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ABSTRACT 
This paper aims to study the concept of vague 𝒈𝒈� feebly continuous mappings and contra- vague 𝒈𝒈� feebly continuous 
mappings. We investigate the traditional connectedness and compactness for the new class as vague 𝒈𝒈� feebly 
connectedness and vague 𝒈𝒈� feebly compactness. Also we provide some characterizations of the above mappings.             
 
Keywords: Vague 𝒈𝒈� feebly continuous mapping, contra- vague 𝒈𝒈� feebly continuous mapping,  vague 𝒈𝒈� feebly 
connectedness and vague 𝒈𝒈� feebly compactness. 
 
 
1. INTRODUCTION 
 
In this paper we introduce the notion of vague 𝐠𝐠� feebly continuous mappings and contra- vague 𝐠𝐠� feebly continuous 
mappings and studied some of their properties. We also provide some characterizations of vague 𝐠𝐠� feebly 
connectedness and vague 𝐠𝐠� feebly compactness. 
 
2. PRELIMINARIES 
 
Definition 2.1: [2] A vague set 𝒜𝒜 in the universe of discourse X is characterized by two membership functions given by:  

• A true membership function T𝒜𝒜 ∶  X → [0,1] and    
• A false membership function F𝒜𝒜 ∶  X → [0,1],  

where T𝒜𝒜(x) is lower bound on the grade of membership of x derived from the “evidence for x”, F𝒜𝒜(x) is a lower 
bound on the negation of x derived from the “evidence against x” and T𝒜𝒜  (x) + F𝒜𝒜  (x) ≤ 1.  
 
Thus the grade of membership of x in the vague set 𝒜𝒜 is bounded by a subinterval [T𝒜𝒜(x),1−  F𝒜𝒜(x)] of [0, 1].   
 
Definition 2.2: [2] Let 𝒜𝒜 and ℬ be vague sets of the form 𝒜𝒜 = {〈x, [T𝒜𝒜(x), 1− F𝒜𝒜(x)]〉/x ∈ X} and 
ℬ = {〈x, [Tℬ(x), 1− Fℬ(x)]〉/x ∈ X} Then 
a) 𝒜𝒜 ⊆ ℬ if and only if T𝒜𝒜(x) ≤ Tℬ(x) and 1 − F𝒜𝒜(x) ≤ 1 − Fℬ(x)forall x ∈ X 
b) 𝒜𝒜C = {〈x, F𝒜𝒜(x), 1− T𝒜𝒜(x)/x ∈ X〉} 
c) 𝒜𝒜 ∩ ℬ = �〈x, min�T𝒜𝒜(x), Tℬ(x)�, min(1 − F𝒜𝒜(x), 1− Fℬ(x))〉/x ∈ X� 
d) 𝒜𝒜 ∪ ℬ = �〈x, max�T𝒜𝒜(x), Tℬ(x)�, max(1− F𝒜𝒜(x), 1− Fℬ(x))〉/x ∈ X� 
 
Definition 2.3: [4]A Vague set 𝒜𝒜 of (X, τ) is said to be  
VSCS if Vint�Vcl(𝒜𝒜)� ⊆ 𝒜𝒜, VSOS in short if 𝒜𝒜 ⊆  Vcl(Vint(𝒜𝒜)), VPCS if Vcl(Vint(𝒜𝒜))  ⊆ 𝒜𝒜, VPOS if 𝒜𝒜 ⊆
Vint�Vcl(𝒜𝒜)�, VαCS if Vcl�Vint�Vcl(𝒜𝒜)�� ⊆ 𝒜𝒜, VαOS if 𝒜𝒜 ⊆ Vint �Vcl�Vint(𝒜𝒜)��, VROS if 𝒜𝒜 = Vint�Vcl(𝒜𝒜)�,  
VRCS if 𝒜𝒜 = Vcl(Vint(𝒜𝒜)). 
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Definition 2.4: [7]A vague set 𝒜𝒜 of (X, τ) is said to be a vague 𝐠𝐠�-closed sets (V𝐆𝐆�CS in short) if Vcl(𝒜𝒜)  ⊆ U 
whenever 𝒜𝒜 ⊆  U and U is a vague semi open set  in X. 
 
Definition 2.5: [9]A vague set 𝒜𝒜 in a topological space 𝑋𝑋 is called Vague feebly open in 𝑋𝑋 if there exists an open set 
O such that 𝑂𝑂 ⊆  𝒜𝒜 ⊆  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠(𝑂𝑂). The complement of Vague feebly open set is a Vague feebly closed set. 
 
Definition 2.6: [9]Vague feebly open set if 𝑨𝑨 ⊆ 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽(𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽(𝑨𝑨)) and Vague feebly closed set if  𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽(𝑽𝑽𝑽𝑽𝑽𝑽(𝑨𝑨)) ⊆ 𝑨𝑨. 
 
Definition 2.7: [9]A vague set 𝒜𝒜 of (X, τ) is said to be a vague feebly generalised closed sets (V𝓕𝓕GCS in short) if  
V𝒻𝒻cl(𝒜𝒜)  ⊆ U whenever 𝒜𝒜 ⊆  U and U is a vague feebly  open set  in X. 
 
