapunov functional approach, the sufficient conditions for global stability of the endemic equilibrium are 
obtained. It is shown that high rate of vaccination will help to reduce the infection in society. It is also found that the 
infective population can be decreased if susceptible do not come in direct contact with viral density deposited on 
surfaces/objects or airborne droplets accumulated in the environmental reservoir. Numerical simulations are also 
carried out to investigate the influence of key parameters on the spread of the disease, to support the analytical 
conclusion and illustrate possible behavioral scenario of the model.  
 
Keywords: COVID-19, vaccination, susceptible, infectives, stability analysis. 
 

1. INTRODUCTION 
 
Corona viruses are family of viruses that circulate among animals and some times can also be found in humans. The 
disease was first identified December 2019 in Wuhan, China, and eventually invaded the world due to fast modern air 
transportation. The most general symptoms of COVID-19 are fever, fatigue, and dry cough. Some patients may have 
gripe and pains, nasal congestion, runny nose, or diarrhea. Some people become infected but don’t develop any 
symptoms and don’t feel illness. The COVID-19 pandemic is regard as the primus global threat worldwide because of 
thousands of confirmed infections, accompanied by thousands deaths over the world. According to the World Health 
Organization (WHO) situation report, worldwide, more than 20.4 Cr people were infected and about 43.1 Lack were 
expired due to COVID-19 virus infection between December 2019 and 12 August 2021 [28]. The extreme spread of the 
disease and lack of approved medicines made the disease a challenging problem for public health. Though some 
vaccine has been developed, it may not be equally effective on all strains of mutating corona virus, it is anticipated that 
the number of COVID-19 infections may still increase. 
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Mathematical models play an important role to understand the transmission dynamics of the epidemic and for short and 
long term prediction of epidemic incidence. Since the first case of COVID-19, various mathematicians around the 
world develop different mathematical models to understand the transmission dynamics of the virus, estimated the basic 
reproductive number and investigated effects of different intervention strategies. Several mathematical models have 
already been formulated for population dynamics of COVID-19 [2-9, 11-14, 20-27]. In Particular Okuonghae and 
Omame [5] studied the effect of control measure namely face mask and social distancing on the dynamics of the 
disease in detail. In Chu et al. [7], the authors have done a met analysis on the effectiveness of physical distancing, face 
mask, and eye protection in minimizing the human-to human transmission of the disease. In the paper by Ivorra et al. 
[2], a new mathematical model 𝜃𝜃 -SEIHRD model based on Be-CoDis model in Ivorra et al. [1] is proposed. This 
model considers existence of infectious undetected cases, control measures like sanitary conditions, isolation, 
quarantine, and tracing. It considers a novel method considering fraction of detected cases over actual total infected 
cases, which helps to understand the impact of COVID-19. Bandekar et.al [20], the authors performed an optimal 
control analysis with two control parameters to study the increase and decrease of the infected population with and 
without control. This study suggests that improved and rapid testing will help in identifying more infectives, thereby 
contributing in the decline of disease transmission rate. Sharma et.al [6] stress on follow the covid-19 protocol 
suggested by government like applying face mask or surgical masks, social distancing and proper sanitization at public 
places can help in controlling the spread. In Zhang et al. [26], it is clearly concluded that the spread of the disease could 
be controlled through effective contact tracing and by increasing the detection rates and quarantine of the individuals 
infectious to others. Khajanchi et al. [22] proposed a compartmental model with quarantine for the transmission 
dynamics of COVID-19 and calibrated the model with daily and cumulative cases for the four provinces of India. The 
authors have performed a detailed theoretical analysis in terms of the basic reproduction number and predicted the 
cumulative cases. Moreover, the study suggests that quarantine, unreported and reported individuals as well as 
intervention policies like social distancing, lockdown, and media effect can play an important role in controlling the 
transmission of COVID-19. Sarkar et al. [11] proposed a mathematical model that predicts the dynamics of COVID-19 
in India along with its 17 provinces. Their findings revealed the fact that the contact rate between susceptible and 
infected individuals could be reduced by a strict isolation imposed for susceptible individuals. 
 
Our main contribution related with considering the effect of vaccination on the transmission dynamics of the Covid-19. 
This new class of vaccination, as compiled to any compartmental model, implies a number of analysis about absence of 
disease and endemic equilibrium point, which is also consider in this work. This paper is arranged as follows: we 
propose a model for COVID-19 in section 2. Section 3 describes basic reproduction number of model for COVID-19 
and sensitivity analysis. Equilibrium analysis and stability analysis of equilibrium point discuss in section 4. Numerical 
simulations and Conclusions are describes in section 5 and in section 6 conclusion of the paper is presented 
respectively. 
 
