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ABSTRACT 
The aim of this paper is to obtain a common fixed point for weakly compatible of type (A) in Fuzzy metric space. 
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1.  INTRODUCTION AND PRELIMINARIES 
 
In 1965 Zadeh [1] at the university of California U. S.A. proposed a way for mathematization of imprecisely described 
phenomena of introducing the concept of Fuzzy set. 
 
Deng [6] defined a Fuzzy metric space by assigning a non negative real umber for every pair of Fuzzy point in anon 
empty set X and satisfying certain conditions. The idea of weak compatible maps of type (A) defined by Kramosil and 
Michalek [2], which was further modified by George and Veramani [3] as used by Pathak Kang and Beak [4] in 
Menger space. We extend the result of singh and chouhan [5] in Fuzzy metric space.  
 
Definition 1.1: Self mappings P and Q of a Fuzzy metric space (X, T, ●) are said to be compatible of type (A), if  
lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛),   q) = 1, lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛 , QQ𝑥𝑥𝑛𝑛 , q) = 1 for all q > 0, where {𝑥𝑥𝑛𝑛} is a sequence in X such that  
lim𝑛𝑛→∞ 𝑃𝑃𝑥𝑥𝑛𝑛  = lim𝑛𝑛→∞ 𝑄𝑄𝑥𝑥𝑛𝑛= u for some u ɛ X. 
 
Definition 1.2: Self mappings P and Q of a Fuzzy metric space (X, T, ●) are said to be weak compatible of type (A), if  

lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q) ≥ lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q) and  
lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,QQ𝑥𝑥𝑛𝑛),q) ≥ lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,QQ𝑥𝑥𝑛𝑛  ,q) for all q > 0  

 
where {𝑥𝑥𝑛𝑛} is a sequence  in X  such thatlim𝑛𝑛→∞ 𝑃𝑃𝑥𝑥𝑛𝑛  = lim𝑛𝑛→∞𝑄𝑄𝑥𝑥𝑛𝑛  =  u for some  u ɛ X. 
 
Preposition: Let P and Q be continuous, self maps of Fuzzy metric space (X, T ,●). Then commutativity implies weak 
compatible of type (A), but not conversely. 
 
Proof: Let P and Q be self continuous and commuting maps of a Fuzzy metric space (X, T, ●). Now if {𝑥𝑥𝑛𝑛} is any 
sequence in X such that lim𝑛𝑛→∞ 𝑃𝑃𝑥𝑥𝑛𝑛  = lim𝑛𝑛→∞𝑄𝑄𝑥𝑥𝑛𝑛= u for some uɛ X, then by continuity of P,  

PP𝑥𝑥𝑛𝑛 , QQ𝑥𝑥𝑛𝑛  → 𝑃𝑃𝑢𝑢  for q > 0. 
lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛  ) ≥ lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PQ𝑥𝑥𝑛𝑛 ,q /2) ●lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q/2) = 1  

i. e. lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q) ≥ lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q)    
 
Similarly, 

lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,QQ𝑥𝑥𝑛𝑛 ,q) ≥ lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q)    
 
Hence P and Q are weak compatible maps of type (A). 
 
For the converse part let (X, T, ●) is a Fuzzy metric space, where X = [0, 1]. Define self maps P and Q as 𝑃𝑃𝑥𝑥  = 𝑥𝑥𝑎𝑎

𝑄𝑄𝑥𝑥=  𝑥𝑥
𝑥𝑥+𝑏𝑏

 
for all x ɛ [0 ,1]  
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Now  P𝑄𝑄𝑥𝑥   = P ( 𝑥𝑥

𝑥𝑥+𝑏𝑏
 )  =  𝑥𝑥

𝑎𝑎  (𝑥𝑥+𝑏𝑏)
    and 

           Q𝑃𝑃𝑥𝑥  = Q( 𝑥𝑥
𝑎𝑎

 ) = 𝑥𝑥/𝑎𝑎
𝑥𝑥
𝑎𝑎+𝑏𝑏

 =  𝑥𝑥
𝑥𝑥+𝑎𝑎𝑎𝑎

 

 
Hence    PQ   ǂ   QP   but, if  𝑥𝑥𝑟𝑟   =  1

𝑟𝑟
     r = 1, 2, 3...... then  𝑥𝑥𝑟𝑟   → 0    

Q𝑥𝑥𝑟𝑟   → 0, P𝑥𝑥𝑟𝑟   → 0 as r → ∞  then 
PQ𝑥𝑥𝑛𝑛  = ( 𝑥𝑥𝑛𝑛

𝑎𝑎( 𝑥𝑥𝑛𝑛+𝑏𝑏)
) → 0  and   QP𝑥𝑥𝑛𝑛  = 𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+𝑏𝑏
  → 0 

PP𝑥𝑥𝑛𝑛  = P 𝑥𝑥𝑛𝑛
𝑎𝑎

     = 𝑥𝑥𝑛𝑛
𝑎𝑎2  → 0 and QQ𝑥𝑥𝑛𝑛  = Q( 𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+𝑏𝑏
)  → 0  as  n→ ∞ . 

 
Hence   

lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,QQ𝑥𝑥𝑛𝑛 ,q) = 1 = lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,QQ𝑥𝑥𝑛𝑛 ,q) and  
lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q) = 1 = lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q). 

 
Furthermore 
 
Now 𝑃𝑃𝑥𝑥   = 𝑥𝑥4 and 𝑄𝑄𝑥𝑥   = 4x 

P 𝑄𝑄𝑥𝑥  = 256 𝑥𝑥4, Q 𝑃𝑃𝑥𝑥  = 4𝑥𝑥4 
P 𝑃𝑃𝑥𝑥= 𝑥𝑥16 , Q 𝑄𝑄𝑥𝑥    = 16 𝑥𝑥2 

 
Then  for all q > 0 
T(P 𝑄𝑄𝑥𝑥   , Q 𝑃𝑃𝑥𝑥  , q) ≥ T(𝑃𝑃𝑥𝑥 , 𝑄𝑄𝑥𝑥   ,𝑞𝑞)  is not true for  all x  
 
Now consider sequence  𝑥𝑥𝑟𝑟   = 1

𝑟𝑟
     r = 1, 2, 3 ...... 

then  𝑥𝑥𝑟𝑟   → 0,   P𝑥𝑥𝑟𝑟 , Q𝑥𝑥𝑟𝑟  → 0  
and  PQ𝑥𝑥𝑛𝑛 , QP𝑥𝑥𝑛𝑛  , P 𝑃𝑃𝑥𝑥 , Q 𝑄𝑄𝑥𝑥   → 0  as  n →∞ 
 
Hence  

lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,QQ𝑥𝑥𝑛𝑛 ,q) = 1 = lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,QQ𝑥𝑥𝑛𝑛 ,q)  and  
lim𝑛𝑛→∞ 𝑇𝑇(𝑄𝑄𝑄𝑄𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q) = 1 = lim𝑛𝑛→∞ 𝑇𝑇(𝑃𝑃𝑃𝑃𝑥𝑥𝑛𝑛  ,PP𝑥𝑥𝑛𝑛 ,q). 

 
Result-1: Let P and Q be continuous self mappings of a fuzzy metric space (X, T, ●). Then P and Q are compatible if 
and only if they are weak compatible of type (A). 
 
Result-2: Let P and Q be continuous self mappings of a fuzzy metric space (X, T, ●). Then P and Q are compatible of 
type (A) if and only if P and Q are weak compatible of type (A). 
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