Definition 2.8: [9]A vague set 𝒜𝒜 of (X, τ) is said to be a vague 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐟𝐟𝐠𝐠𝐠𝐠𝐟𝐟𝐠𝐠𝐟𝐟  closed sets (V𝐆𝐆𝓕𝓕𝐆𝐆𝐆𝐆 in short) if  
V𝒻𝒻cl(𝒜𝒜)  ⊆ U whenever 𝒜𝒜 ⊆ U and U is a vague  open set  in X. 
 
Definition 2.9: [9]A vague set 𝒜𝒜 in a vague topological space (X, τ) is said to be a vague 𝐠𝐠�  feebly closed sets (V𝐆𝐆�𝓕𝓕CS 
in short) if V𝒻𝒻cl(𝒜𝒜)  ⊆ U whenever 𝒜𝒜 ⊆  U and U is a vague semi open set  in X. 
 
Definition 2.10: Let 𝑓𝑓 be a mapping from a VTS (𝑋𝑋, 𝜏𝜏) into a VTS (𝑌𝑌,𝜎𝜎). Then 𝑓𝑓 is said to be a  

(i) [7]Vague continuous mapping (V continuous mapping for short) if 𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝑉𝑉(𝑋𝑋) for each VCS ℬ ∈ 𝑌𝑌. 
(ii) [7]Vague generalized continuous mapping (VG continuous mapping for short) if 𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) for 

each VCS ℬ ∈ 𝑌𝑌. 
(iii) Vague 𝜶𝜶-continuous mapping (V 𝛼𝛼 −continuous mapping for short) if 𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝛼𝛼𝑉𝑉(𝑋𝑋) for each       

VCS ℬ ∈ 𝑌𝑌. 
(iv) [4]Vague semi-continuous mapping (V semi - continuous mapping for short) if 𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) for each 

VCS ℬ ∈ 𝑌𝑌. 
(v) [4]Vague semi pre-continuous mapping (V semi pre−continuous mapping for short) if                   

𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) for each VCS ℬ ∈ 𝑌𝑌. 
(vi) [8]Vague 𝒈𝒈� continuous mapping (V𝑔𝑔� continuous for short) mapping if 𝑓𝑓−1(ℬ)𝑖𝑖𝑠𝑠 𝑎𝑎 𝑉𝑉𝑔𝑔�C(𝑋𝑋) for every    

VCS ℬ ∈ 𝑌𝑌. 
(vii) Vague feebly continuous mapping (V 𝒻𝒻continuous mapping for short) if 𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝒻𝒻𝑉𝑉(𝑋𝑋) for each    

VCS ℬ ∈ 𝑌𝑌. 
(viii) Vague generalised feebly continuous mapping (V 𝑔𝑔𝒻𝒻continuous mapping for short) if                  

𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝑔𝑔𝒻𝒻𝑉𝑉(𝑋𝑋) for each VCS ℬ ∈ 𝑌𝑌. 
(ix) Vague feebly generalised continuous mapping (V 𝒻𝒻𝑔𝑔 continuous mapping for short) if                

𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝒻𝒻𝑔𝑔𝑉𝑉(𝑋𝑋) for each VCS  ℬ ∈ 𝑌𝑌. 
(x) Contra vague continuous mapping (Contra V continuous mapping for short) if 𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝑉𝑉(𝑋𝑋) for each 

VOS  ℬ ∈ 𝑌𝑌. 
(xi) Contra vague generalized continuous mapping (Contra VG continuous mapping for short) if       

𝑓𝑓−1(ℬ) ∈ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) for each VOS  ℬ ∈ 𝑌𝑌. 
 
3. VAGUE 𝐠𝐠� FEEBLY CONTINUOUS MAPPINGS 
 
In this section we introduce vague g� 𝒻𝒻 continuous mapping and investigate some of its properties. 
 
Definition 3.1: A mapping 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is called vague 𝑔𝑔�𝒻𝒻 continuous (V𝑔𝑔�𝒻𝒻 continuous for short) mapping if 
𝑓𝑓−1(𝑉𝑉)𝑖𝑖𝑠𝑠 𝑎𝑎 𝑉𝑉𝑔𝑔�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏) for every VCS in (𝑌𝑌,𝜎𝜎). 
 
Example 3.2: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y respectively. 
G1 = {< 𝑥𝑥, [0.5,0.9], [0.2,0.5] >}, G2 = {< 𝑦𝑦, [0.5,0.9], [0.4,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) =
𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏). Hence 𝑓𝑓 is a vague g� feebly continuous mapping. 
 
Proposition 3.3:  

1. Every vague continuous map is vague g� feebly continuous. 
2. Every vague semi continuous map is vague g� feebly continuous. 
3. Every vague semi pre - continuous map is vague g� feebly continuous  
4. Every vague 𝛼𝛼 −continuous map is vague g� feebly continuous. 
5. Every vague g� − continuous map is vague g - continuous. 
6. Every vague g - continuous map is vague g� feebly continuous. 
7. Every vague g� −continuous map is vague g� feebly continuous. 
8. Every vague g� 𝒻𝒻 −continuous map is vague generalised feebly continuous. 
9. Every vague g� 𝒻𝒻 − continuous map is vague feebly generalised continuous. 
10. Every vague feebly continuous map is vague g� feebly continuous. 
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Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a vague continuous map. Let 𝑉𝑉 be a vague closed set in (𝑌𝑌, 𝜎𝜎). Since 𝑓𝑓 is vague 
continuous map, 𝑓𝑓−1(𝑉𝑉) is a vague closed set in (𝑋𝑋, 𝜏𝜏). Every vague closed set is vague g� feebly closed. Hence 𝑓𝑓−1(𝑉𝑉) 
is a vague g� feebly closed set in (𝑋𝑋, 𝜏𝜏). Hence 𝑓𝑓 is a vague g� feebly continuous. 
 
