International Journal of Mathematical Archive-13(7), 2022, 4-9
$\$$ MA Available online through www.ijma.info ISSN 2229-5046

GRAHAM'S PEBBLING CONJECTURE ON PRODUCT OF THORN GRAPHS OF PATHS

C. MUTHULAKSHMI@SASIKALA*1 AND A. ARUL STEFFI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi- 627412, India.
${ }^{2}$ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai- 627002, India.

(Received On: 11-07-22; Revised \& Accepted On: 22-07-22)

Abstract

Given a distribution of pebbles on the vertices of a connected graph G, the pebbling number of a graph G, is the least number $f(G)$ such that no matter how these $f(G)$ pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let $p_{1}, p_{2}, \ldots, p_{n}$ be positive integers and G be such a graph, $V(G)=n$. The thorn graph of the graph G, with parameters $p_{1}, p_{2}, \ldots, p_{n}$ is obtained by attaching p_{i} new vertices of degree 1 to the vertex v_{i} of the graph G, where $i=1,2, \ldots, n$. In this paper we discuss about the pebbling number of the thorn graph of path of length n also called as thorn path and we show that Graham's conjecture holds for thorn path and it satisfies the two pebbling property. As a corollary, Graham's conjecture holds when G and H are thorn paths with every $p_{i} \geq 2, i=1,2, \ldots, n$.

Keywords: Graphs, Pebbling Number, Thorn path, two pebbling property, Graham’s pebbling conjecture.

1. INTRODUCTION

Pebbling in graphs was first studied by Chung [1]. A pebbling move consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number $\mathrm{f}(\mathrm{G}, v)$ such that from every placement of $f(G, v)$ pebbles, it is possible to move a pebble to v by a sequence of pebbling moves. Then the pebbling number of a graph G, denoted by $\mathrm{f}(\mathrm{G})$, is the maximum $\mathrm{f}(\mathrm{G} . v)$ over all the vertices v in G . Given a configuration of pebbles placed on G, let $p(G)$ be the number of pebbles placed on the graph G, q be the number of vertices with atleast one pebble and let r be the number of vertices with an odd number of pebbles. We say that G satisfies the two pebbling property(respectively, weak or odd two-pebbling property), if it is possible to move two pebbles to any specified target vertex when the total starting number of pebbles is $2 f(G)-q+1$ (respectively $2 f(G)-r+1)$. Note that any graph which satisfies the two pebbling property also satistifes the weak or odd two pebbling property.

Result 1.1: All cycles have the 2-pebbling property [7] and a tree satisfies the 2-pebbling property [1].
Theorem 1.1: [6] Let G be a graph with diameter, $\operatorname{diam}(G)=2$. Then G has the 2-pebbling property.
Theorem 1.2: [8] The pebbling number of star graph $K_{1, n}$ is $\mathrm{f}\left(K_{1, n}\right)=\mathrm{n}+2$ if $\mathrm{n}>1$.
Definition 1.1: [4] Let $p_{1}, p_{2}, \ldots, p_{n}$ be positive integers and G be a graph with $\mathrm{V}(\mathrm{G})=\mathrm{n}$. The thorn graph of the graph G , with parameters $p_{1}, p_{2}, \ldots, p_{n}$ is obtained by attaching p_{i} new vertices of degree 1 to the vertex v_{i} of the graph G , $i=1,2, \ldots, n$.

The thorn graph of the graph G will be denoted by G^{*} or by $G^{*}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, if the respective parameters need to be specified. In this paper, we will consider the thorn graph with every $p_{i} \geq 2$ ($\mathrm{i}=1,2, \ldots, \mathrm{n}$).

Definition 1.2: [3] Given a configuration of pebbles placed on G , a transmitting subgraph of G is a path $v_{1}, v_{2}, \ldots, v_{n}$ such that there are atleast two pebbles on v_{1} and atleast one pebble on each of the other vertices in the path, possibly except v_{n}. Thus, we can transmit a pebble from v_{1} to v_{n}.

Throughout this paper, G will denote a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The graph P_{n} denotes the path graph of length n . Also, for any vertex v of a graph $\mathrm{G}, \mathrm{p}(v)$ refers to the number of pebbles on v.

2. PEBBLING NUMBER OF THORN PATH $P_{n}{ }^{*}$:

Definition 2.1: Let P_{n} be a path of length n where $\mathrm{V}\left(P_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $\mathrm{E}\left(P_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $X_{i}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i p_{i}}\right\}$ where $p_{i} \geq 2$ and $\mathrm{i}=0,1, \ldots$, n . Consider the graph P_{n}^{*} obtained from P_{n} such that $\mathrm{V}\left(P_{n}^{*}\right)=\left\{v_{i} \cup X_{i} / \mathrm{i}=0,1, \ldots, \mathrm{n}\right\}$ and $\mathrm{E}\left(P_{n}^{*}\right)=\mathrm{E}\left(P_{n}\right) \cup\left\{v_{i} x_{i j} / \mathrm{i}=0,1, \ldots, \mathrm{n}\right.$ and $\left.\mathrm{j}=1,2, \ldots, p_{i}\right\}$. Then P_{n}^{*} is called the thorn path of length n.

