COMMON FIXED POINT THEOREM FOR A CLASS OF MAPPINGS

P. L. Sinodia*, Dilip Jaiswal* and S. S. Rajput**

*Department of Mathematics, Moti Lal Vigyan Mahavidhyalaya (MVM), Bhopal, (M.P.), India

**Head of Department,(Mathematics), Govt. P.G. Collage, Gadarwara, (M.P.), India E-mail: dilipjaiswal2244@gmail.com

(Received on: 19-09-11; Accepted on: 06-10-11)

ABSTRACT

 $m{I}$ n this paper, We established Some Common Fixed Point Theorems for a class mapping in metric space.

Key Words: Common Fixed Point, Metric Space, Self Mapping, Commuting Mapping, Continuous Mappings.

AMS Subject Classification: 47H10, 54H25,

1. INTRODUCTION

The following generalization of the well known Banach Contraction Principle is due to Jungck (1976)

Theorem: A Let f be a continuous self mapping of a complete metric space (X, d). If there exists a mapping $g: X \to X$ and a constant $0 \le \alpha < 1$ such that,

(a) f and g commute,

(b) $g(X) \subset f(X)$,

(c) $d(gx, gy) \le \alpha d(fx, fy)$ for all $x, y \in X$

Then f and g have a unique common fixed point.

Throughout this section (X, d) denotes a metric space, and R^+ the set of non negative real numbers. φ denotes the family of mapping such that each $\varphi \in \varphi$, $\varphi \colon (R^+)^5 \to R^+$, and φ is upper semi continuous and non decreasing in each co-ordinate variable, also for a mapping $\gamma \colon R^+ \to R^+$,

let = $\phi(t, t, a_1t, a_2t, t) < t$, where $a_1 + a_2 = 3$. The following lemma of Singh and Meade (1977) is the key in proving of various result,

Lemma: 1.1 For every t > 0, $\gamma(t) < t$ if and only if $\lim_{n \to \infty} \gamma^n(t) = 0$, where γ^n denotes the composition of γ with itself n times. In 1979, Yeh proved an interesting extension of a common fixed point theorem due to Jungck (1976), which as follows,

Theorem: B Let E, F, and T be three continuous self mapping of a complete metric space (X, d) satisfying condition:

 (C_1) ET = TE, FT = TF, $E(X) \subset T(X)$ and $F(X) \subset T(X)$

 (C_2) there exists an $\phi \in \varphi$ such that for all $x, y \in X$,

 $d(Ex, Fy) \le \phi(d(Tx, Ty), d(Tx, Ex), d(Tx, Fy), d(Ty, Ex), d(Ty, Fy))$, where ϕ , satisfies the condition:

 (C_3) g(t) $\equiv \phi(t, t, at, bt, t) < t$ for each t in $R^+ - \{0\}$, where a + b = 2,

Then E, F, T have a unique common fixed point.

Definition: 1.2 (Sessa 1982) Let A and S be two self mapping on X, then $\{A,S\}$ is said to be 'weakly commuting pair' if $d(ASx,SAx) \le d(Ax,Sx)$ for all $x \in X$. It is clear that, commuting pair is weakly commuting, but not conversely as shown in the following example,

Example: 1.3 Consider X = [0,1] with the usual metric. Let us define $Ax = \frac{1}{2}x$ and $Sx = \frac{x}{x+2}$ for every $x \in X$, then for all $x \in X$ one gets,

$$d(SAx, ASx) = \left| \frac{x}{4+x} - \frac{x}{4+2x} \right| = \frac{x^2}{(4+x)(4+2x)}$$

$$d(SAx, ASx) \le \frac{x^2}{(4+2x)} = \frac{x}{2} - \frac{x}{2+x} = d(Sx, Ax)$$

So $\{A, S\}$ is a weakly commuting pair, However, for any non zero $x \in X$ we have,

$$SAx = \frac{x}{4+x} > \frac{x}{4+2x} = ASx$$

Thus A and S are not commuting mappings.

2. MAIN RESULT

Theorem 2.1: Let X be a complete metric space and A, B. S, T, and P be continuous mapping from X into itself, such that satisfying the following conditions:

$$1C_1 - P(X) \subseteq AB(X) \cap ST(X)$$

 $1C_2$ - The pair $\{P, AB\}$ and $\{P, ST\}$ are compatible.

 $1C_3$ – there exists $a, \phi \in \phi$ such that for all $x, y \in X$,

$$d(ABx,STy) \leq \phi \begin{cases} d(Px,ABx),d(Py,STy),d(Px,STy) \\ ,d(Py,ABx),d(Px,Py) \end{cases}$$

Where ϕ satisfies the condition:

$$1C_4$$
 - for any $t > 0$, $\phi(t, t, a_1t, a_2t, t) < t$, where $a_1 + a_2 = 3$.