Similarly we can prove the other propositions. The converses are not true as can be seen from the following examples. 
 
Example 3.4: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y respectively. 
G1 = {< 𝑥𝑥, [0.5,0.9], [0.2,0.5] >}, G2 = {< 𝑦𝑦, [0.5,0.9], [0.4,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) =
𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague closed in (𝑋𝑋, 𝜏𝜏) Hence 𝑓𝑓 is a vague 
g� feebly continuous mapping but not vague continuous. 
 
Example 3.5: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y respectively. 
G1 = {< 𝑥𝑥, [0.4,0.5], [0.5,0.6] >}, G2 = {< 𝑦𝑦, [0.6,0.7], [0.2,0.4] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) =
𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.3,0.4], [0.6,0.8] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague semi closed in (𝑋𝑋, 𝜏𝜏) Hence 𝑓𝑓 is a 
vague g� feebly continuous mapping but not vague  semi continuous. 
 
Example 3.6: X = {a, b}, Y = {u, v} and τ = {0, G1, G2, 1}and σ = {0, G3, 1} are  VTs on X and Y  
respectively. G1 = {< 𝑥𝑥, [0.7,0.8], [0.8,0.9] >}, G2 = {< 𝑥𝑥, [0.1,0.2], [0.2,0.3] >} and G3 =
{< 𝑦𝑦, [0.1,0.4], [0.6,0.9] >} Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image 
of a vague closed set A = {< 𝑦𝑦, [0.6,0.9], [0.1,0.4] >} in (𝑌𝑌, 𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague semi pre- 
closed in (𝑋𝑋, 𝜏𝜏), since 𝑉𝑉𝑖𝑖𝑎𝑎𝑉𝑉 (𝐵𝐵) ⊈ 𝐴𝐴 ⊆ 𝐵𝐵. Hence 𝑓𝑓 is a vague g� feebly continuous mapping but not vague semi pre - 
continuous. 
 
Example 3.7: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y respectively. 
G1 = {< 𝑥𝑥, [0.5,0.9], [0.5,0.5] >}, G2 = {< 𝑦𝑦, [0.5,0.9], [0.4,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) =
𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague 𝛼𝛼 − closed in (𝑋𝑋, 𝜏𝜏) Hence 𝑓𝑓 is a 
vague g� feebly continuous mapping but not vague  𝛼𝛼 − continuous. 
 
Example 3.8: X = {a, b}, Y = {u, v} and τ = {0, G1, G2, G3, G4, 1}and σ = {0, G5, 1} are  VTs on X and Y  
respectively. G1 = {< 𝑥𝑥, [0.2,0.5], [0.4,0.5] >}, G2 = {< 𝑥𝑥, [0.5,0.6], [0.3,0.4] >}, G3 =
{< 𝑥𝑥, [0.5,0.9], [0.5,0.6] >}, G4 = {< 𝑥𝑥, [0.2,0.5], [0.3,0.4] >}and G5 = {< 𝑦𝑦, [0.4,0.5], [0.5,0.6] >}  Define a 
mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set A =
{< 𝑦𝑦, [0.5,0.6], [0.4,0.5] >} in (𝑌𝑌,𝜎𝜎) is a V g CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g� closed in (𝑋𝑋, 𝜏𝜏), when 𝐵𝐵 =
{< 𝑥𝑥, [0.5,0.8], [0.5,0.6] >} is a vague semi closed set containing 𝐴𝐴. Hence 𝑓𝑓 is a vague g continuous mapping but not 
vague g� continuous. 
 
Example 3.9: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y respectively. 
G1 = {< 𝑥𝑥, [0.4,0.7], [0.2,0.2] >}, G2 = {< 𝑦𝑦, [0.2,0.4], [0.8,0.9] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) =
𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.6,0.8], [0.1,0.2] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g - closed in (𝑋𝑋, 𝜏𝜏) Hence 𝑓𝑓 is a 
vague g� feebly continuous mapping but not vague  g - continuous. 
 
Example 3.10: X = {a, b}, Y = {u, v} and τ = {0, G1, G2, G3, G4, 1}and σ = {0, G5, 1} are  VTs on X and Y  
respectively. G1 = {< 𝑥𝑥, [0.2,0.5], [0.4,0.5] >}, G2 = {< 𝑥𝑥, [0.5,0.6], [0.3,0.4] >}, G3 =
{< 𝑥𝑥, [0.5,0.9], [0.5,0.6] >}, G4 = {< 𝑥𝑥, [0.2,0.5], [0.3,0.4] >}and G5 = {< 𝑦𝑦, [0.4,0.5], [0.5,0.6] >}  Define a 
mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set A =
{< 𝑦𝑦, [0.5,0.6], [0.4,0.5] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g� closed in (𝑋𝑋, 𝜏𝜏), when 𝐵𝐵 =
{< 𝑥𝑥, [0.5,0.8], [0.5,0.6] >} is a vague semi closed set containing 𝐴𝐴. Hence 𝑓𝑓 is a vague g�𝒻𝒻 continuous mapping but 
not vague g� continuous. 
 
