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ABSTRACT

We have applied Fourier’s variables elimination method for solving the QPP. The K-T
conditions are used to transform the QPP into linear inequalities and complementary slackness
conditions play an important role to minimize the Lagrangian multipliers.

INTRODUCTION:

A Quadratic Programming Problem (QPP) is both a special case of non-linear programming
problem and an extended case of linear programming problem, in which the objective function
is a sum of a linear and a quadratic form and the constraints are linear.

The general mathematical model of a QPP may be written as:

Maximize Q(X) = C'X +XDX
Subject to AX <b
X220

where D is an nXn symmetric matrix and all other symbols are usual notations.

Methods for solving a QPP are developed under the assumption that the quadratic form XDX
is concave for maximization and convex for minimization. Wolfe (1959), using the Kuhn-
Tucker (K-T) conditions, developed the original approach to QPP. The K-T conditions form a
large linear program, with additional non-linear complementary slackness conditions. Wolfe
then utilized a variant of the simplex algorithm which, incorporated provisions to enforce the
complementary slackness conditions. Many available algorithms follow these principles. In this
paper, we apply Fourier’s Method to obtain the optimal solution to the QPP after deriving the
problem into linear inequalities by using the Kuhn-Tucker (K-T) necessary conditions. Fourier
(1826) discovered a method for solving the linear inequalities. Later Williams (1986) showed
that the Fourier’s method could be extended to solve the linear programming problems. In his
method, the Fourier Variable Elimination Method generates a new set of constraints in which
some constraints are redundant. Then Kanniappan and Thangavel (1998) modified this method
by giving a technique to find that which variable should be eliminated first. This technique
reduces the number of constraints generated.

DERIVATION OF K-T CONDITIONS:

The K-T necessary conditions are derived for identifying stationary points of a QPP subject to
inequality constraints. This derivation is based on the Lagrangian method. These conditions are
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also sufficient for global optimum if the objective function is concave (convex) for

maximization (minimization) and the solution space is convex set.
Let QPP is defined as

Maximize f(X) = C'X +XDX
Subject to g(X)<0

The problem may be written as
Maximize f(X) = CX +XDX
Subject to g(X)+8%2=0

where S2 is the slack variable to the constraints g(X)< 0.

Let A be the Lagrangian multipliers corresponding to the constraints g(X)<0

The Lagrangian function is thus given by:
L(X,4,8)=f(X)=Alg(X)+57]

A necessary condition for optimality is that, A be non-negative for maximization problems.

This result is justified as follows. The vector A measures the rate of variation of f with

J
respect to g, i.e., ﬂzi, as the right hand side of the constraint g(X) < 0 changes from 0 to
g

dg(>0), the solution space becomes less constrained and hence f cannot decrease, which
implies that A > 0. The remaining conditions will now be derived as the partial derivatives of
L with respect to X, A and S.

oL

—=Vf(X)-AVg(X)=0

3% F(X) g(X)

oL 2

— =—[g(X)+5°]1 =0

31 [g(X) ]

a—L=—2/lS =0

0S
The conditions reduce to
COX DA A A = C ettt e ettt ettt e et e e e (i)
AX 8 2D et e e e e e e e e e e e ———aaaeeeaaan (i)
A S = 0 ettt ettt e ettt ee s §113)

X, 1,520
The conditions (i), (i) and (iii) are respectively referred to as dual feasibility, primal
feasibility and complementary slackness (CS) feasibility conditions.

The equation 4; S; =0, i=1,2,...,m reveals the following results:

(1) If ﬂi # 0, then Si = 0. This means that the corresponding resource is scarce and, hence, it

is consumed completely.
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2) If Si > (0, then /'il-= 0. This means resource [ is not scarce and, consequently, it has no

effect on the value of f(X).

The iterative procedure for the solution of a QPP by Modified Fourier’s Method may be
summarized as follows:

Step: 1 Convert the inequality constraints into equations by introducing slack variables Sizin

the ith constraint i =1,2,...,m, and slack variables sz in the jth non-negativity constraint

j=12,...,n.

Step: 2 Construct the Lagrangian function

m n n
L(X,S,ﬂ,,ll,Y) zf(X)—Zﬂl[Zaljx] _bi +Si2]_ Z,uj(—xj +Yj2)
i=l  j=1 j=1
where A and M are Lagrangian multipliers.

Step: 3 The Kuhn-Tucker (K-T) conditions may be derived as

-2XD+AA-u=C
AX+S=b

X, 1,520
AS=0=uX

Step: 4 Arrange the above equations into a canonical form with slack variables S (> 0)

—2XD+ANA-uscC
—2XD+AA-u>C
AX <b

X, A, u>0

Step: 5 In step 4, if S >0, then to satisfy the complementary slackness conditions (A4 S=0),
minimize A , the problem becomes as

Maximize Z=— A

-2XD+AVA<C

-2XD+AA>2C

AX <b

X, 120

Step: 6 Arrange the inequalities into an equivalent system of linear constraints.

Z+A<0
-2XD+AA LC
2XD-AA <-C

AX <bh

X <0
-A<0
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Step: 7 Construct the following pairwise disjoint sets for all variables i.e.,

I7={t:A,>0}
I = {1:4,<0)
[0={t:A,=0)}

wheret =1, 2,...,mand j=1,2,...,n

Step: 8 If any of the sets Ij+ or Ij_ is empty for a variable, then the given problem is

unbounded.

Step: 9 Otherwise, find the Minimum{‘[j-_‘ X‘I}‘ }, where |C| denotes the number of constraints
1<j<n

in the set C.

Step: 10 Choose the index j corresponding to the minimum in the above Step. Let it be Xj.

Now we choose this variable to be eliminated first.