Let G_{i} be the graph obtained from P_{n}^{*} by the removal of the edges $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ such that $\mathrm{V}\left(G_{i}\right)=v_{i} \cup X_{i}$ and $\mathrm{E}\left(\mathrm{G}_{\mathrm{i}}\right)=\left\{v_{i} x_{i j} / \mathrm{j}=1,2, \ldots, p_{i}\right\}$ for $\mathrm{i}=0,1, \ldots, \mathrm{n}$.

Note 2.1: In [1] Chung determined the pebbling number of a tree as $f(T, v)=2^{a_{1}}+2^{a_{2}}+\ldots+2^{a_{r}}-\mathrm{r}+1$ where a_{1}, a_{2}, \ldots, a_{r} is the sequence of the path sizes in a maximum path - partition P of T_{v}. Though thorn path is a tree, we give an alternate approach in finding the pebbling number of the thorn path.

Note 2.2: Every star graph $K_{1, n}$ is a thorn path of length zero. i.e, $K_{1, n}$ is P_{0}^{*}.
Lemma 2.1: The pebbling number of the thorn path of length zero P_{0}^{*} is $f\left(P_{0}^{*}\right)=p_{0}+2$ where $p_{0} \geq 2$.
Proof: We know that every thorn path of length zero is a star graph, $K_{1, p_{0}}$ with v_{0} as hub vertex and p_{0} as the number of pendant vertices adjacent to v_{0}. From theorem 1.2, the pebbling number of the star graph $K_{1, p_{0}}$ is $p_{0}+2$. Hence $\mathrm{f}\left(P_{0}^{*}\right)=p_{0}+2$.

Theorem 2.1: Let P_{n}^{*} be the thorn graph of the path P_{n} of length n . Then $\mathrm{f}\left(P_{n}^{*}\right)=2^{n+2}+\sum_{i=0}^{n} p_{i}-2$, where $p_{i} \geq 2$.
Proof: Let the vertices of P_{n} be $v_{0}, v_{1}, \ldots, v_{n}$. Let $x_{i j}\left(\mathrm{j}=1,2, \ldots, p_{i}\right)$ be the pendant vertices that are attached to the vertex $v_{i}(\mathrm{i}=0,1, \ldots, \mathrm{n})$. The graph that is composed of these vertices is P_{n}^{*}. Let $\mathrm{p}(\mathrm{G})$ be the number of pebbles placed on G. Let $x_{n 1}$ be our target vertex and $\mathrm{p}\left(x_{n 1}\right)=0$.

Consider the following distribution of $2^{n+2}+\sum_{i=0}^{n} p_{i}-3$ pebbles on P_{n}^{*}.
i) $\mathrm{p}\left(v_{i}\right)=0$ for $\mathrm{i}=0,1, \ldots, \mathrm{n}$
ii) $\mathrm{p}\left(x_{i j}\right)=1$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$ and $\mathrm{j}=1,2, \ldots, p_{i}$
iii) $\mathrm{p}\left(x_{0 j}\right)=1$ for $\mathrm{j}=2,3, \ldots, p_{0}$ and $\mathrm{p}\left(x_{n k}\right)=1$ for $\mathrm{k}=2,3, \ldots, p_{n}$.
iv) $\mathrm{p}\left(x_{01}\right)=2^{n+2}-1$.

In this distribution we cannot move one pebble to $x_{n 1}$ as the length of the path $\left(x_{01}, x_{n 1}\right)$ is $n+2$.
Hence $\mathrm{f}\left(P_{n}^{*}\right) \geq 2^{n+2}+\sum_{i=0}^{n} p_{i}-2$.
Now we show that $\mathrm{f}\left(P_{n}^{*}\right) \leq 2^{n+2}+\sum_{i=0}^{n} p_{i}-2$. Let us consider any distribution of $2^{n+2}+\sum_{i=0}^{n} p_{i}-2$ pebbles on P_{n}^{*}. There are only two types of possible target vertices.

Case-1: Suppose that the target vertex is v_{i} where $\mathrm{i}=0,1, \ldots, \mathrm{n}$. Without loss of generality, let us assume that our target vertex is $v_{k}, 0 \leq \mathrm{k} \leq \mathrm{n}$ and $\mathrm{p}\left(v_{k}\right)=0$. If $\mathrm{p}\left(x_{k j}\right) \geq 2$ for some $\mathrm{j}=1,2, \ldots, p_{k}$ then we can move one pebble from $x_{k j}$ to v_{k}. If $\mathrm{p}\left(x_{k j}\right)<2$ for all $\mathrm{j}=1,2, \ldots, p_{k}$ then three cases arise.