Example 3.11: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y 
 respectively. G1 = {< 𝑥𝑥, [0.4,0.7], [0.2,0.4] >}, G2 = {< 𝑦𝑦, [0.6,0.8], [0.4,0.7] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) →
(𝑌𝑌, 𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.2,0.4], [0.3,0.6] >} in (𝑌𝑌,𝜎𝜎) is a Vg𝒻𝒻CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g�𝒻𝒻 closed in (𝑋𝑋, 𝜏𝜏), when 𝐵𝐵 =
{< 𝑥𝑥, [0.4,0.7], [0.3,0.6] >} is a vague semi open set in X. Hence 𝑓𝑓 is a vague g feebly continuous mapping but not 
vague  g� feebly continuous. 
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Example 3.12: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y 
 respectively. G1 = {< 𝑥𝑥, [0.1,0.6], [0.2,0.4] >}, G2 = {< 𝑦𝑦, [0.4,0.8], [0.7,0.8] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) →
(𝑌𝑌, 𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.2,0.6], [0.2,0.3] >} in (𝑌𝑌,𝜎𝜎) is a Vg𝒻𝒻CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g�𝒻𝒻 closed in (𝑋𝑋, 𝜏𝜏), when 𝐵𝐵 =
{< 𝑦𝑦, [0.2,0.6], [0.2,0.4] >} is a vague semi open set in X. Hence 𝑓𝑓 is a vague feebly g continuous mapping but not 
vague  g� feebly continuous. 
 
Example 3.13: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y 
 respectively. G1 = {< 𝑥𝑥, [0.5,0.9], [0.2,0.5] >}, G2 = {< 𝑦𝑦, [0.5,0.9], [0.4,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) →
(𝑌𝑌, 𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague closed set 
A = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague feebly closed in (𝑋𝑋, 𝜏𝜏) Hence 𝑓𝑓 is a 
vague g� feebly continuous mapping but not vague feebly continuous. 
 
Theorem 3.14:  The following statements are equivalent for a function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 

(i) f is vague g�𝒻𝒻 continuous. 
(ii) For every vague open set V of Y, 𝑓𝑓−1(𝑉𝑉) is vague g�𝒻𝒻 open set in X. 

 
Proof: (𝑽𝑽) ⟹ (𝑽𝑽𝑽𝑽) Let V be vague open subset of Y and let 𝑥𝑥 ∈ 𝑓𝑓−1(𝑉𝑉) be any arbitrary point. Since 𝑓𝑓(𝑥𝑥) ∈ 𝑉𝑉 by (i), 
there exist vague g�𝒻𝒻 open set 𝑈𝑈𝑥𝑥  in X, containing x such that arbitrary union of vague g�𝒻𝒻 open sets is vague g�𝒻𝒻 𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎, 
𝑓𝑓−1(𝑉𝑉) is vague g�𝒻𝒻open in X. 
(𝑖𝑖𝑖𝑖) ⟹ (𝑖𝑖) it is obvious. 
 
Theorem 3.15: If  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) is vague g�𝒻𝒻 continuous then 𝑓𝑓(𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝐴𝐴)) ⊂ 𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝑓𝑓(𝐴𝐴)) for every vague subset 
A of X. 
 
Proof: Let 𝐴𝐴 ⊆ 𝑋𝑋. Then 𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝑓𝑓(𝐴𝐴)) is a vague closed in Y, since f is vague g�𝒻𝒻 continuous, 𝑓𝑓−1(𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝑓𝑓(𝐴𝐴))) is 
vague g�𝒻𝒻 closed in X. And 𝐴𝐴 ⊆ 𝑓𝑓−1(𝑓𝑓(𝐴𝐴)) ⊆ 𝑓𝑓−1(𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠�𝑓𝑓(𝐴𝐴)�, Therefore  
𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝐴𝐴) ⊆ 𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝑓𝑓−1 �𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠�𝑓𝑓(𝐴𝐴)�� = 𝑓𝑓−1(𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝑓𝑓(𝐴𝐴))). Hence 𝑓𝑓�𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝐴𝐴)� ⊆ 𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝑓𝑓(𝐴𝐴)) for every vague 
subset A of X. 
 
Theorem 3.16: Let (𝑋𝑋, 𝜏𝜏) and (𝑌𝑌,𝜎𝜎) be any two VTS. Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) be a vague g�𝒻𝒻 continuous mapping. Then 
for every vague set A in Y, 𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠�𝑓𝑓−1(𝐴𝐴)� ⊆ 𝑓𝑓−1�𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝐴𝐴)�.  
 
Proof: Let A be a vague set in (𝑌𝑌,𝜎𝜎). Let 𝐵𝐵 = 𝑓𝑓−1(𝐴𝐴). Then 𝑓𝑓(𝐵𝐵) = 𝑓𝑓(𝑓𝑓−1(𝐴𝐴)) ⊆ 𝐴𝐴. Then by the theorem 3.15 
𝑓𝑓(𝑉𝑉g�𝒻𝒻 −  𝑠𝑠𝑠𝑠�𝑓𝑓−1(𝐴𝐴)�) ⊆ 𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝑓𝑓�𝑓𝑓−1(𝐴𝐴)�). Thus 𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠�𝑓𝑓−1(𝐴𝐴)� ⊆ 𝑓𝑓−1�𝑉𝑉g�𝒻𝒻𝑠𝑠𝑠𝑠(𝐴𝐴)�. 
 