2. MATHEMATICAL MODEL 
 
In the model, consider a population of size N(t) at any time t and divided into three subclasses of susceptible population 
X(t), vaccinated population V(t) and infective population I(t) 
• Susceptibles population X(t ),which denotes individuals who are susceptible to get the virus and become infectious. 
• Vaccinated population Y(t), which denote the population who has taken any vaccine of COVID-19 
•  Infective population I(t), which denote the population who are infective of COVID-19 and can transmit the disease 

to other individuals 
And a separate class V(t) of cumulative density of corona virus in environmental reservoir is also taken into consider.  
 
In the process of COVID-19 spreading, the spreading among these three states is governed by the following 
assumptions. Λ is the rate of constant immigration of susceptibles and d is the natural mortality rate of all subclasses of 
human population. 21 , ββ  are the contact rate of susceptibles become infected via contact with infective population 
and with the density of virus in the environmental reservoir respectively. The constant rate ϕ is the rate by which 
susceptible will join the vaccinated class but some vaccinated person will become susceptible again with rate ν  due to 
wear off vaccine. The constant rate η  is the rate by which infective will recover and join the susceptible class. The 
constant rate γ is the rate of increase of corona virus density emitted from infected individuals . The rate of elimination 
of corona virus density due sanitization or other precautionary measures is σ. The constant rate α  is the disease related 
death rate of infective population.  
 
Based on the above considerations, the pandemic spreading leads to dynamic transitions among the human population, 
shown in Figure 1.     
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Figure-1: Schematic diagram of the model (2.1) - (2.4)
  

Taking into account the above assumptions and considerations, the dynamics of the COVID-19 outbreak is assumed to 
be governed by the following system of nonlinear ordinary differential equations,  

)()()()()()()()()(
21 tYtItXtdXtXtVtItX

dt
tdX νηφββ ++−−−−Λ=                                                                  (2.1) 

)()()()( tYtdYtX
dt

tdY νφ −−=                                                                                                                               (2.2) 

( ) )()()()()()(
21 tIdtXtVtItX

dt
tdI

++−+= ηαββ                                                                                     (2.3) 

)()()( tVtI
dt

tdV σγ −=                                                                                                      (2.4) 

 
The total population N(t) would be constant all the time in this model i.e., 

N(t) = X(t) + Y(t) +I(t) 
 
We have the non negative initial conditions 

0)0(,0)0(,0)0(,0)0( 0000 ≥=≥=>=>= VVIIYYXX  

  
2.1 Non-negativity of solutions 
An important feature of any epidemiological model is to show that all the population variables are non-negative for all    
t ≥  0, which implies that any trajectory starting with positive initial condition will remain positive for t ≥  0 [8]. The 
following lemma describes this fact, 
 
Lemma 2.1: If X(0) ≥ 0, Y(0) ≥ 0, I(0) ≥ 0 and V(0) ≥ 0, the solution of X(t), Y(t), I(t) and V(t) in the system (2.1) - (2.4) 
remain positive. 
 
Proof: We shall prove this lemma using contradiction by assuming that the total population N(t) ≠ 0 for all t  ≥ 0. We 
assume that there exists the time t1, t2, t3 and t4 respectively such that 
 

Positivity of X(t): Assume that X(t1) = 0, 0
)( 1 <

dt
tdX , X(0) ≥ 0, Y(0) ≥ 0, I(0) ≥ 0 and V(0) ≥ 0, 10 tt ≤≤ ,
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                                                  = 𝛬𝛬 + 𝜂𝜂𝐼𝐼(𝑡𝑡1) + 𝜈𝜈𝜈𝜈(𝑡𝑡1) ≤  0 
which is contradiction as 𝛬𝛬 + 𝜂𝜂𝐼𝐼(𝑡𝑡1) + 𝜈𝜈𝜈𝜈(𝑡𝑡1) >  0.  Hence, it can be concluded that X(t) ≥ 0 for  t ≥ 0. 
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Positivity of Y(t): Assume that Y(t2) = 0, 0
)( 2 <

dt
tdY , X(0) ≥ 0, Y(0) ≥ 0, I(0) ≥ 0 and V(0) ≥ 0, ,0 2tt ≤≤

 𝑑𝑑𝑑𝑑(𝑡𝑡2)
𝑑𝑑𝑑𝑑 < 0 ⇒ �
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�
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= 𝜙𝜙𝑋𝑋(𝑡𝑡2)− (𝜈𝜈 + 𝑑𝑑)𝑌𝑌(𝑡𝑡2) 

                                                = 𝜙𝜙𝑋𝑋(𝑡𝑡2) ≤  0 
which is contradiction as 𝜙𝜙𝑋𝑋(𝑡𝑡2) >  0. Hence, it can be concluded that Y(t) ≥ 0 for  t ≥ 0. 
 