Subcase-1.1: If $\mathrm{p}\left(P_{n}\right)=0$ then all $2^{n+2}+\sum_{i=0}^{n} p_{i}-2-p_{k}$ pebbles are placed on the thorns of $v_{0}, v_{1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_{n}$. Let $X=X_{1} \cup X_{2} \cup \ldots \cup X_{n}$. Then all $2^{n+2}+\sum_{i=0}^{n} p_{i}-2-p_{k}$ pebbles are placed on $X-X_{k}$. Clearly 2^{n} pebbles can be moved to P_{n} and hence one pebble can be moved to v_{k}.

Subcase-1.2: If $\mathrm{p}\left(P_{n}\right) \geq 2^{n}$, then one pebble can be moved to v_{k} as $\mathrm{f}\left(P_{n}\right)=2^{n}$ [8].

Subcase-1.3: If $0<\mathrm{p}\left(P_{n}\right)<2^{n}$, Let $\mathrm{p}\left(P_{n}\right)=\mathrm{s}$. Now the number of pebbles placed on $X-X_{k}$ is $\mathrm{p}\left(X-X_{k}\right)=2^{n+2}+$ $\sum_{i=0}^{n} p_{i}-2-p_{k}-s$. Let r_{k} be the number of vertices in $X-X_{k}$ with odd pebbles, then $r_{k} \leq \sum_{i=0}^{n} p_{i}-p_{k}$. Now the total number of pebbles that can be brought to P_{n} from $X-X_{k}$ is atleast $\frac{2^{n+2}+\sum_{i=0}^{n} p_{i}-2-p_{k}-s-r_{k}}{2} \geq \frac{2^{n+2}-2-s}{2}=2^{n+1}-1-\frac{s}{2}$.

Since P_{n} already has s pebbles, now the total number of pebbles in P_{n} is atleast $2^{n+1}-1-\frac{s}{2}+\mathrm{s}=2^{n+1}+\frac{s}{2}-1>2^{n}$. Hence one pebble can be moved to v_{k}.

Case-2: Suppose that the target vertex is $x_{i j}$ where $\mathrm{i}=0,1,2, \ldots, \mathrm{n}$ and $\mathrm{j}=1,2, \ldots, p_{i}$. Without loss of generality let us assume that $x_{k 1}$ be our target vertex, where $0 \leq \mathrm{k} \leq \mathrm{n}$ and $\mathrm{p}\left(x_{k 1}\right)=0$. If $\mathrm{p}\left(v_{k}\right) \geq 2$ then one pebble can be moved to $x_{k 1}$. If $\mathrm{p}\left(v_{k}\right)=1$ then if there exists atleast one vertex $x_{k j}(\mathrm{j} \neq 1)$ such that $\mathrm{p}\left(x_{k j}\right) \geq 2$ then $\left\{x_{k j}, v_{k}, x_{k 1}\right\}$ forms a transmitting subgraph. Hence one pebble can be moved to $x_{k 1}$. If $\mathrm{p}\left(x_{k j}\right)<2$ for all $\mathrm{j}=2,3, \ldots, p_{k}$, then the number of pebbles placed on $P_{n}^{*}-X_{k}$ is atleast $2^{n+2}+\sum_{i=0}^{n} p_{i}-2-\left(p_{k}-1\right)=2^{n+2}+\sum_{i=0}^{n} p_{i}-p_{k}-1$, then by proceeding as in subcase 1.3 of Case 1 , one pebble can be moved to v_{k} and from v_{k} one pebble can be moved to $x_{k 1}$. If $\mathrm{p}\left(v_{k}\right)=0$ then the following cases arise.

Subcase-2.1: If there exists atleast two vertices $x_{k j_{1}}, x_{k j_{2}}$ with $\mathrm{p}\left(x_{k j_{1}}\right) \geq 2$ and $\mathrm{p}\left(x_{k j_{2}}\right) \geq 2$ where $j_{1}, j_{2} \neq 1$, among the vertices $x_{k 1}, x_{k 2}, \ldots, x_{k p_{k}}$ then we can move one pebble from $x_{k j_{1}}$ to v_{k}. So $\left\{x_{k j_{2}}, v_{k}, x_{k 1}\right\}$ forms a transmitting subgraph. Hence one pebble can be moved to $x_{k 1}$.

Subcase-2.2: If $\mathrm{p}\left(x_{k j_{1}}\right) \geq 4$ for only one $j_{1} \neq 1$ and $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r} \neq 1, j_{1}$ then two pebble can be moved from $x_{k j_{1}}$ to v_{k} and hence one pebble can be moved to $x_{k 1}$.