Theorem 3.17: The composition of two 𝑉𝑉g�𝒻𝒻 −continuous mapping may not be 𝑉𝑉g�𝒻𝒻 −continuous. 
 
Example 3.18: X = {a, b}, Y = {u, v}, Z = {c, d} and τ = {0, G1, 1},σ = {0, G2, 1}, λ = {0, G3, 1}are  VTs on 
 X , Y and Z  respectively. G1 = {< 𝑥𝑥, [0.5,0.5], [0.4,0.6] >}, G2 = {< 𝑦𝑦, [0.5,0.5], [0.3,0.7] >} and G3 = {<
𝑦𝑦,0.4,0.6,0.3,0.5>. Define a mapping  𝑓𝑓:𝑋𝑋, 𝜏𝜏→𝑌𝑌, 𝜎𝜎 𝑏𝑏𝑦𝑦 𝑓𝑓𝑎𝑎=𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑏𝑏=𝑣𝑣  and 𝑔𝑔:𝑌𝑌,𝜎𝜎→𝑍𝑍,𝜆𝜆 . Then the mappings 𝑓𝑓 and 𝑔𝑔 
are vague g� feebly continuous mapping but the mapping 𝑔𝑔𝑜𝑜𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑍𝑍, 𝜆𝜆) is not vague g� feebly continuous. 

 
Theorem 3.19: If 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is vague g� feebly continuous and 𝑔𝑔: (𝑌𝑌,𝜎𝜎) → (𝑍𝑍, 𝜆𝜆) is vague continuous. Then 
𝑔𝑔𝑜𝑜𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑍𝑍,𝜆𝜆) is vague g� feebly continuous. 
 
Proof: Let A is a vague closed set in (𝑍𝑍,𝜆𝜆), then 𝑔𝑔−1(𝐴𝐴) is vague closed in (𝑌𝑌,𝜎𝜎), since 𝑔𝑔 is vague continuous. 
Therefore (𝑔𝑔𝑜𝑜𝑓𝑓)−1(𝐴𝐴) = 𝑓𝑓−1(𝑔𝑔−1(𝐴𝐴) ) is vague g� feebly closed in (𝑋𝑋, 𝜏𝜏). Hence 𝑔𝑔𝑜𝑜𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑍𝑍, 𝜆𝜆) is vague g� 
feebly continuous. 
 
4. CONTRA - VAGUE 𝐠𝐠� FEEBLY CONTINUOUS MAPPINGS 
 
Definition 4.1: Let (𝑋𝑋, 𝜏𝜏) and (𝑌𝑌, 𝜎𝜎) be two VTSs and let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a function. Then 𝑓𝑓 is said to be contra 
– vague feebly continuous if 𝑓𝑓−1(𝑉𝑉) is vague feebly closed set of (𝑋𝑋, 𝜏𝜏), for every vague open set 𝑉𝑉 in (𝑌𝑌, 𝜎𝜎). 
 
Definition 4.2: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is said to be a contra – vague 𝐠𝐠� continuous, if 𝑓𝑓−1(𝑉𝑉) is vague g� closed 
set of (𝑋𝑋, 𝜏𝜏), for every vague open set 𝑉𝑉 in (𝑌𝑌,𝜎𝜎). 
 
Definition 4.3: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is said to be a contra – vague 𝐠𝐠� feebly continuous, if 𝑓𝑓−1(𝑉𝑉) is vague g� 
feebly closed set of (𝑋𝑋, 𝜏𝜏), for every vague open set 𝑉𝑉 in (𝑌𝑌, 𝜎𝜎). 
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Definition 4.4: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is said to be a contra – vague 𝐟𝐟𝐠𝐠𝐠𝐠𝐟𝐟𝐠𝐠𝐟𝐟 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 continuous, if 
𝑓𝑓−1(𝑉𝑉) is vague 𝒻𝒻g closed set of (𝑋𝑋, 𝜏𝜏), for every vague open set 𝑉𝑉 in (𝑌𝑌, 𝜎𝜎). 
 
Definition 4.5: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is said to be a contra – vague generalised feebly continuous, if 𝑓𝑓−1(𝑉𝑉) 
is vague g𝒻𝒻 closed set of (𝑋𝑋, 𝜏𝜏), for every vague open set 𝑉𝑉 in (𝑌𝑌, 𝜎𝜎). 
 
Definition 4.6: A vague subset ′𝐴𝐴′ of a VTS (𝑋𝑋, 𝜏𝜏) is called vague – clopen if it is both vague open and vague closed. 
 
Proposition 4.7:  

1. Every contra vague continuous map is contra vague g� feebly continuous. 
2. Every contra vague g - continuous map is contra vague g� feebly continuous. 
3. Every contra vague g� −continuous map is contra vague g� feebly continuous. 
4. Every contra vague g� 𝒻𝒻 −continuous map is contra vague generalised feebly continuous. 
5. Every contra vague feebly continuous map is contra vague g� feebly continuous. 

