ψ g - CLOSED SETS IN TOPOLOGICAL SPACES

N. Ramya* and A. Parvathi

Department of Mathematics, Avinashilingam University for Women, Coimbatore-641043

E-mail: ramyanagaraj144@gmail.com, aparvathi.s@gmail.com

(Received on: 22-09-11; Accepted on: 06-10-11)

ABSTRACT

In this paper we introduce and study the notion of ψ g -closed sets in topological spaces. Also we study some basic properties and applications of ψ g -closed sets. The relations between ψ g -closed sets with various closed sets are analyzed.

Keywords: ψ -closed sets, g -closed sets and ψ g -closed sets

1. INTRODUCTION

Levine [3] introduced generalized closed (briefly g-closed) sets and studied their basic properties. Njastad[7] introduced pre-open sets, α -open sets respectively Bhattacharya and Lahiri[1], Maki et a [4,5], Dontchev and Ganster[2] introduced semi-generalized closed sets, generalized semi-closed sets, generalized α -closed sets, α -generalized closed sets and δ -generalized closed sets respectively. Veera Kumar [8] introduced α -closed sets in topological spaces. The purpose of this present paper is to define a new class of closed sets called α -closed sets and also we obtain some basic properties of α -closed sets in topological spaces.

2 PRELIMINARIES

Throughout this paper (X, τ) (or simply X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl (A), int (A) and A^C denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions which are useful in the sequel.

Definition: 2.1 A subset A of a topological space (X, τ) is called.

- (i) semi-open set [4] if $A \subseteq cl(int(A))$.
- (ii) pre-open set [8] if $A \subseteq int(cl(A))$.
- (iii) α -open set [10] if $A \subseteq int(cl(int(A)))$.
- (iv) regular open set [11] if A = int(cl(A)).

The complement of a semi-open (resp. pre-open, α -open, regular open) set is called semi-closed (resp. semi-closed, α -closed, regular closed).

Definition: 2.2 A subset A of a topological space (X, τ) is called

- (1) a generalized closed set(briefly g-closed)[16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- (2) a generalized semi-closed set (briefly gs-closed) [3] if $scl(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) .
- (3) a ψ -closed set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open of (X, τ) .
- (4) ψ -generalized closed set (briefly ψ g-closed) if ψ cl(A) \subseteq A whenever A \subseteq U and U is open in (X,τ) .
- (5) a \hat{g} -closed set[25] if $cl(A) \subset G$ whenever $A \subset G$ and G is semi-open in (X,τ) .

The complements of the above mentioned sets are called their respective open sets.

N. Ramya* and A. Parvathi/ ψ g - CLOSED SETS IN TOPOLOGICAL SPACES / IJMA- 2(10), Oct.-2011, Page: 1992-1996

Theorem: 2.4 Every open set is g -open.

Proof: Let A be an open set in X. Then Ac is closed. Therefore, $cl(A^C) = A^C \subseteq X$ whenever $A^C \subseteq X$ and X is semi-open. This implies A^C is g-closed.

Hence A is g -open.

$3 \psi g$ - CLOSED SETS IN TOPOLOGICAL SPACES

Definition: 3.1 A subset A of a space (X, τ) is called ψ g - closed if ψ $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g -open in (X, τ) .

Theorem: 3.2 Every closed set is ψg - closed

Proof: Let A be a closed set of (X, τ) . Let U be a g-open set of (X, τ) such that $A \subseteq U$. Since A is closed ψ cl(A) \subseteq cl(A)=A \subseteq U. Therefore A is ψ g-closed.

The converse need not be true as seen from the following example

Example: 3.3 Let X = {a, b, c} with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, c\}\}. \text{closed} = \{\phi, X, \{b\}, \{b, c\}, \{a, c\}\}, \psi \text{ } g \text{ } -\text{closed} = \{\phi, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}. \text{Here} \{a\}, \{c\} \text{ is } \psi \text{ } g \text{ } -\text{closed} \text{ but not closed in } (X, \tau).$

Theorem 3.4: Every g -closed set is ψg -closed

Proof: A subset A of a topological space (X, τ) is g -closed. Let U be g -of set (X, τ) such that $A \subseteq U$. Since A is g -closed ψ cl(A) \subseteq cl(A)=A \subseteq U. Therefore A is ψ g - closed.

The converse need not be true as seen from the following example

Example: 3.5 Let X = {a, b, c} with topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}\}$. g -closed= $\{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\}$, ψ g -closed= $\{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}\}$. Here {a, c} is ψ g -closed but not g -closed in (X, τ) .