Subcase-2.3: If $2 \leq \mathrm{p}\left(x_{k j_{1}}\right)<4$ for only one $j_{1} \neq 1$ and $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r} \neq 1, j_{1}$, then we can move one pebble from $x_{k j_{1}}$ to v_{k}. Now by proceeding as in subcase 1.3 of Case 1 , another pebble can be moved to v_{k}. So v_{k} get two pebbles and hence one pebble can be moved from v_{k} to $x_{k 1}$.

Subcase-2.4: If $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r} \neq 1$, then by proceeding as in Case 1 , the number of pebbles that can be moved to P_{n} is atleast $\frac{2^{n+2}-s-1}{2}$. Therefore the number of pebbles in P_{n} will be atleast $\frac{2^{n+2}-s-1}{2}+\mathrm{s}=2^{n+1}+\frac{s-1}{2}>2^{n+1}$. Hence two pebbles can be moved to v_{k} and thus one pebble can be moved from v_{k} to $x_{k 1}$. Thus $2^{n+2}+\sum_{i=0}^{n} p_{i}-2$ pebbles are enough to place a pebble on any vertex of P_{n}^{*}. Hence $\mathrm{f}\left(P_{n}^{*}\right)=2^{n+2}+\sum_{i=0}^{n} p_{i}-2$.

Corollary 2.1: The pebbling number of the thorn rod of length n, P_{n}^{*} (whose end vertices only has thorns) is $2^{n+2}+p_{0}+p_{n}-2$.

Proof: The corollary follows from Theorem 2.1.

3. TWO PEBBLING PROPERTY

Definition 3.1: [7] We say a graph G satisfies the 2- pebbling property if two pebbles can be moved to any specified vertex when the total starting number of pebbles is $2 f(G)-q+1$, where q is the number of vertices with atleast one pebble.

Theorem 3.1: Let P_{n}^{*} be the thorn graph of the path P_{n} of length n. Then P_{n}^{*} satisfies the two pebbling property.
Proof: Let p be the number of pebbles on the thorn path P_{n}^{*} and q be the number of vertices with atleast one pebble and $\mathrm{P}+\mathrm{q}=2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1$. We consider the following two types of possible target vertices.

Case-1: Suppose the target vertex is $v_{k}, 0 \leq \mathrm{k} \leq \mathrm{n}$. If $\mathrm{p}\left(v_{k}\right)=1$, then the number of pebbles on all the vertices except v_{k} is $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-1>2^{n+2}+\sum_{i=0}^{n} p_{i}-2$, since $\mathrm{q} \leq \mathrm{n}+1+\sum_{i=0}^{n} p_{i}$.

Since $\mathrm{f}\left(P_{n}^{*}\right)=2^{n+2}+\sum_{i=0}^{n} p_{i}-2$, we can put one more pebble on v_{k} using the $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-1$ pebbles.

If $\mathrm{p}\left(v_{k}\right)=0$, then we consider the following cases.
Subcase-1.1: Suppose that $\mathrm{p}\left(x_{k j}\right) \geq 2$ for some $x_{k j}\left(\mathrm{j}=1,2, \ldots, p_{k}\right)$. Then we can move one pebble from $x_{k j}$ to v_{k}. Using the remaining $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-2$ pebbles, we can move another pebble to v_{k}.

Subcase-1.2: Suppose that $\mathrm{p}\left(x_{k j}\right)<2$ for all $x_{k j}\left(\mathrm{j}=1,2, \ldots, p_{k}\right)$. Since $\mathrm{q} \leq \mathrm{n}+\sum_{i=0}^{n} p_{i}$ as $\mathrm{p}\left(v_{k}\right)=0$, we have $\mathrm{p} \geq 2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-\left(n+\sum_{i=0}^{n} p_{i}\right)=2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+3)$. Since $\mathrm{p}\left(x_{k j}\right)<2$ for all $\mathrm{j}=1,2, \ldots, p_{k}$, we have $\mathrm{p}\left(P_{n}^{*}-X_{k}\right) \geq 2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+3)-p_{k}$. If $\mathrm{p}\left(P_{n}\right)=0$, then all the $2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+3)-p_{k}$ pebbles are placed on $X-X_{k}$, then 2^{n+1} pebbles can be moved to P_{n} and hence two pebbles can be moved to v_{k}. If $\mathrm{p}\left(P_{n}\right) \geq 2^{n+1}$, then two pebbles can be moved to v_{k}. If $0<\mathrm{p}\left(P_{n}\right)<2^{n}$ then let us assume that $\mathrm{p}\left(P_{n}\right)=\mathrm{s}$. Now the number of pebbles placed on $X-X_{k}$ is $\mathrm{p}\left(X-X_{k}\right) \geq 2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+3)-p_{k}-\mathrm{s}$. Let r_{k} be the number of vertices in $X-X_{k}$ with odd pebbles, then $r_{k} \leq \sum_{i=0}^{n} p_{i}-p_{k}$. Now the total number of pebbles that can be brought to P_{n} from $X-X_{k}$ is atleast $\frac{2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+3)-p_{k}-\mathrm{s}-r_{k}}{2} \geq \frac{2^{n+3}-(\mathrm{n}+3)-\mathrm{s}}{2}$. Then the total number of pebbles on P_{n} will be atleast $\frac{2^{n+3}-(\mathrm{n}+3)-\mathrm{s}}{2}+$ $s>2^{n+1}$. Hence with these 2^{n+1} pebbles we can place two pebbles on v_{k}.