 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a contra vague continuous map. Let 𝑉𝑉 be a vague open set in (𝑌𝑌, 𝜎𝜎). Since 𝑓𝑓 is contra 
vague continuous map, 𝑓𝑓−1(𝑉𝑉) ∈ 𝑉𝑉𝑉𝑉(𝑋𝑋) for each VOS  𝑉𝑉 ∈ 𝑌𝑌. 
 
Similarly we can prove the other propositions. The converses are not true as we can see from the following examples. 
 
Example 4.8: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y respectively. 
G1 = {< 𝑥𝑥, [0.5,0.9], [0.2,0.5] >}, G2 = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) =
𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague open set 
A = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague closed in (𝑋𝑋, 𝜏𝜏) Hence 𝑓𝑓 is a contra 
vague g� feebly continuous mapping but not contra vague continuous. 
 
Example 4.9: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y 
 respectively. G1 = {< 𝑥𝑥, [0.4,0.7], [0.2,0.4] >}, G2 = {< 𝑦𝑦, [0.2,0.4], [0.3,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) →
(𝑌𝑌, 𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague open set 
A = {< 𝑦𝑦, [0.2,0.4], [0.3,0.6] >} in (𝑌𝑌,𝜎𝜎) is a Vg� 𝒻𝒻CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g closed in (𝑋𝑋, 𝜏𝜏). Hence 𝑓𝑓 is a 
contra vague g�  feebly continuous mapping but not contra vague g continuous. 
 
Example 4.10: X = {a, b}, Y = {u, v} and τ = {0, G1, G2, G3, G4, 1}and σ = {0, G5, 1} are  VTs on X and Y  
respectively. G1 = {< 𝑥𝑥, [0.2,0.5], [0.4,0.5] >}, G2 = {< 𝑥𝑥, [0.5,0.6], [0.3,0.4] >}, G3 =
{< 𝑥𝑥, [0.5,0.9], [0.5,0.6] >}, G4 = {< 𝑥𝑥, [0.2,0.5], [0.3,0.4] >}and G5 = {< 𝑦𝑦, [0.5,0.6], [0.4,0.5] >}  Define a 
mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague open set A =
{< 𝑦𝑦, [0.5,0.6], [0.4,0.5] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g� closed in (𝑋𝑋, 𝜏𝜏), when 𝐵𝐵 =
{< 𝑥𝑥, [0.5,0.8], [0.5,0.6] >} is a vague semi closed set containing 𝐴𝐴. Hence 𝑓𝑓 is a contra vague g�𝒻𝒻 continuous mapping 
but not contra vague g� continuous. 
 
Example 4.11: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y 
 respectively. G1 = {< 𝑥𝑥, [0.4,0.7], [0.2,0.4] >}, G2 = {< 𝑦𝑦, [0.2,0.4], [0.3,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) →
(𝑌𝑌, 𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague open set 
A = {< 𝑦𝑦, [0.2,0.4], [0.3,0.6] >} in (𝑌𝑌,𝜎𝜎) is a Vg𝒻𝒻CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague g�𝒻𝒻 closed in (𝑋𝑋, 𝜏𝜏), when 𝐵𝐵 =
{< 𝑥𝑥, [0.4,0.7], [0.3,0.6] >} is a vague semi open set in X. Hence 𝑓𝑓 is a contra vague g feebly continuous mapping but 
not contra vague  g� feebly continuous. 
 
Example 4.12: X = {a, b}, Y = {u, v} and τ = {0, G1, 1}and σ = {0, G2, 1} are  VTs on X and Y 
 respectively. G1 = {< 𝑥𝑥, [0.5,0.9], [0.2,0.5] >}, G2 = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >}. Define a mapping  𝑓𝑓: (𝑋𝑋, 𝜏𝜏) →
(𝑌𝑌, 𝜎𝜎) 𝑏𝑏𝑦𝑦 𝑓𝑓(𝑎𝑎) = 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑏𝑏) = 𝑣𝑣 . Since the inverse image of a vague open set 
A = {< 𝑦𝑦, [0.1,0.5], [0.4,0.6] >} in (𝑌𝑌,𝜎𝜎) is a V g�𝒻𝒻 CS in (𝑋𝑋, 𝜏𝜏), but 𝐴𝐴 is not vague feebly closed in (𝑋𝑋, 𝜏𝜏) Hence 𝑓𝑓 is a 
contra vague g� feebly continuous mapping but not contra vague feebly continuous. 
 
Remark 4.13: The composition of two Contra 𝑉𝑉g�𝒻𝒻 −continuous mapping may not be Contra 𝑉𝑉g�𝒻𝒻 −continuous. 
 
Theorem 4.14: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a mapping.Then the following statements are equivalent. 

a) 𝑓𝑓 is a contra vague g� feebly continuous mapping, 
b) 𝑓𝑓−1(𝑉𝑉) is a Vg�𝒻𝒻𝑉𝑉𝑉𝑉(𝑋𝑋) for every VOS ′𝑉𝑉′ in Y.  