Then A, B, S, T and P have a unique common fixed point in X.

Proof: Let x_0 be and arbitrary point in X, then $Px_0 \in X$, since P(X) is contained in AB(X), there exists a point $x_1 \in X$, such that, $Px_0 = ABx_1$. Since P(X) is also Contained in ST(X), we can choose a point $x_2 \in X$, such that $Px_1 = STx_2$. In general we construct the sequence of elements of X such that,

$$ABx_{2n} = Px_{2n+1}$$
 and $STx_{2n+1} = Px_{2n+2}$

For all $n = 0, 1, 2, 3 \dots$

Now

$$d(Px_{2n+1}, Px_{2n+2}) = d(ABx_{2n}, STx_{2n+1})$$

From $1C_3$, we have,

$$d(\mathsf{ABx}_{2n},\mathsf{STx}_{2n+1}) \leq \ \phi \ \left[\begin{pmatrix} d(\mathsf{Px}_{2n},\mathsf{ABx}_{2n}),d(\mathsf{Px}_{2n+1},\mathsf{STx}_{2n+1}),\\ d(\mathsf{Px}_{2n},\mathsf{STx}_{2n+1}),d(\mathsf{Px}_{2n+1},\mathsf{ABx}_{2n}),d(\mathsf{Px}_{2n},\mathsf{Px}_{2n+1}) \end{pmatrix} \right]$$

$$d(Px_{2n+1}, Px_{2n+2}) \leq \phi \left[\begin{pmatrix} d(Px_{2n}, Px_{2n+1}), d(Px_{2n+1}, Px_{2n+2}), \\ d(Px_{2n}, Px_{2n+2}), d(Px_{2n+1}, Px_{2n+1}), d(Px_{2n}, Px_{2n+1}) \end{pmatrix} \right]$$

Let us assume that, $d(Px_{2n+1}, Px_{2n+2}) = d_{2n+1}$ then

$$d_{2n+1} \le \phi (d_{2n}, d_{2n+1}, d_{2n} + d_{2n+1}, 0, d_{2n+1})$$

$$d_{2n+1} \leq d_{2n}$$

Consequently, $\{d_{2n}\}$ is a non decreasing sequence of non negative reals, hence © 2011, IJMA. All Rights Reserved

$$\begin{split} &d_{1} = d(P_{1}, P_{2}) = d(ABx_{0}, STx_{1}) \\ &d_{1} \leq \phi \begin{pmatrix} d(Px_{0}, Px_{1}), d(Px_{1}, Px_{2}), d(Px_{0}, Px_{2}) \\ , d(Px_{1}, Px_{1}), d(Px_{0}, Px_{1}) \end{pmatrix} \\ &d_{1} \leq \phi (d_{0}, d_{1}, d_{0} + d_{1}, 0, d_{1}) \\ &d_{1} \leq \phi (d_{0}, d_{0}, 2d_{0}, d_{0}, d_{0}) \\ &d_{1} \leq \gamma (d_{0}) \end{split}$$

in general, we have $d_n \leq \gamma^n(d_0)$ so if $d_0 > 0$, $t \square en$ by lemma 1.1 gives

$$lim_{n\to\infty}\,d_n=0$$

Since then $d_n = 0$ for each n.

Now we wish to prove that the sequence $\{Px_n\}$ is a Cauchy sequence. Since $\lim_{n\to\infty}d_n=0$. It is sufficient to show that the sequence $\{Px_n\}$ is a Cauchy sequence, suppose that $\{Px_n\}$ is not a Cauchy sequence. then there is an $\epsilon>0$ such that for each even integers 2k, $k=0,1,2,\ldots$ There exists even integers 2n(k) and 2m(k) with $2k\leq 2n(k)\leq 2m(k)$ such that,

$$d(Px_{2n(k)}, Px_{2m(k)}) > \varepsilon \tag{2.1.1}$$

Let for each even integer 2k, 2m(k) be the least integer exceeding 2n(k) and satisfying 2.1.2,

Therefore

$$d(Px_{2n(k)}, Px_{2m(k)-2}) \le \varepsilon \quad \text{and} \quad d(Px_{2n(k)}, Px_{2m(k)}) > \varepsilon \tag{2.1.2}$$

Then, for each even integer 2k we have,

$$\varepsilon < d(Px_{2n(k)}, Px_{2m(k)}) \le d(Px_{2n(k)}, Px_{2m(k)-2}) + d(Px_{2m(k)-2}, Px_{2m(k)-1}) + d(Px_{2n(k)-1}, Px_{2n(k)})$$