Case-2: Suppose that the target vertex is $x_{k j}$ where $\mathrm{j}=1,2, \ldots, p_{k}$. Without loss of generality, let us assume that the target vertex is $x_{k 1}$. If $\mathrm{p}\left(x_{k 1}\right)=1$, then the number of pebbles on all the vertices except $x_{k 1}$ is
$2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-1>2^{n+2}+\sum_{i=0}^{n} p_{i}-2$, as $\mathrm{q} \leq \mathrm{n}+1+\sum_{i=0}^{n} p_{i}$. Since $\mathrm{f}\left(P_{n}^{*}\right)=2^{n+2}+\sum_{i=0}^{n} p_{i}-2$, we can put one more pebble on $x_{k 1}$. If $\mathrm{p}\left(x_{k 1}\right)=0$, then we consider the following cases.

Subcase-2.1: If $\mathrm{p}\left(v_{k}\right) \geq 2$, then we can move one pebble from v_{k} to $x_{k 1}$. Using the remaining $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-2$ pebbles, we can move another pebble to $x_{k 1}$.

Subcase-2.2: Consider $\mathrm{p}\left(v_{k}\right)=1$. If there is atleast one vertex $x_{k j_{1}}\left(j_{1} \neq 1\right)$ with $\mathrm{p}\left(x_{k j_{1}}\right) \geq 2$ then $\left\{x_{k j_{1}}, v_{k}, x_{k 1}\right\}$ forms a transmitting subgraph. Using the remaining $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-3$ pebbles, we can move another pebble to $x_{k 1}$. If $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r} \neq 1$ and if $\mathrm{p}\left(P_{n}\right)=0$ or $\mathrm{p}\left(P_{n}\right) \geq 3\left(2^{n}\right)$, then three pebbles can be moved to v_{k}.Let us assume that $\mathrm{p}\left(P_{n}\right)=\mathrm{s}$. If $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r} \neq 1$ and if $0<\mathrm{p}\left(P_{n}\right)<3\left(2^{n}\right)$ then the number of pebbles placed on $X-X_{k}$ is $\mathrm{p}\left(X-X_{k}\right) \geq 2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+3)-p_{k}-\mathrm{s}$. Let r_{k} be the number of vertices in $X-X_{k}$ with odd pebbles. Hence the number of pebbles that can be placed on P_{n} is atleast $\frac{2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+3)-p_{k}-s-r_{k}}{2} \geq 2^{n+2}-\frac{s+n+3}{2}$. Now P_{n} has atleast $2^{n+2}-\frac{s+n+3}{2}+s>2^{n+1}+2^{n}$ pebbles. Hence we can move three pebbles to v_{k} and two pebbles can be moved to $x_{k 1}$.

Subcase-2.3: If $\mathrm{p}\left(v_{k}\right)=0$ and if there exists atleast two vertices $x_{k j_{1}}, x_{k j_{2}}\left(j_{1}, j_{2} \neq 1\right)$ with $\mathrm{p}\left(x_{k j_{1}}\right) \geq 2, \mathrm{p}\left(x_{k j_{2}}\right) \geq 2$, then we can move one pebble each from $x_{k j_{1}}$ and $x_{k j_{2}}$ to v_{k}. Thus v_{k} get two pebbles and one pebble can be moved to $x_{k 1}$. Using the remaining $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-4$ pebbles, we can move another pebble to $x_{k 1}$ as $\mathrm{q} \leq n-1+\sum_{i=0}^{n} p_{i}$. If there is only one vertex $x_{k j_{1}}\left(j_{1} \neq 1\right)$ with $\mathrm{p}\left(x_{k j_{1}}\right) \geq 4$ and $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r} \neq 1, j_{1}$ then we can move two pebbles from $x_{k j_{1}}$ to v_{k}. So $\left\{v_{k}, x_{k 1}\right\}$ forms a transmitting subgraph. Using the remaining $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-4-\left(p_{k}-1\right)$ pebbles, we can move another pebble to $x_{k 1}$. If there is only one vertex $x_{k j_{1}}\left(j_{1} \neq 1\right)$ with $2 \leq \mathrm{p}\left(x_{k j_{1}}\right) \leq 3$ and $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r} \neq 1$, j_{1}, we can move one pebble from $x_{k j_{1}}$ to v_{k}. Using the remaining $2\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right)+1-q-3-\left(p_{k}-1\right)$ pebbles, by subcase 2.2 of Case 2 , we can move three pebbles to v_{k}.