 
Proof: (i) ⇒ (𝑖𝑖𝑖𝑖) Let ′𝑉𝑉′ be a VCS in Y. Then ′𝑉𝑉𝑉𝑉′ is a VOS in Y. By hypothesis, 𝑓𝑓−1(𝑉𝑉𝑉𝑉) is a Vg�𝒻𝒻𝑉𝑉𝑉𝑉 in X. 
(i.e)., 𝑓𝑓−1(𝑉𝑉) is a  Vg�𝒻𝒻𝑂𝑂𝑉𝑉 in X. 
(ii) ⇒(i)  Let ′𝑉𝑉′ be a VOS in Y. Then ′𝑉𝑉𝑉𝑉′ is a VCS in Y. By hypothesis, 𝑓𝑓−1(𝑉𝑉𝑉𝑉) is a Vg�𝒻𝒻𝑂𝑂𝑉𝑉 in X. (i.e)., 𝑓𝑓−1(𝑉𝑉) is a  
Vg�𝒻𝒻𝑉𝑉𝑉𝑉 in X. Thus 𝑓𝑓 is a contra vague g� feebly continuous mapping. 
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Theorem 4.15: If 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is contra vague g� feebly continuous and 𝑔𝑔: (𝑌𝑌, 𝜎𝜎) → (𝑍𝑍,𝜆𝜆) is vague continuous. 
Then 𝑔𝑔𝑜𝑜𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑍𝑍,𝜆𝜆) is a contra vague g� feebly continuous. 
 
Proof: Let A is a vague open set in (𝑍𝑍, 𝜆𝜆), then 𝑔𝑔−1(𝐴𝐴) is vague open in (𝑌𝑌,𝜎𝜎), since 𝑔𝑔 is vague continuous. Therefore 
(𝑔𝑔𝑜𝑜𝑓𝑓)−1(𝐴𝐴) = 𝑓𝑓−1(𝑔𝑔−1(𝐴𝐴) ) is vague g� feebly closed in (𝑋𝑋, 𝜏𝜏). Hence 𝑔𝑔𝑜𝑜𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑍𝑍, 𝜆𝜆) is contra vague g� feebly 
continuous. 
 
Theorem 4.16: If 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is contra vague g� feebly continuous and 𝑔𝑔: (𝑌𝑌, 𝜎𝜎) → (𝑍𝑍,𝜆𝜆) is contra vague 
continuous. Then 𝑔𝑔𝑜𝑜𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑍𝑍, 𝜆𝜆) is a vague g� feebly continuous.  
 
Proof: Let A is a vague open set in (𝑍𝑍, 𝜆𝜆), then 𝑔𝑔−1(𝐴𝐴) is vague closed in (𝑌𝑌, 𝜎𝜎), since 𝑔𝑔 is contra vague continuous. 
Therefore (𝑔𝑔𝑜𝑜𝑓𝑓)−1(𝐴𝐴) = 𝑓𝑓−1(𝑔𝑔−1(𝐴𝐴) ) is vague g� feebly open in (𝑋𝑋, 𝜏𝜏). Hence 𝑔𝑔𝑜𝑜𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑍𝑍,𝜆𝜆) is vague g� feebly 
continuous. 
 
Theorem 4.17: A vague continuous mapping 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is a contra vague g� feebly continuous if Vg�𝒻𝒻𝑂𝑂(𝑋𝑋) =
Vg�𝒻𝒻𝑉𝑉(𝑋𝑋)  
 
Proof: Let 𝐴𝐴 ⊆ 𝑌𝑌 be a vague open set in (𝑌𝑌, 𝜎𝜎), then  by hypothesis 𝑓𝑓−1(𝐴𝐴) is vague open in (𝑋𝑋, 𝜏𝜏) and hence 𝑓𝑓−1(𝐴𝐴) 
is a Vg�𝒻𝒻𝑂𝑂𝑉𝑉 in X. since Vg�𝒻𝒻𝑂𝑂(𝑋𝑋) = Vg�𝒻𝒻𝑉𝑉(𝑋𝑋) , 𝑓𝑓−1(𝐴𝐴) is a Vg�𝒻𝒻𝑉𝑉𝑉𝑉  in (𝑋𝑋, 𝜏𝜏). Therefore 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) is contra 
vague g� feebly continuous mapping. 
 
5. VAGUE 𝐠𝐠� FEEBLY COMPACTNESS & VAGUE 𝐠𝐠� FEEBLY CONNECTEDNESS 
 
Definition 5.1: A collection {𝑈𝑈𝛼𝛼 }𝛼𝛼∈∆ of vague g� feebly open sets in VTS (𝑋𝑋, 𝜏𝜏) is said to a vague 𝐠𝐠� feebly open cover 
of a vague subset ‘A’ of X if 𝐴𝐴 ⊆ ⋃{𝑈𝑈𝛼𝛼}𝛼𝛼∈∆. 
 
Definition 5.2: A VTS (𝑋𝑋, 𝜏𝜏) is said to be a vague 𝐠𝐠� feebly compact if every vague g� feebly open cover of X has a 
finite vague sub cover. 
 
Definition 5.3: A vague set B of VTS (𝑋𝑋, 𝜏𝜏) is said to be a vague g� compact relative to X, if for every collection 
{𝑈𝑈𝛼𝛼}𝛼𝛼∈∆ of vague g� open subset of X such that 𝐵𝐵 ⊆ ⋃{𝑈𝑈𝛼𝛼}𝛼𝛼∈∆ there exist a finite subset ∆0 of ∆ such that 𝐵𝐵 ⊆∪
{𝑈𝑈𝛼𝛼}𝛼𝛼∈∆0 . 
 
