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ABSTRACT

We introduce the Gourava Nirmala index and the reduced Gourava Nirmala index of a graph. Furthermore, we
determine Gourava Nirmala index, the reduced Gourava Nirmala index of some standard classes of graphs. We also
compute the Gourava Nirmala index, the reduced Gourava Nirmala index and their corresponding exponetials of
linear [n]-Tetracene and certain nanostructures
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1. INTRODUCTION

The simple, finite connected graph G is a graph with vertex set V(G) and edge set E(G).The number of vertices adjacent
to the vertex v is called the degree of v, denoted by d(v). We refer to [1] for undefined terms and notations.

A molecular graph is a simple graph which has vertices correspond to the atoms and edges correspond to the bonds.
Chemical Graph Theory is a branch of Mathematical Chemistry, concerned with all aspects of the application of Graph
Theory to Chemistry. A topological index is a numerical parameter mathematically derived from the graph structure.
Applications of topological indices are found in quantitative structure activity/ property relations; we refer to [2].

Kulli [3] defined the first Gourava index of a graph G as
GO, (G)= > [dw+d(v)+d(wd (V)]

ueE(G)
Recently, some Gourava indices were studied, for example, in [4, 5, 6, 7, 8].

The Nirmala index [9] of a graph G is

N@G)= > Jd(u)+d(v).

uveE(G)

Motivated by the definition of the Nirmala index and its wide applications, we put forward Gourava Nirmala index of a
graph as follows:

The Gourava Nirmala index of a graph G is

ON(G)= 3 [(d(u)+d(v))+d(w)d (W]

ueE(G)

In view of the Gourava Nirmala index, we introduce the Gourava Nirmala exponential, defined as

NG Y deat

uveE(G)
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We propose the reduced Gourava Nirmala index of a graph G and defined it as
1

RGN(G)= Y [(d(u)-1+d(v)-1)+((d(u)-Dd(v)-1))]2.

uveE(G)

In view of the reduced Gourava Nirmala index, we introduce the reduced Gourava Nirmala exponential of G as

RGN(G.x)= 2, X[(d(”)’““(V)*1)+(<d(u)71)(d<v)71>)]%.

uveE(G)
Some results on Nirmala indices can be found in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
In this paper, the Gourava Nirmala and the reduced Gourava Nirmala indices for some standard classes of graphs and
certain nanostructures are determined.
2. RESULTS FOR SOME STANDARD CLASSES OF GRAPHS

Proposition 1: If K, , is a complete bipartite graph with 1 <m <n, then
() GN(K,,)=mny(m-+n)-+mn.

(i) RGN(K,,)=mnJmn-1.

Proof: Let Ky, be a complete bipartite graph with m + n vertices and mn edges such that |V, = m, |V, = n,
V(Kmn) = V1UV,. Every vertex of V, is adjacent with n vertices and every vertex of V, is adjacent with m vertices.

() GN(K,,)=mny(m-+n)+mn.

(i) RGN(K,,)= mn\/’((m—l)+(n ~1))+(m-1)(n—1) =mnymn-1.

Corollary 1.1: For K,, with n> 2,
() GN(Ky, ):nzx/2n+n2.
(i) RGN(K,, )=n2\/n2 -1

Corollary 1.2: For Ky, withn>2

(i) GN(Ky, ):n\/1+2n.
(i) RGN (Ky, ):n«/n—l.

Proposition 2: If G is an r-regular graph with n vertices, then

0 GN(G):%x/2r+r2.
nryr? -1
=

(i) RGN(G)=
nr
Proof: Let G be an r-regular graph with n vertices and — edges. Then the degree of each vertex of G isr.
nr nr
i) GN(G)=—./(r+r)+r>=—2r+r?.
( GN(e)=T\r+n)+r =TV
21

.. nr 2 nrr
(i) RGN(G)=?\/(r—1+r—1)+(r—1) -

Corollary 2.1: For C,, with n> 3 vertices,
() GN(C,)=2v2n.
(i) RGN(C,)=+/3n.

© 2023, IJMA. All Rights Reserved 2
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Corollary 2.2: For K,, with n> 3 vertices,

. _ 1 5

() GN(K,)=2n(n-1) (n*-2)

(i) RGN (K, )=%n(n—1) (n2 —2n).
Proposition 3: Let P, be a path with n>3 vertices. Then

() GN(P,)=2n2+2\5-6V2.
(i) RGN(P,)=+3n+2-33,

Proof: Let G=P, be a path with n>3 vertices. We obtain two partitions of the edge set of P, as follows:
Es = {uv € E(G) | dg(u)=1, dg(v)=2}, | E3| = 2
E,={uv € E(G) | dg(u) = dg(v)=2}, | E4/=n-3.

