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ABSTRACT 
In this paper, we prove a generalized unique common fixed point theorem for four self- mappings for reciprocal 
continuous and weakly compatible mappings in complete metric space, which is a generazation  some of the  recent 
results existing in the literature. 
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1. INTRODUCTION AND PRELIMINARIES 
 
Banach fixed point theorem has been generalized and extended by many Mathematicians in many ways for e.g. [1 2, 4 
,5] . Recently A.Djoudi [3] proved some results in metric space. Our result is generelization of A.Djoudi [3]. 
 
Defination 1.1: [1] Two self maps S and T of a metric space (X, d) are said to be commute if ST=TS., Two self maps S 
and T of a metric space (X,d) are said to be compatible mappings if lim ( , ) 0n nn

d STx TSx
→∞

= , whenever {xn} is a 

sequence in X such that lim limn nn n
Sx Tx t

→∞ →∞
= =  for some t X∈ . 

 
Definition 1.2: [2] The maps S and T of a metric space (X, d) are said to be reciprocally continuous if                   
limn→∞ STxn = S(t)  and limn→∞ TSxn = T(t), whenever {xn} is a sequence in X such that limn→∞ Sxn = t  and           
limn→∞ Txn = t, for some t ∈X.  
 
Definition 1.3: [2] Let S, T: X → X. Then the pair (S, T) is called weakly compatible, if ST z = T Sz for all z ∈ X such 
that Tz = Sz. 
 
Notation 1.1:  Let R+ be the set of non negative real numbers and let 5: R Rφ + +→  be a function satisfying the 
following conditions:ϕ  is upper semi continuous in each coordinate variable and non decreasing. 

φ(t) = max{ϕ (0,t,0,0,t), ϕ (t,0,0,t,t), ϕ (t,t,t,2t,0), ϕ(0,0,t,t,0) } < t, for any t > 0. 
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2. MAIN RESULT 
 
The following result is generalization of the result of [3]. 
 
Theorem 2.1:  Let S, T, I and J are four self mappings in a complete metric space (X, d) and satisfying the following 
conditions 

(i) S(X) ⊆ J(X) and  T(X) ⊆ I(X) 
(ii) d(Sx, Ty) ≤ ф{d(Ix, Jy), d,(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx)} 
(iii) the pair (S,I) is reciprocally continuous and compatible. 
(iv) The pair (T, J) is weakly compatible. 
(v) the sequence Sx0, Tx1, Sx2, Tx3, …. Sx2n, Tx2n+1  …..converges to z ϵ X. Then S, I, T, and J have a unique 

comon fixed point in X. 
 
Proof: Let (X, d) be complete metric space, for any x0 ϵ X and iterated sequence {xn} for four self maps the sequence 
Sx0, Tx1, Sx2, Tx3, …. Sx2n, Tx2n+1  … convergence to some point z ϵ X.  
 
From (v)               Sx2n → z and Tx2n +1 → z  as n → ∞       …                                                                                          (1)  
 
Since (S, I) is reciprocal continuous SIx2n →S z and ISx2n →I z as n → ∞. From the compatibility of the pair (S, I) gives 
Limn→∞ d (SIx2n, ISx2n) = 0. Implies d(Sz, Iz) = 0, that is Sz = Iz. Since S(X) ⊆ J(X) ⇒ there exists u ϵ X such that       
Ju = z. and T(X) ⊆ I (X) ⇒ there exists  v ϵ X such that Iv = z. Now to prove Sz = z, put x = z and y = x2n+1 in (ii)       
we get that 

d(Sz, Tx2n+1) ≤ ф{d(Iz, Jx2n+1), d(Iz, Sz), d(Jx2n+1, Tx2n+1), d(Iz, Tx2n+1), d( Jx2n+1, Sz)}. 
 
Letting n→∞,  

d(Sz, z ) ≤ ф{d(Iz, z), d(Sz, Sz), d(z, z), d(Iz, z), d(z, Sz)}. 
d(Sz, z ) ≤ ф{d(Sz, z),  d(Sz, z), d(z, Sz)}. 
d(Sz, z ) ≤ ф{d(Sz, z)}<  d(Sz, z), which is a contradiction. Therefore Sz = z. 

 
To prove Tu = z, put x = x2n and y = u in (ii) we get that 

d(S x2n, Tu ) ≤ ф{d(Ix2n, Ju), d(Ix2n, S x2n), d(Ju , Tu), d(I x2n, Tu), d(Ju, Sx2n)}. 
 
Letting n→∞,  

d(z, Tu ) ≤ ф{d(z, Ju), d(z, z), d(z, Tu), d(z, Tu), d(Ju, z)}. 
d(z, Tu) ≤ ф{d(z, z), d(z, z), d(z, Tu), d(z, Tu), d(z, z)}.                                                                                                                                                              
d(z, Tu ) ≤ ф{d(z, Tu), d(z, Tu) < d(z, Tu), which is a contradiction. Therefore Tu = z. 

 
Hence Tu = Ju =z.  
 
Since, (I, J) is weakly compatible ⇒TJu = Jtu ⇒ Tz = Jz. 
 
To prove Tz = z.  
 
put x = x2n  and y = z in (ii) we get that 

d(S x2n, Tz ) ≤ ф{d(Ix2n, Jz), d(Ix2n, S x2n), d(Jz , Tz), d(I x2n, Tz), d(Jz, S x2n)}. 
 
Letting n→∞,  

d(z, Tz ) ≤ ф{d(z, Jz), d(z, z), d(z, Tz), d(z, Tz), d(Jz, z)}. 
d(z, Tz) ≤ ф{d(z, z), d(z, z), d(z, Tz), d(z, Tz), d(z, z)}.                                                                                                                                                              
d(z, Tz ) ≤ ф{d(z, Tz), d(z, Tz) < d(z, Tz), which is a contradiction. Therefore Tz = z. 

 
Hence  Sz = Tz = z.  
 
To prove Iz = z.  
 
put x = Iz  and y =  x2n+1 in (ii) we get that 

d(S Iz2n ,T x2n+1) ≤ ф{d(IIz, J x2n+1), d(IIz , S Iz), d(Jx2n+1, T x2n+1), d(IIz, T x2n+1), d(Jx2n+1,S Iz)}. 
 
Letting n→∞,  

d(Iz, z ) ≤ ф{d(Iz, z), d(Iz, Iz), d(z, z), d(Iz, z), d(z ,Iz)}. 
d(Iz, z) ≤ ф{d(Iz, z), d(Iz, z), d(z, Iz)}.                                                                                                                                                              
d(Iz, z ) ≤ ф{d(Iz, z)}< d(Iz, z), which is a contradiction. Therefore Iz = z. 
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To prove Jz = z. put x = z  and y = Jz in (ii) we get that 

d(Sz, TJz ) ≤ ф{d(Iz, JJz), d(Iz, Sz), d(JJz , TJz), d(I z, TJz), d( JJz, Sz)}. 
d(z, Jz ) ≤ ф{d(z, Jz), d(z, z), d(Jz, Jz), d(z, Jz), d(Jz , z)}. 
d(z, Jz) ≤ ф{d(z, Jz), d(z, Jz), d(z, Jz)}.                                                                                                                                                              
d(z, Jz ) ≤ ф{d(z, Jz)}< d(z, Tz), which is a contradiction. Therefore Jz = z. 
 

Therefore, Jz = Iz = z. Hence, Tz = Sz = Js = Iz = z. 
 
Therefore, S, T, I, and J have a unique common fixed point in X. This completes the proof of the theorem. 
 
Remark: Our theorem is generalization of the theorem of [3], which is a more general the results of [3]. 
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