Positivity of I(t): Assume that I(t3) = 0, 0
)( 3 <

dt
tdI , X(0) ≥ 0, Y(0) ≥ 0, I(0) ≥ 0 and V(0) ≥ 0, ,0 3tt ≤≤
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which is contradiction as 0)()( 332 >tXtVβ . Hence, it can be concluded that I(t) ≥ 0 for  t ≥ 0.

  

Positivity of V(t): Assume that V(t4) = 0, 0)( 4 <
dt

tdV  , X(0) ≥ 0, Y(0) ≥ 0, I(0) ≥ 0 and V(0) ≥ 0, ,0 4tt ≤≤   
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                                                   0)( 4 ≤= tIγ
 which is contradiction as 0)( 4 >tIγ . Hence, it can be concluded that V(t) ≥ 0 for  t ≥ 0.  

 
3.1. COMPUTATION OF BASIC REPRODUCTION NUMBER 
The basic reproduction number R0 is defined as the effective number of secondary infections generated by a typical 
infected individual in an otherwise disease free population. It is very important in case of infectious disease. If R0 < 1, 
then on average an infected individual produces less than one infected individual over the course of its infectious period 
and infection cannot grow. Conversely, if R0 > 1 then on average an infected individual produces more than one new 
infection and the disease can invade the population.  
 
Here, we find the basic reproduction rate R0 of the model (2.1)-(2.4), by using next generation matrix method [17, 18]. 
We first compute the new infectious matrix F and transfer matrix W [16], according to formula 

[ ]
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                                                                                                                (3.1) 

 
To calculate F and W, we only consider equations (2.3) and (2.4), which correspond to the groups ( I, V) capable of 
transmitting the disease. The non-negative matrix F, corresponding to new infections in the population at disease-free 
equilibrium (disease free equilibrium is given in section 4.1) is, 
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The non-singular matrix W, corresponding to the transfer of individuals into and out of compartment is, 
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FW-1 is the next generation matrix of the system (2.5)-(2.8). It follows that the spectral radius of matrix FW-1 is  
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According to van den Driessche and watmough [17, 18], the basic reproduction number of the system (2.1)-(2.4) is 

( )
( )( )ddd

dR
++++

++Λ
=

νφηασ
γβσβν 21

0
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                                                                                                                       (3.5) 

The increasing the value of denominator will reduce the reproduction number. ηαφ ,,  and σ  are the parameters 
which are only in the denominator. But we can not increase α (disease related death rate). Hence reproduction number 
can be reduce, by increasing φ , the vaccination rate of susceptible as the vaccination rate of susceptible will increase, 
reproduction rate will decrease. Hence, high rate of vaccination will help to reduce the infection in society. 
Reproduction rate will also decrease as the recovery rate of infectives will increase. It shows that if more and more 
infectives will recover soon then the reproduction rate will decrease. Reproduction number due to virus can be reduce 
by increasing the value of σ , the rate of elimination of virus density, by sanitization, social distancing and other 
precautionary measures.     
 
3.2. SENSITIVITY ANALYSIS 
Sensitivity analysis is crucial in determining the importance of various parameters in disease transmission. In 
Rodrigues et al. [10], a detailed explanation on sensitivity analysis for case of dengue is presented. It helps in 
determining the parameters with high and low impact on the reproduction number, thereby helping in focusing on 
various intervention strategies. The normalized forward sensitivity index of a variable with respect to a parameter is the 
ratio of relative change in the parameter. When variable is differentiable function of the parameter, the sensitivity index 
may be alternatively defined using partial derivative. From Chitnis et al. [15], the normalized forward sensitivity index 
of R0, that depends differentiably on a parameter, is defined by 
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The parameter values displayed in below table  are taken as the baseline and they are used to evaluate the sensitivity 
indices of some parameters which are responsible for the transmission dynamics of COVID 19 infectious disease to 
four places of decimal in relation to the effective reproduction number R0, using equation (3.5), the result of which is 
presented in table 1 below 
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Sensitivity indices have given below for the parameter taken in the paper.       