To compute NGO(P,,), we see that

(i) GN(Pn)z\/(1+2)+(1><2 2+\/2+2 )+(2x2)(n-3)=2n\2 + 25 -612.

(i) RGN(R,)=,/(1+2)+(1x2) 2+\/2+2 )+(2x2)(n-3)= 2n\/_+2«/_ 672
=\/(1—1+2—1)+((1 1)x(1-2))2+,/((2-1)+(2-1)) +((2-1)x(2-1)) (n-3)
=\3n+2-33.

3. RESULTS FOR LINEAR [n]-TETRACENE

The molecular graph of a linear [n]-Tetracene is shown in Figure -1.

0009080900981 0008

Figure-1: The graph of a linear [n]-Tetracene

Let T be a linear [n]-Tetracene with [V(T)| =18n and [E(T)| =23n — 2. In T, we obtain that {d(u), d(v): uv € E(T)} has
three edge set partitions.

E; = {uv € E(T) | dr(u)=d(v)=2}, | E4| = 6

E, = {uv € E(T) | dr(u) = 2, d7(v)=3}, | E2| = 16n — 4.

E; = {uv € E(T) | dr(u) = dr(v)=3}, | Es| = 7Tn — 4.

We calculate the Nirmala Gourava index and its exponential of a linear [n]-Tetracene.

Theorem 1: Let T be a linear [n]-Tetracene. Then

(i) GN(T):(16\/1_1+7x/1_5)n+(12\/§—4\/1_1—4«/1_5).

(i) GN(T, x)—6x2f+(16n Hx 4 (Tn—Hnx'®

Proof: Applying definition and edge partition of T, we conclude

() GN(T)= z)[(d(u)+d(v))+d(u)d(v)]3

uveE(T

1 1

1
=6[(2+2)+(2x2) ]2 +(16n-4)[ (2+3)+(2x3) |2 +(7Tn—4)[ (3+3)+(3x3) |2.
By simplifying the above equation, we get the desired result.

(i) GN(Tx)= 3 X[(d(u)+d(v>)+d(u)d(v>]%

uveE(T)

GX[ 2+2)+(2x2)] +(16n— 4)X [(2+3)+(2x3) ]z +(7n— 4)nx [(3+3)+(3x3) ]z

By simplifying the above equation, we get the desired result.
© 2023, IJMA. All Rights Reserved
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We calculate the reduced Nirmala Gourava index and its exponential of a linear [n]-Tetracene.

Theorem 2: Let T be a linear [n]-Tetracene. Then

() RGN (T)=(16\5+14V2)n+(6y3-4/5-8\2)

(i) RGN (T,x)=6x" +(16n-4)x + (7n - 4)nx>?,

Proof: Applying definition and edge partition of T, we conclude

() RGN(T)= > [(d(u)—1+d(v)—1)+(d(u)—1)(d(v)_1))]%

uveE(T)

=6[(1+1)+ (1><1)]% +(16n—4)[ (1+2) +(1x 2)]% +(Tn—=4)[(2+2)+(2x 2)]§ :

By simplifying the above equation, we get the desired result.

(i) RGN(T,x)= Z X[(d(u)fhd(v)fl)+((d(u)fl)d(v)fl))]

uveE(T)

1
2

_ 6X[(l+l)+(1><l)]% + (16n _ 4)X[(l+2)+(lx2)]% + (7n . 4)nx[(2+2)+(2><2)]%.
By simplifying the above equation, we get the desired result.

4. RESULTS FOR NANOSTRUCTURE F = F[p,q]

The graph of 2-D lattice of F = F[p,q] with p =2 and g = 4 is shown in Figure 2.

Figure-2: The graph of 2-D lattice of F = F[p, q] withp=2andq=4

Let F = F[p, q] be a nanostructure with |V(F)| = and |E(F)| = . In F, we obtain that {d(u), d(v): uv € E(F)} has three
edge set partitions.

E1={uv € E(F) | de(u)=dr(v)=2}, | Eq| = 20+4.

E, = {uv € E(F) | de(u) = 2, de(v)=3}, | E5| = 16p + 4q - 8.

Es = {uv € E(F) | de(u) = de(v)=3}, | E5[ = 27pq — 20p — 8q + 4.

We calculate the Nirmala Gourava index and its exponential of a nanostructure F = F[p, q].

Theorem 3: Let F = F[p, q] be a nanostructure. Then

(i) GN (F):27\/1_5pq+(16\/1_1—20\/1_5) p+(4«/§+4«/1_1—8\/1_5)q+(8«/§—8\/1_1+4\/1_5).