Hence two pebbles can be moved to $x_{k 1}$. If $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r}(\mathrm{r} \neq 1)$ and if $\mathrm{p}\left(P_{n}\right)=0$ or $\mathrm{p}\left(P_{n}\right) \geq 2^{n+2}$, then four pebbles can be moved to v_{k} and hence one pebble can be moved to $x_{k 1}$. If $\mathrm{p}\left(x_{k r}\right)<2$ for all $\mathrm{r}(\mathrm{r} \neq 1)$ and if $0<\mathrm{p}\left(P_{n}\right)<2^{n+2}$ then let us assume that $\mathrm{p}\left(P_{n}\right)=\mathrm{s}$. Now the number of pebbles placed on $X-X_{k}$ is $\mathrm{p}\left(X-X_{k}\right) \geq 2^{n+3}$ $+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+2)-\left(p_{k}-1\right)-\mathrm{s}$ as $\mathrm{q} \leq n-1+\sum_{i=0}^{n} p_{i}$. Let r_{k} be the number of vertices in $X-X_{k}$ with odd pebbles. Then the total pebbles that can be moved to P_{n} is atleast $\frac{2^{n+3}+\sum_{i=0}^{n} p_{i}-(\mathrm{n}+2)-\left(p_{k}-1\right)-\mathrm{s}-r_{k}}{2}$ where $r_{k} \leq \sum_{i=0}^{n} p_{i}-p_{k}$. Now P_{n} has atleast $\frac{2^{n+3}-(\mathrm{n}+1)-\mathrm{s}}{2}+\mathrm{s}$ pebbles. Hence four pebbles can be moved to v_{k} and two pebbles can be moved to $x_{k 1}$.

4. PEBBLING ON $\boldsymbol{P}_{\boldsymbol{n}}^{\boldsymbol{*}} \times \boldsymbol{P}_{\boldsymbol{m}}^{\boldsymbol{*}}$

Definition 4.1: [9] Let G and H be two graphs, the Cartesian product of G and H, denoted by $G \times H$, is the graph whose vertex set is the Cartesian product $\mathrm{V}(\mathrm{G} \times \mathrm{H})=\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})=\{(x, y): x \in \mathrm{~V}(\mathrm{G}), y \in \mathrm{~V}(\mathrm{H})\}$ and two vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are adjacent iff $x=x^{\prime}$ and $\left\{y, y^{\prime}\right\} \in \mathrm{E}(\mathrm{H})$ or $\left\{x, x^{\prime}\right\} \in \mathrm{E}(\mathrm{G})$ and $y=y^{\prime}$.

Conjecture (Graham): The pebbling number of $G \times H$ satisfies $f(G \times H) \leq f(G) f(H)$.

Lemma 4.1: [2] Let $\left\{x_{i}, x_{j}\right\}$ be an edge in G. Suppose that in $\mathrm{G} \times \mathrm{H}$, we have p_{i} pebbles on $\left\{x_{i}\right\} \times \mathrm{H}$ and r_{i} of these vertices have an odd number of pebbles. If $r_{i} \leq k \leq p_{i}$, and if k and p_{i} have the same parity, then k pebbles can be retained on $\left\{x_{i}\right\} \times \mathrm{H}$, while transferring $\frac{p_{i}-k}{2}$ pebbles on to $\left\{x_{j}\right\} \times \mathrm{H}$. If k and p_{i} have opposite parity, we must leave $k+1$ pebbles on $\left\{x_{i}\right\} \times \mathrm{H}$, so we can only transfer $\frac{p_{i}-(k+1)}{2}$ pebbles onto $\left\{x_{j}\right\} \times \mathrm{H}$.

In particular, we can always transfer $\frac{p_{i}-r_{i}}{2}$ pebbles onto $\left\{x_{j}\right\} \times \mathrm{H}$, since p_{i} and r_{i} have the same parity. In all these cases, the number of vertices of $\left\{x_{i}\right\} \times \mathrm{H}$ with an odd number of pebbles is unchanged by these transfers.

Lemma 4.2: [5] If T is a tree, and G satisfies the odd two pebbling property, then $\mathrm{f}((\mathrm{T}, \mathrm{G}),(x, y)) \leq \mathrm{f}(\mathrm{T}, x) \mathrm{f}(\mathrm{G})$ for every vertex v in G.