Definition 5.4: If B is vague g� feebly compact as a subspace of X then a subset of a VTS 𝑋𝑋 is said to be vague g� feebly 
compact. 
 
Theorem 5.5: Every Vg� feebly closed subset 𝐴𝐴 of a Vg� feebly compact space is Vg� feebly compact relative to X. 
Proof is similar to the case of V g� compactness so omitted. 
 
Theorem 5.6: The V g�𝒻𝒻- continuous image of a vague g� feebly compact is vague g� feebly compact. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) be a V g�𝒻𝒻- continuous map from a vague g� feebly compact space (𝑋𝑋, 𝜏𝜏) onto a VTS. Let 
{𝑈𝑈𝛼𝛼}𝛼𝛼∈∆ be an vague open cover of Y then 𝑓𝑓−1({𝑈𝑈𝛼𝛼}𝛼𝛼∈∆ ) is a V g�𝒻𝒻- open cover in X. Since (𝑋𝑋, 𝜏𝜏) is a vague g� feebly 
compact this V g�𝒻𝒻 -open cover has a finite sub cover 𝑓𝑓−1({𝑈𝑈𝑖𝑖}𝑖𝑖=1,2…𝑎𝑎  ). Since 𝑓𝑓 is onto ({𝑈𝑈𝑖𝑖}𝑖𝑖=1,2…𝑎𝑎  ) is a finite vague 
sub cover of  𝑌𝑌, so 𝑌𝑌 is vague g� feebly compact. 
 
Definition 5.7: A vague topological space 𝑋𝑋 is said to be a vague 𝐠𝐠� feebly connected if 𝑋𝑋 cannot be written as a 
disjoint union of two non empty vague g� feebly open sets.   
 
Definition 5.8: If B is vague g� feebly connected as a subspace of X then a subset of a VTS 𝑋𝑋 is said to be vague g� 
feebly connected. 
 
Theorem 5.9: For a VTS (𝑋𝑋, 𝜏𝜏) , the following are equivalent: 

i. (𝑋𝑋, 𝜏𝜏) is vague g� feebly connected. 
ii. The only vague subset of (𝑋𝑋, 𝜏𝜏) which are both V g�𝒻𝒻 −open  and V g�𝒻𝒻 −closed are 0𝑣𝑣  and 1𝑣𝑣 . 

 
Proof:  (𝑖𝑖)  ⇒ (𝑖𝑖𝑖𝑖) Let 𝑈𝑈𝑣𝑣  be a V g�𝒻𝒻 −open and V g�𝒻𝒻 −closed subset of (𝑋𝑋, 𝜏𝜏) then 𝑈𝑈𝑣𝑣𝑠𝑠  is both V g�𝒻𝒻 −open and 
V g�𝒻𝒻 −closed. Since 𝑋𝑋 is disjoint union of V g�𝒻𝒻 −open sets 𝑈𝑈𝑣𝑣  and 𝑈𝑈𝑣𝑣𝑠𝑠 , one of these must be empty (i.e)., 𝑈𝑈𝑣𝑣 = 0𝑣𝑣  or 
𝑈𝑈𝑣𝑣 = 1𝑣𝑣 . 
(𝑖𝑖𝑖𝑖)  ⇒ (𝑖𝑖) Let 𝑋𝑋 = 𝑈𝑈𝑣𝑣 ∪ 𝑉𝑉𝑣𝑣 , where 𝑈𝑈𝑣𝑣  and 𝑉𝑉𝑣𝑣  are disjoint non empty V g�𝒻𝒻 −open subsets of X then 𝑈𝑈𝑣𝑣  is both 
V g�𝒻𝒻 −open and V g�𝒻𝒻 −closed. By assumption 𝑈𝑈𝑣𝑣 = 0𝑣𝑣  or 𝑈𝑈𝑣𝑣 = 1𝑣𝑣 . Hence (𝑋𝑋, 𝜏𝜏) is vague g� feebly connected. 
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Theorem 5.10: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌, 𝜎𝜎) is a V g�𝒻𝒻 −continuous, surjection and  (𝑋𝑋, 𝜏𝜏) is vague g� feebly connected then 
(𝑌𝑌, 𝜎𝜎) is also vague g� feebly connected. 
 
Proof: Suppose that (𝑌𝑌,𝜎𝜎) is not vague g� feebly connected, then 𝑌𝑌 = 𝑈𝑈𝑣𝑣 ∪ 𝑉𝑉𝑣𝑣 , where 𝑈𝑈𝑣𝑣  and 𝑉𝑉𝑣𝑣  are disjoint non empty 
sets in 𝑌𝑌. Since 𝑓𝑓 is V g�𝒻𝒻 −continuous and surjection, 𝑋𝑋 = 𝑓𝑓−1(𝑈𝑈𝑣𝑣) ∪ 𝑓𝑓−1(𝑉𝑉𝑣𝑣), where 𝑓𝑓−1(𝑈𝑈𝑣𝑣) and 𝑓𝑓−1(𝑉𝑉𝑣𝑣) are 
disjoint non empty and V g�𝒻𝒻 −open in X. This contradicts the fact that X is vague g� feebly connected. Hence Y is 
vague g� feebly connected. 
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