Remark: 3.6 Every ψ - closed set is semi closed

Theorem: 3.7 Every ψ g - closed set is gs-closed

Proof: Let A be an ψ g - closed and U be any open set containing A in (X, τ) . Since every open set is g -open, ψ cl(A) \subseteq U for every subset A of X. Since scl(A) \subseteq ψ cl(A) \subseteq U, scl(A) \subseteq U and hence A is gs-closed.

The converse need not be true as seen from the following example

Example: 3.8 Let X = {a, b, c} with topology $\tau = \{ \phi, X, \{a\}, \{c\}, \{b, c\} \}$. gs-closed = $\{ \phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{c\} \}$. Then the set {c} is gs-closed but not ψ g -closed in (X, τ) .

N. Ramya* and A. Parvathi/ ψ g - CLOSED SETS IN TOPOLOGICAL SPACES / IJMA- 2(10), Oct.-2011, Page: 1992-1996

Theorem: 3.9 Every ψ g -closed set is ψ g-closed

Proof: Let A be a ψ g -closed and U be any open set containing A.Since every open set is g -open, ψ cl(A) \subseteq U, whenever $A \subseteq U$ and U is g -open. Therefore ψ cl(A) \subseteq U and U is open. Hence A is ψ g-closed.

The converse need not be true as seen from the following example

Example: 3.10 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{b\}\}$. ψ g-closed= $\{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$, ψ g-closed= $\{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ Then the set $\{b\}$ is ψ g-closed but not ψ g-closed in (X, τ) .

Theorem: 3.11 The union of two ψ g - closed subsets of X is also an ψ g - closed subset of X.

Proof: Assume that A and B are ψ g - closed sets in X. Let U be g -open in X such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are ψ g - closed, ψ cl(A) \subseteq U and ψ cl(B) \subseteq U. Hence ψ cl(A \cup B) $= \psi$ cl(A) $\cup \psi$ cl(B) \subseteq U. That is ψ cl(A \cup B) \subseteq U. Therefore $A \cup B$ is ψ g - closed set in X.

Theorem: 3.12 Let A be a ψ g - closed set of (X, τ) . Then ψ cl(A)-A does not contain a non-empty g - closed set.

Proof: Suppose that A is ψ g - closed set, let F be a g -closed set contained in ψ cl(A)-A. Now F^C is g -open set of (X, τ) such that $A \subseteq F^C$. Since A is ψ g - closed set of (X, τ) , then ψ cl(A) \subseteq F^C . Thus $F \subseteq (\psi$ cl(A)) C . Also $F \subseteq \psi$ cl(A)-A. Therefore $F \subseteq (\psi$ cl(A)) $^C \cap (\psi$ cl(A))= ϕ . Hence $F = \phi$.

Theorem: 3.13 If A is ψ g - closed set in (X, τ) and $A \subseteq B \subseteq \psi$ cl(A). Then B is ψ g - closed set.

Proof: Let U be a g -open set of (X, \mathcal{T}) such that $B \subseteq U$. Then $A \subseteq U$. Since A is ψ g - closed set, ψ $cl(A) \subseteq U$. Also since $B \subseteq \psi$ cl(A), ψ $cl(B) \subseteq \psi$ $cl(\psi) = \psi$ cl(A). Hence ψ $cl(B) \subseteq U$.

Therefore B is also a ψg - closed set.

Theorem: 3.14 For each $x \in X$ either $\{x\}$ is g - closed or $\{x\}^C$ is g - closed set.

Proof: Suppose that $\{x\}$ is not g - closed in X. Then only $\{x\}^C$ is not g -open and the only g -open set containing $\{x\}^C$ is the space X itself. That is $\{x\}^C \subseteq X$. Therefore ψ cl(A) ($\{x\}^C$) $\subseteq X$ and so $\{x\}^C$ is ψ g - closed set.

Theorem: 3.15 Let x be a ψ g - closed set in X. Then A is ψ - closed set iff ψ cl(A)-A is closed.

Proof: Necessity: Let A be an ψ g - closed subset of X. Then ψ cl(A)=A and so ψ cl(A)-A= ϕ which is closed.

Sufficiency: Since A is ψ g - closed set by theorem 3.12 ψ cl(A)-A contains no nonempty closed set. But ψ cl(A)-A is closed. This implies ψ cl(A)-A = ϕ . That is ψ cl(A)=A. Hence A is ψ -closed.