Theorem 4.1: If G satisfies the two pebbling property, then $\mathrm{f}\left(P_{n}^{*} \times \mathrm{G}\right) \leq \mathrm{f}\left(P_{n}^{*}\right) \mathrm{f}(\mathrm{G})$.
Proof: Label the vertices of P_{n} by $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and let the new vertices that attaches to the vertex v_{i} of the graph be $x_{i j}$ where $\mathrm{i}=0,1, \ldots, \mathrm{n}$ and $\mathrm{j}=1,2, \ldots, p_{i}$. The graph which is composed of these vertices is P_{n}^{*}. Let $G_{i j}$ denote the $\operatorname{subgraph}\left\{x_{i j}\right\} \times \mathrm{G} \subsetneq P_{n}^{*} \times \mathrm{G}$ and H_{i} denote the subgraph $\left\{v_{i}\right\} \times \mathrm{G} \subsetneq P_{n}^{*} \times \mathrm{G}$.

Let $a_{i j}$ denote the number of pebbles on the vertices of $G_{i j}$ and r_{i} denote the number of pebbles on the vertices of H_{i}
Let $b_{i j}$ denote the number of vertices in $G_{i j}$ which have an odd number of pebbles and t_{i} denote the number of vertices in H_{i} which have an odd number of pebbles.

Take any arrangement of $\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})$ pebbles on the vertices of $P_{n}^{*} \times \mathrm{G}$. First we assume that the target vertex is $\left(v_{i}, y\right)$ for some y, where $\mathrm{i}=0,1, \ldots, \mathrm{n}$. Without loss of generality, we may assume that the vertex is $\left(v_{o}, y\right)$.

Let $P_{n}^{*}-\left\{x_{01}, \ldots, x_{0 p_{0}}, x_{11}, \ldots, x_{1 p_{1}}, \ldots, x_{n 1}, \ldots, x_{n p_{n}}\right\}=P_{n}$. From [7], we know that $\mathrm{f}\left(\left(P_{n} \times \mathrm{G}\right),\left(v_{0}, y\right)\right) \leq \mathrm{f}\left(P_{n} \times \mathrm{G}\right) \leq$ $2^{n} \mathrm{f}(\mathrm{G})$. Since $b_{i j} \leq|\mathrm{V}(\mathrm{G})| \leq \mathrm{f}(\mathrm{G}), \sum_{i=0}^{n} \sum_{j=1}^{p_{i}} a_{i j} \leq\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})$, then

$$
\begin{aligned}
\sum_{i=0}^{n} \sum_{j=1}^{p_{i}}\left(a_{i j}+b_{i j}\right) & =\sum_{i=0}^{n} \sum_{j=1}^{p_{i}} a_{i j}+\sum_{i=0}^{n} \sum_{j=1}^{p_{i}} b_{i j} \\
& \leq\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})+\sum_{i=0}^{n} p_{i} \mathrm{f}(\mathrm{G}) \\
& =\left(2^{n+2}+2 \sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})
\end{aligned}
$$

By lemma 4.1, we apply pebbling moves to all the vertices in $G_{01}, \ldots, G_{0 p_{0}}, G_{11}, \ldots, G_{1 p_{1}}, \ldots, G_{n 1}, \ldots, G_{n p_{n}}$ and we can move atleast $\sum_{i=0}^{n} \sum_{j=1}^{p_{i}} \frac{\left(a_{i j}-b_{i j}\right)}{2}$ pebbles from $G_{01}, \ldots, G_{0 p_{0}}, G_{11}, \ldots, G_{1 p_{1}}, \ldots, G_{n 1}, \ldots, G_{n p_{n}}$ to the vertices of $P_{n} \times G$.

Therefore in $P_{n} \times \mathrm{G}$, we have atleast
$\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})-\sum_{i=0}^{n} \sum_{j=1}^{p_{i}} a_{i j}+\sum_{i=0}^{n} \sum_{j=1}^{p_{i}} \frac{\left(a_{i j}-b_{i j}\right)}{2}=\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})-\sum_{i=0}^{n} \sum_{j=1}^{p_{i}} \frac{\left(a_{i j}+b_{i j}\right)}{2}$

$$
\begin{aligned}
& \geq\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})-\frac{\left(2^{n+2}+2 \sum_{i=0}^{n} p_{i}-2\right)}{2} \mathrm{f}(\mathrm{G}) \\
& =\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2-2^{n+1}-\sum_{i=0}^{n} p_{i}+1\right) \mathrm{f}(\mathrm{G}) \\
& =\left(2^{n+1}-1\right) \mathrm{f}(\mathrm{G}) \text { pebbles }
\end{aligned}
$$

Since $\mathrm{f}\left(\left(P_{n} \times \mathrm{G}\right),\left(v_{0}, y\right)\right) \leq 2^{n} \mathrm{f}(\mathrm{G})$, then we can move one pebble to $\left(v_{0}, y\right)$.
Now let us assume that the target vertex is $\left(x_{i j}, y\right)$ for some y, where $\mathrm{i}=0,1, \ldots, \mathrm{n}$ and $\mathrm{j}=1,2, \ldots, p_{i}$. Without loss of generality, we assume that the target vertex is $\left(x_{01}, y\right)$. We know that, every thorn path P_{n}^{*} of length n is a tree.