 
Table-1: Sensitivity index and indices Table 

Parameter Symbol Sensitivity indices 
𝛽𝛽1 0.9091 
𝛽𝛽2 0.0909 
𝛾𝛾 0.0909 
ϕ 0.8139 
𝜎𝜎 -0.0909 
η  0.3311 

  
From table we can see that the positive indices i.e. 𝛽𝛽1, 2β  and  𝛾𝛾 show that they have great impact on expanding the 
disease in the population if their valve increases R0 increases, it means the number of secondary infections increases in 
the population. Further the parameter ηφ,   and 𝜎𝜎 for which the sensitivity indices is negative, shows that if ηφ,   and 
𝜎𝜎 will increase the basic reproduction number will decrease, which minimize the disease in the population. 
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4. EQUILIBRIA AND STABILITY ANALYSIS OF THE MODEL 
 
4.1 Equilibria of the model 
In this subsection, we show the feasibility of all equilibra by setting the rate of change with respect to time t of all 
dynamical variables to zero. The model (2.1)-(2.4) has two non-negative feasible equilibria namely,  
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ν the disease-free equilibrium, which exists without any condition. This equilibrium 

implies that in the absence of any infection, the total population size (N) remains at its equilibrium value d/Λ . 
(ii)  E*(X*,Y*, I*, V*), the endemic equilibrium.  The equilibrium values of different variables are given as,  
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From the above expression we can see that the endemic equilibrium will exist only if R0 > 1 and if R0  < 1 the disease 
will not persist in the population.

   

                                                                                                                                                                                                                                                                                                                                                                                   
4.2 Local stability of the equilibria 
To determine the local stability of E0, the following variational matrix of the system (2.1) – (2.4) is computed about E0 
as,  

( )
( )

( ) ( ) ( )
( )




















−
++
+Λ









+++

++
+Λ

−−

−+−
−+−+−

=

σγ
νφ
νβ

ηα
νφ
νβ

ξνφ
βηβνφ

00

00

0
)(

)( 21

0201

0

dd
dd

dd
d

d
XXd

EJ  

The two roots of the characteristic equation is determined by the equation  
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As there is no sign change, so by the descarte’s rule of signs both roots of the equation are negative.  
Another two roots of  matrix is determined by the equation        
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We can see if R0 > 1, then J(E0) has at least one eigen value with positive real part. Hence, disease free equilibrium E0 
of the (2.1)-(2.4) is locally asymptotically stable if R0 < 1. Therefore, the disease dies out i.e. infection does not persist 
in the population and under this condition the equilibrium E* does not exist. It is unstable for R0 >1 and then E* exists 
and the disease always persists in the population.          
 
Now the variational matrix corresponding to E* is given by, 
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The equilibrium E* is locally asymptotically stable if and only if the following inequalities hold: 

0,0 2
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4.3. Global Stability of the endemic Equilibrium 
To show the global stability [6, 19] behavior of E*, we need the bounds of dependent variables involved. For this, we 
find the region of attraction stated in the form of following lemma, stated below 
 
Lemma 1: The biologically feasible region           
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is a positive invariant a region and attracting region for the disease transmission model given by the system (2.1)-(2.4) 
with initial conditions equation. 
 
Proof:  Summing up the first three equations in system (2.1) to (2.3) and denoting 

N(t) = X(t) + Y(t) +I(t) 
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σ
γ
d

V Λ
=  

 
Theorem 1: If the endemic equilibrium E* exists, then it is globally asymptotically stable provided the following 
sufficient conditions are satisfied in Ω       

))((
3
2)( 2 dd ++≤+ νφφν                                                                                                                              (4.3) 

( ) ))((
9
4 *

1
2

2212
*

1 XddVkIkX βηαφβββη −+++≤++−                                                                         (4.4) 

( ) )(
3
2 *

13
2

3
*

22 XdkkXk βηασγβ −++≤+                                                                                            (4.5) 

Where, k2 is a constant and k3 is given by
( )

)(2
3

2*
2

3 d
Xk
+

≥
φσ

β                

 
5. NUMERICAL SIMULATION AND DISCUSSION 
 
To see the dynamical behavior of the model system, the system (2.1)-(2.4) is integrated numerically by fourth order 
Runge-Kutta method using the following set of parameters values:  

Λ = 2000,   d = 0.02,  α = 2, β1 =0.015,  β2=0.01     φ = 0.35, 06.0=ν     η  = 1, 
γ = 0.03,   σ  = 0.2, 

with initial values X(0) = 100,  Y(0) = 900, I(0) = 500, and V(0) = 100.  
 