(i) GN(F,x)=(2q+4)x>7 +(16p+4q—8)x™ +(27pg—20p—8q +4)x",

Proof: Applying definition and edge partition of F, we conclude
1

() GN(F)= > [(d(u)+d(v))+d(u)d(v)]

uveE(F)
1

~(29+4)[(2+2)+(2x2) 2 +(16p-+49-8)[(2+3)+ (2x3) |

+(27 pq—20p—8q+4)[(3+3)+(3><3)]%.

© 2023, IJMA. All Rights Reserved
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By simplifying the above equation, we get the desired result.

@) GN(F,x)= > X[(d(u)m(v))m(u)d(v)ﬁ

uveE(F)
_ (2q+ )@ | 1gp 1 aq-g)X @I | (57pg— 20p—8q + 4K EIE
By simplifying the above equation, we get the desired result.
We compute the reduced Nirmala Gourava index and its exponential of a nanostructure F=F[p,q].

Theorem 4: Let F =F[p, q] be a nanostructure. Then

() RGN(F)=5k/2pq +(16J§—40J§) p+(2\/§+4\/§—16«/§)q+(4\/§—8\/§+8\/§).

(i) RGN (F,x)=(29+4)x" +(16p+4q—8)x + (27 pg—20p —8q + 4)x*?.

Proof: Applying definition and edge partition of F, we conclude

(i) RGN(F):WEZE(:F)[(d(u)—1+d(v)—1)+((d(u)—l)(d(v)_l))};

1

=(29+ 4)[(1+1)+(1><1)]% +(16p+4q-8)[ (1+2)+(1x2) |2
+(27pg—20p—8q+4)[ (2+ 2)+(2><2)]%.

By simplifying the above equation, we get the desired result.

(i) RGN(F,x)= > X[(‘g(“)*1+5(">*1)+((5(u)*1)(6(v)—1))]%

uveE(F)
_ (2q + 4) X[(1+1)+(1x1)]i + (16 P+ 4q _ 8) X[(1+2)+(1x2)]5 + (27 g — 20 p— 8q + 4) X[(2+2)+(2x2):|5.
By simplifying the above equation, we get the desired result.

5. RESULTS FOR NANOSTRUCTURE G = G [p,q].

The molecular graph of 2-D lattice of G=G[p, gq] with p =2 and q = 4 is shown in Figure 3.

Figure-3: The graph of 2-D lattice of G = G [p,q] withp=2andq=4
Let G = G [p, q] be a nanostructure. By algebraic method, we obtain |V(G)| =18pq and |E(G)| =27pq — 4p.
Also we obtain two partitions of the edge set of G as follows:

Ezs = {uv € E(G) | ds(u)=2, dg(v)=3}, | Ezs| = 16p.
Egs = {uv € E(G) | dg(u) = d(v)=3}, | Ess| = 27pq — 20p.
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In the following theorem, we compute the Nirmala Gourava index and its exponential of a nanostructure G = GJp, q].

Theorem 5: Let G = G[p, q] be a nanostructure. Then

(i) GN(G)=2715pq +(16\/1_1 —20J1_5) .

(i) GN(G,x)=16px™ +(27pq—20p)x"®.

Proof: Applying definition and edge partition of G, we conclude
1

() GN(G)=W§G)[(d(U)+d(V))+d(U)d(V)]2

=16p[(2+3)+(2 ><3)]% +(27pg—-20p)[ (3+3)+(3x3) 7.
By simplifying the above equation, we get the desired result.
() GN(Gx) = 3 xuratowae]
uveE(G)
-16 px[(2+3)+(2><3)]% + (27 pq— 20 p) X[(3+3)+(3x3)]% .
By simplifying the above equation, we get the desired result.

In the following theorem, we compute the reduced Nirmala Gourava index and its exponential of a nanostructure
G=G[p.ql.

Theorem 6: Let G =G[p, q] be a nanostructure. Then
() RGN(G)=54\2pq +(16J§ —40J§) p.

(i) RGN (G,x)=16px" +(27pg—20p)x>".
Proof: Applying definition and edge partition of G, we conclude

() RGN(G)= 3 [(d(u)-L1+d(v)-1)+((d(u)-D(d(v)-D)]

uveE(G)

1
2

1 1
=16p[ (1+2)+(1x2) |2 +(27pq—20p)[ (2+2)+(2x2) J2.
By simplifying the above equation, we get the desired result.

() RGN(G,x)= z X[(d(u)—1+d(v)71)+((d(u)fl)(d(v)fl))]

uveE(G)

1
2

-16 px[(l+2)+(l><2)]% +(27pq—20p) X[(2+2)+(2x2)]% .
By simplifying the above equation, we get the desired result.

6. RESULTS FOR NANOSTRUCTURE K=K [p, q]

The molecular graph of 2-D lattice of K = K [p, q] with p =2 and q = 3 is shown in Figure 4.