Hence by lemma 4.2, $\mathrm{f}\left(\left(P_{n}^{*} \times \mathrm{G}\right),\left(x_{01}, y\right)\right) \leq \mathrm{f}\left(P_{n}^{*}, x_{01}\right) \mathrm{f}(\mathrm{G})=\left(2^{n+2}+\sum_{i=0}^{n} p_{i}-2\right) \mathrm{f}(\mathrm{G})$. Hence one pebble can be moved to $\left(x_{01}, y\right)$.

Corollary 4.1: Let P_{n}^{*} be the thorn path of length n and P_{m} be a path of length m , then $\mathrm{f}\left(P_{n}^{*} \times P_{m}\right) \leq \mathrm{f}\left(P_{n}^{*}\right) \mathrm{f}\left(P_{m}\right)$.
Proof: The corollary follows from Theorem 4.1 and Result 1.1.
Corollary 4.2: Let P_{n}^{*} be the thorn path of length n and C_{m} be a cycle with m vertices, then $\mathrm{f}\left(P_{n}^{*} \times C_{m}\right) \leq \mathrm{f}\left(P_{n}^{*}\right) \mathrm{f}\left(C_{m}\right)$.
Proof: The corollary follows from Theorem 4.1 and Result 1.1.

Corollary 4.3: Let P_{n}^{*} be the thorn path of length n and $K_{1, m}$ be a star graph with $\mathrm{m}>1$, then

$$
\mathrm{f}\left(P_{n}^{*} \times K_{1, m}\right) \leq \mathrm{f}\left(P_{n}^{*}\right) \mathrm{f}\left(K_{1, m}\right)
$$

Proof: The corollary follows from Theorem 4.1 and Theorem 1.1.
Corollary 4.4: Let P_{n}^{*} be the thorn path of length n and W_{m} be a wheel graph with $\mathrm{m} \geq 3$, then $\mathrm{f}\left(P_{n}^{*} \times W_{m}\right) \leq \mathrm{f}\left(P_{n}^{*}\right) \mathrm{f}\left(W_{m}\right)$.
Proof: The corollary follows from Theorem 4.1 and Theorem 1.1.
Corollary 4.5: Let P_{n}^{*} be the thorn path of length n and P_{m}^{*} be a thorn path of length m , then $\mathrm{f}\left(P_{n}^{*} \times P_{m}^{*}\right) \leq \mathrm{f}\left(P_{n}^{*}\right) \mathrm{f}\left(P_{m}^{*}\right)$.
Proof: The corollary follows from Theorem 3.1 and Theorem 4.1.

5. CONCLUSION AND OPEN PROBLEM

In this paper, we determined the pebbling number of the thorn path and also we have proved that the thorn path satisfies the 2- pebbling property and Grahams pebbling conjecture is true for the products of a thorn path by a
i) Path
ii) Cycle
iii) Star
iv) Wheel
v) Thorn path

The pebbling number of the thorn cycle is an open problem.

REFERENCE

1. F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc, Math, 2(4): 467-472, 1989.
2. D. Herscovici, Graham's conjecture on products of cycles, J. Graph Theory 42 (2003) 141 - 154.
3. D.S. Herscovici, A.W. Higgins, The pebbling number of $C_{5} \times C_{5}$, Discrete Math, 187(1998) 123-135.
4. A. Kirlangic, The scattering number of thorn graphs, Int. J. Comput. Math 82(2004) $299-311$.
5. D. Moews, Pebbling graphs, J. Combin Theory, Ser. B 55 (1992) 244-252.
6. L. Pachter, H.S. Snevily, B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995) 65 - 80.
7. H.S. Snevily, J.A. Foster, The 2-pebbling property and a conjecture of Graham's, Graphs Combin. 16 (2000) 231-244.
8. C. Xavier and A. Lourdusamy, Pebbling number in Graphs, Pure and Applied Mathematika Sciences, Vol. XLIII, No. 1-2, March 1996.
9. Zhiping Wang, YutangZou, Haiying Liu, ZhongtuoWang,Graham's pebbling conjecture on product of thorn graphs of complete graphs, Discrete mathematics 309(2009) 3431 - 3435.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2022. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