The results of numerical simulation are displayed graphically in figs. (2-9). In fig. 2, the variation of infective 
population I (t) with time t is shown for different values of 1β , the rate of transmission of susceptibles to infective 
class through direct contact with infectives present in the population. It is seen that infective population increases with 
increase in the value of 1β . In figs. 3 the variation of infective population I(t) with time t is shown for different values 
of 2β , the rate of transmission of susceptibles to infective class through direct contact with virus viral density 
deposited on surfaces/objects or airborne droplets accumulated in the environmental reservoir. It is seen that infective  
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population increases with increase in the value of 2β . Thus, it suggested that the people should follow the COVID-19 
guideline like apply facemask, social distancing etc. so that they do not come in the contact of viral density present in 
the reservoir. In figs. 4 the variation of infective population I(t) with time t is shown for different values of σ , is the 
rate of elimination of corona virus density due sanitization or other precautionary measures. The rate depletion of 
transmission of susceptibles to infective class through direct contact with virus viral density deposited on 
surfaces/objects or airborne droplets accumulated in the environmental reservoir. It is seen that infective population 
decreases with increase in the value of σ .It shows that the proper sanitization at public place is helpful to control the 
spread of COVID-19.  In figs. 5, the variation of infective population I(t) is shown with time t for different values of η , 
the rate of recovery of infective individuals. It is noted that with increase in the recovery rate of infected individuals, 
their population decreases. Fig (6-7) shows the variation of vaccinated population, infective population with time t for 
different value ofφ , the rate of vaccination of the susceptible. It is found that as the value of φ  increase infective 
population decrease and vaccinated population increase. This indicates that if rate of vaccination of susceptible 
increases, the vaccinated population increases in turn infective population decreases. Fig (8-9) depicts the variation of 
vaccinated population, infective population with time t for different value ofν , the wear off rate of vaccine. It is found 
that as the value of ν  increase vaccinated population decrease in turn infective population increase.  
 
From the above discussion, it follows that if more and more susceptible individuals either vaccinate themselves or 
follow the COVID-19 guidelines do not come in contact with infectives and the viral density deposited on 
surfaces/objects or airborne droplets accumulated in the environmental reservoir, the spread of the disease can be 
controlled.  

 
Figure-2: Variation of infected individuals for different values of β1 

 

 
Figure-3: Variation of infected individuals for different values of β2 
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Figure-4: Variation of infected individuals for different values of σ  

 

 
Figure-5: Variation of infected individuals for different values of η  

 

 
Figure-6: Variation of vaccinated individuals for different values of φ  

 



Dileep Sharma*, Agraj Tripathi and Manoj Kumar Jadoun /  
Mathematical Modeling of the Spread of Corona Virus in Presence of Vaccination / IJMA- 12(10), Oct.-2021. 

© 2021, IJMA. All Rights Reserved                                                                                                                                                                         10 

 
Figure-7: Variation of infected individuals for different values of φ  

 

 
Figure-8: Variation of vaccinated individuals for different values of ν  

 

 
Figure-9: Variation of infected individuals for different values of ν  
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6. CONCLUSION 
 
In this paper, a set of non linear differential equations are applied to describe the transmission dynamics of COVID-19 
in presence of vaccination on the spread of corona virus in a population with variable size structure. The total human 
population is divided into three subclasses: the susceptible, the vaccinated persons and the infected persons a separate 
class of virus density present in the reservoir is taken into consider. The model exhibits two equilibria namely, the 
disease-free and the endemic equilibrium. The local and global stability results of these equilibria have been 
established. The analysis of the proposed model has been done using stability theory of differential equations and 
computer simulations. The reproduction number R0 is found which shows that reducing the effective contact rates and 
improving the vaccination rate are very important to contain the spread of COVID-19. Sensitivity analysis of R0 in 
terms of model parameters also demonstrates that the vaccination and the improvement of the recovery rate are two 
critical factors in fighting against COVID-19.  
 
Finally, from numerical simulation, the results indicate once again that improving the vaccination rate are crucial to 
contain the spread of COVID-19, and early control measures can also effectively prevent a larger outbreak of COVID-
19. Although improving the recovery rate can be realized by providing efficient confirmatory test kits, doctors and other 
medical resource and reducing the effective contact rate can be realized by following COVID-19 protocol in the form 
of non-pharmaceutical interventions such as applying face cover/mask in public places, adopt social distancing, avoid 
public gatherings etc. It is also observed that the viral density in the environmental reservoir decreases due to decreased 
number of infectives and through frequent sanitization of objects/surfaces which helps in keeping the epidemic under 
control. 
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