Step: 11 Apply the Fourier variable elimination method (1827) for eliminating the variable Xj

as follows:

For each kelj+ , lel; weadd A, times the inequality A; X <b; to — Ay, time A X < by.

J
In these new inequalities, the coefficient Xj is eliminated.

Repeat the above procedures until all the variables are eliminated except the variable Z. The
least upper bound for Z will be considered as the optimal value of Z .

NUMERICAL ILLUSTRATION:

Consider the following QPP

Maximize Q(X)=2X,+6X,—X{ +2X,X, -2X73
Sub to. X|+X,<2

-X+X,<2

X[.X,20

We convert the inequality constraints into equations by introducing slack variables Slz and
Szzrespectively. Considering X120 and X, >0 also as the inequality constraints, we

convert them also into equations by using slack variable S32 and S42. The problem thus

becomes:
Maximize Q(X)=2X;+6Xy—X{ +2X,X, —2X73
Sub to. X[ +X,+52-2=0
—X;+X,+8,2-2=0
—X +V2 =0, =X, 4V,2 =0
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constructing the Lagrangian function

L(X,S,A) =2X,+6X, - X{ +2X, X, —2X3 -4 (X + X, + 52 =2)
— Qo (=X 1+ X +827 =2) =ty (=X + V) + 1y (-X 5 + V)

To derive the necessary and sufficient conditions for maxima of L we equate the first-order
partial derivatives of L equal to zero. Thus we have

2X1 =2Xo+ A4 - Ay — g =2
—2X | +4X, + 4 +24, - =6
X1+X,+85,=2

- X1 +2X,+8,=2

4; $;=0=u;V;

X, A,8, 14,V 20, i=1,2

In the above equalities, if we assume the slack variables Sl >0 and SZ >0, then by

complementary slackness criteria /21 and /22 must be equal to zero. Problem may thus be
rewritten as follows:

MaximizeZ = -4 — A
2X1-2Xy+ 4 - A A3 L2
2X1-2X0+ 44— A —A3 22
—2X | +4X, + 4 +24, -4 £6
—2X+4X, + 4 +20) - A4 26
X|+X,<2

— X +2X, <2

X1, X2, 4,4, 20

Arrange the above problem into an equivalent system of linear inequalities

Z+4+4, <0 (A))

2X| —2Xy+ A~ A — A3 <2 (Ay)
—2X1 42Xy -4+ + A3 <2 (Az)
—2X 1 +4X, + 44 +24, - A4 <6 (Ag)
2X| —4Xy =M =24y + Ay <6 (As)
X +X,<2 (Ag)
—X{+2X, <2 (A7)
-X1 <0 (Ag)
-X,<0 (Ag)
-4 <0 (A10)
-1 <0 (A1)
—43<0 (A12)
~24<0 (A13)

Now we apply the Fourier Variable Elimination Method.
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1/{4 ={As), Iz, ={A4 A3} ; 113 ={A3}. Iz, =(A4.Ap} :

Minimum{

+
mumi I ;
1<j<n

x‘lj_-‘ V= (I1x2) =2

Eliminating first /13 and /14 simultaneously because, these are at independent positions.

Z+A4+4,<0 (A4) (B,)
0<0 (A, +4;) (B,)
22X, +2X,-A+A4 <2 (A, +A,) (B;)
0<0 (A, +A) (B,)
2X,-4X, -4 -24,<-6 (As+A;) (By)
X, +X,<2 (Aq) (Bs)
~X,+2X,<2 (A) (B,)
~X, <0 (4) (By)
~X, <0 (4,) (B,)
_ﬂl <0 (AIO) (BIO)
_12 <0 (Au) (Bu)

Similarly, eliminating /11, we get

Z+22,-2X,+2X, <2 (B +B,) )
Z-4+2X,—4X,<-6 (B, +B,) ()
Z+2,<0 (B, +B,) (9]
X, +X,<2 (By) (o
-X,+2X,<2 (B,) ()
-X, <0 (By) (G)
-X,<0 (B,) ()
-4, <0 (B,) (G)

Eliminating /12 , we get

3Z+2X,-6X,<-14 (C,+2C,) (D)
Z-2X,+2X,<-2 (C,+2Cy) (D)
2Z+2X,-4X,<-6 (C,+Cy) (D)
Z<0 (G, +Cy) (D)
X, +X,<2 () (Ds)
-X,+2X,<2 (Cy) (Ds)
-X,<0 (Cy) (D7)
-X,<0 () (Dy)
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Eliminating X, we get

47 -4X,<-16 (D, +D,) (E)
3Z-2X,<-10 (D, +2Dy) (E,)
3Z-6X,<-14 (D, +2D,) (E,)
3Z-2X,<-8 (D, +D,) (E,)
27<-2 (D, +2D,) (E)
27 -4X,<-6 (D, +2D,) (E,)
Z+4X,<2 (D, +2D;) (E,)
3X,<4 (D5 + Dy) (E5)
X,<2 (D, +D,) (E,)
-X,<0 (Dy) (E,)

Inequalities E4 , Eg and Eg are redundant.

Eliminating X,, we get

57<-14 (E,+E,) (F)
122 <-32 (E,+4E,) (F)
77 <-18 (2E, +E,) (F,)
97 <-22 (BE,+E)  (F,)
187 < —44 (4E,+6E,) (F.)
3Z<-6 (E,+2E,) (F,)
7<2 (E,+4E,) (F,)
27 <2 (E;) (Fy)

From the above inequalities, we find that the least upper bound for the variable Z is—14/5.
This value involves the inequalities E| and E7, and from these inequalities we can get the
variable Xo =6/5. In the same way, we will obtain the variable X;|=4/5, /11=14/5

and 22 =0. Now the results may be summarized as:

0" (X)=36/5, Xf=4/5 and X2*=6/5
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