Figure-4: The graph of 2-D lattice of K = K[p, gl withp=2andq=3

© 2023, IJMA. All Rights Reserved
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Let K = K[p, q] be a nanostructure. By algebraic method, we obtain |V(K)| =18pq and |E(K)| =27pq — 2q. Further, we
obtain three partitions of the edge set of K as follows

Ezp = {uv € E(K) | dk(u) = dk(V)=2}, | Bzl =

Ezs = {uv € E(K) | dk(u) = 2, dk(v)=3}, | E23|

Ess = {uv € E(K) | dx(u) = dk(v)=3}, | Eas| = 27pq - 8a.

In the following theorem, we compute the the sum connectivity Gourava index of a nanostructure K = K[p,q].

Theorem 7: Let K = K][p, q] be a nanostructure. Then

() GN(K)=2715pq+(4y2 +4\11-8/15)q.

(i) GN(K,x)=2qx*7 +4qx™ + (27 pg—8q)x®

Proof: Applying definition and edge partition of K, we conclude

0 GN(K)= Y [(d(u)+d(v)+d(u)d(v)]

uveE(K)
1 1 1
=2q[(2+2)+(2x2) |2 +4q[ (2+3)+ (2x3) |2+ (27 pg—8q)] (3+3 )+ (3x3)]2.
By simplifying the above equation, we get the desired result.

(i) GN(K,x)= > X[(d<u>+d(v))+d(u>d(v)]%

uveE(K)

1
[(2+3)+ zxs)]z [(3+3)+(3x3) 2

g 4qx +(27pg— 8q)x
By simplifying the above equation, we get the desired result.

Theorem 8: Let K =K[p, q] be a nanostructure. Then

() RGN(K)=54y2pq+(23+4/5-162)q.

(i) RGN(K,x)= 20x® + 4gx® + (27 pq —8q)x>?

Proof: Applying definition and edge partition of K, we conclude

() RGN(K)= > [(d(U)—1+d(V)—1)+((d(U)—1)(d(V)—l))]%

uveE(K)
1

1 1
=29 (1+1) + (1x1) |2 +4q[ (1+2)+(1x 2) ]2 +(27 pg—8a)[ (2+2) +(2x2) J2.
By simplifying the above equation, we get the desired result.

(i) RGN(K,x)= >’ X[(d(“)*1+d(V)*l)Jr((d(U)*l)(d(v)—l))]%

uveE(K)

[(1+1

= 20x ] + 4gx [1+2 +(27pq—8q)x [(2+2)+ 2><2):|2
By simplifying the above equation, we get the desired result.
7. RESULTS FOR NANOSTRUCTURE L =L [p,q]

The graph of 2-D lattice of L = L[p,q] with p =2 and q = 4 is shown in Figure 5.

© 2023, IJMA. All Rights Reserved



V. R. Kulli*/ Gourava Nirmala indices of Certain Nanostructures / IJMA- 14(2), Feb.-2023.

Let L = L[p, q] be a nanostructure. By algebraic method, we obtain [V(L)| =18pq and |E(L)| =27pg. Since the degree of
each vertex of L is 3, the edge partition of L is as follows:
Ess = {uv e E(L) | du(u) = di(v)=38}, | Ess| = 27pa.

In the next theorem, we compute the sum connectivity Gourava index of a nanostructure L = L[p,q].

Theorem 9: Let L = L[p, q] be a nanostructure. Then
() GN(L)=2715pq.
(i) GN(L,x)=27 pgx ™.

Proof: Applying definition and edge partition of L, we conclude

i) GN(L)= > [(d(u)+d(v))+d(u)d(v):|%

uveE(L)
1
=27pq[(3+3)+(3x3)]z.
By simplifying the above equation, we get the desired result.

(i) GN(Lx)= Y X[(d(u>+d(v))+d(u)d(v)]%

uveE(L)

[(3+3)+(3x3)]% .

=27 pgx
By simplifying the above equation, we get the desired result.

Theorem 10: Let L =L[p, q] be a nanostructure. Then
(i) RGN(L)=54v2pq.
(i) RGN(L,x)=27pagx*?.

Proof: Applying definition and edge partition of L, we conclude

() RGN(L)= 3 [(d(u)-L+d(v)-1)+((d(u)-Dd(v)-1)]

uveE(L)

=27pq[(2+2)+(2x2)]%.

1
2

By simplifying the above equation, we get the desired result.

(i) RGN(L,X)= z X[(d(u)—1+d(v)—1)+((d(u)—1)(d(v)—1))]

uveE(L)

1
2

[(2+2)+(2><2)]% .

=27 pgx

© 2023, IJMA. All Rights Reserved 8
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By simplifying the above equation, we get the desired result.

8. CONCLUSION

In this paper, we have computed the Gourava Nirmala and the reduced Gourava Nirmala indices for some standard
classes of graphs and certain nanostructures.
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