N. Ramya* and A. Parvathi/ ψ g - CLOSED SETS IN TOPOLOGICAL SPACES / IJMA- 2(10), Oct.-2011, Page: 1992-1996

Definition: 3.16 The intersection of all g-open subsets of (X, τ) containing A is called the g-kernel of A and is denoted by g-ker(A).

Theorem: 3.17 A subset A of (X, τ) is ψg - closed set iff $\psi \operatorname{cl}(A) \subseteq g$ -ker(A)

Proof: Suppose that A is ψ g - closed set in X. Then ψ cl(A) \subseteq U whenever A \subseteq U and U is g -open in (X, τ). Let $x \in \psi$ cl(A). If $x \notin g$ -ker(A), then there is a g -open set U such that $x \notin U$. Since U is a g -open set containing A, we have $x \notin \psi$ cl(A), which is a contradiction.

Conversely let ψ cl(A) \subseteq g -ker(A). If u is any g -open set containing A , then ψ cl(A) \subseteq g -ker(A) \subseteq U. Therefore A is g ψ g - closed set.

Definition: 3.18 A space (X, τ) is called T_{ψ_p} if every ψ_g - closed set in it is ψ -closed.

Theorem: 3.19 For a topological space (X, \mathcal{T}) , the following conditions are equivalent.

- (i) (X, \mathcal{T}) is a $T_{\mathcal{U}}$ -space.
- (ii) Every singleton $\{x\}$ is either g -closed or ψ -open.

Proof: (i) \Longrightarrow (ii)

Let $x \in X$. Suppose $\{x\}$ is not a g-closed set of (X, τ) . Then $X-\{x\}$ is not a g-open set. Thus $X-\{x\}$ is an ψ g-closed set of (X, τ) . Since (X, τ) is T f-closed, f-closed, f-closed set of f-closed s

$$(ii) \Rightarrow (i)$$

Let A be an ψ g - closed set of (X, τ) . Let $x \in \psi$ cl(A). By(ii) $\{x\}$ is either g - closed or ψ -open.

Case (i): Let $\{x\}$ be g - closed. If we assume that $x \notin A$, then we would have $x \in \psi$ cl(A)-A, which cannot happen according to theorem 3.8. Hence $x \in A$.

Case (ii): Let $\{x\}$ be ψ -open. Since $X \in \psi$ cl(A), then $\{x\} \cap A = \phi$. This shows that $x \in A$.

So in both the cases we have $A \subseteq \psi$ cl(A). Therefore $A = \psi$ cl(A) or equivalently A is closed. Hence (X, \mathcal{T}) is a T $_{\psi g}$ space.

Theorem: 3.20 If A is g -open and ψ g - closed subset of (X, τ) , then A is a ψ -closed subset of (X, τ) .

Proof: Since A is g -open and ψ g - closed set, ψ cl(A) \subseteq A. Hence A is ψ -closed.

Remark: 3.21

The following diagram shows the relationships of ψ \hat{g} -closed sets with some other sets discussed in this section.

N. Ramya* and A. Parvathi/ ψ g - CLOSED SETS IN TOPOLOGICAL SPACES / IJMA- 2(10), Oct.-2011, Page: 1992-1996

REFERENCES

- [1] P Bhattacharya and B.K Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382.
- [2] J Dontchev and M Ganster, On δ -generalized closed sets and T $_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996),15-31.
- [3] N Levine, Generalized closed sets in topology Rend. Circ. Mat. Palermo, 19(1970) 89-96.
- [4] H Maki, R Devi and K Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Uni. Ed part III, 42(1993), 13-21.
- [5] H Maki, R Devi and K Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci.Kochi Univ. Ser. A. Math., 15(1994), 57-63.
- [6] M. E Abd El-Monsef, S.Rose Mary and M. Lellis Thivagar, On α g -closed sets in topological spaces, Assiut University Journal of Mathematics and Computer Science, Vol 36(1), P-P.43-51(2007).
- [7] O Njastad, On some classes of nearly open sets, Pacific J Math., 15(1965), 961-970.
- [8] M. K. R. S. Veera Kumar, g -closed sets in topological spaces, Bull. Allah. Math. Soc, 18(2003), 99-112.
- [9] M. Lellis Thivagar, B. Meera Devi and E. V. Hatir, δ g -Closed Sets in topological Spaces Gen. Math. Notes, Vol. 1, No. 2, December 2010, pp. 17-25 ISSN 2219-7184;