So by 2.1.2 and $d_n \rightarrow 0$, we obtain

$$\lim_{n\to\infty} d(Px_{2n(k)}, Px_{2m(k)}) = \varepsilon$$

It follows immediately from the triangular inequality that,

$$|d(Px_{2n(k)}, Px_{2m(k)-1}) - d(Px_{2n(k)}, Px_{2m(k)})| \le d_{2m(k)-1}$$

$$\left| d(Px_{2n(k)+1}, Px_{2m(k)-1}) - d(Px_{2n(k)}, Px_{2m(k)}) \right| \le d_{2m(k)-1} + d_{2n(k)}$$

Hence by 2.1.2, as $k \to \infty$

$$d(Px_{2n(k)}, Px_{2m(k)-1}) \rightarrow \varepsilon \text{ and } d(Px_{2n(k)+1}, Px_{2m(k)-1}) \rightarrow \varepsilon$$

$$(2.1.3)$$

Now,

$$d(Px_{2n(k)}, Px_{2m(k)}) \le d(Px_{2n(k)}, Px_{2n(k)+1}) + d(Px_{2n(k)+1}, Px_{2m(k)})$$

$$d\big(Px_{2n(k)},Px_{2m(k)}\big) \leq d_{2n(k)} \; + \; \; \phi \begin{pmatrix} d\big(Px_{2n(k)}\,,P_{2m(k)-1}\big)\,,d_{2n(k)},\;d\big(Px_{2n(k)},Px_{2m(k)}\big),\\ d\big(Px_{2m(k)-1},Px_{2n(k)+1}\big),d_{2m(k)-1} \end{pmatrix}$$

Using 2.1.3 $\lim_{n\to\infty} d_n = 0$, and upper semicountinuity and non decreasing property of ϕ in each co-ordinate variable, we have

$$\varepsilon \le \phi(\varepsilon, 0, \varepsilon, \varepsilon, 0) \le \gamma(\varepsilon) < \varepsilon$$

As $k \to \infty$, which contradiction. Thus $\{Px_n\}$ is a Cauchy sequence—and hence by completeness of X, there is a, $u \in X$ such that $Px_n \to u$. since the sequence $\{ABx_n\}$ and $\{STx_n\}$ are Subsequence of $\{Px_n\}$ which follows $\{ABx_{2n}\}$ and $\{STx_{2n+1}\}$ also converges to the same point 'u' in X, i.e

$$\lim_{n\to\infty} Px_{2n} = \lim_{n\to\infty} ABx_{2n} = \lim_{n\to\infty} STx_{2n+1} = u$$
 (2.1.4)
$$Pu = ABu = STu$$

Let us assume that Bu \neq u, then we take from 1C₃

$$d(AB(Bu),STu) \leq \phi \left(\begin{array}{c} d\big(P(Bu),AB(Bu)\big),d(Pu,STu), \\ d(P(Bu),STu),d\big(Pu,AB(Bu)\big),d(P(Bu),Pu) \end{array} \right)$$

 $d(AB(Bu),STu) \le \phi(0,0,d(P(Bu),STu),d(Pu,AB(Bu)),d(P(Bu),Pu))$

$$d((Bu), u) \le \gamma(d((Bu), u))$$

Which contradiction

$$Bu = u = ABu = A(Bu) = Au$$

Similarly we can show that,

$$Tu = u = STu = S(Tu) = Su$$

i.e, u is a common fixed point of A, B, S, T, and P in X.

Uniqueness: Let us assume that 'w' is another fixed point of A, B, S, T, and P in X, different from 'u'. i.e $u \neq w$, then

$$d(u, w) = d(Pu, Pw) = d(ABu, STw)$$

By using $1C_3$, we get

$$d(ABu,STw) \leq \phi \binom{d(Pu,ABu),d(Pw,STw),d(Pu,STw),}{d(Pw,ABu),d(Pu,Pw)}$$

$$d(u, w) \le \phi(0, 0, d(u, w), d(w, u), d(u, w))$$

$$d(u, w) \le \gamma . d(u, w)$$

Which contradiction.

u is unique common fixed point of A, B, S, T and P in X.

Theorem: 2.2 Let X be a complete metric space and A, B. S, T, and P be continuous mapping from X into itself, such that satisfying the following conditions:

$$2C_1 - P(X) \subseteq AB(X) \cap ST(X)$$

 $2C_2$ - The pair $\{P, AB\}$ and $\{P, ST\}$ are compatible.

 $2C_3$ – there exists a, $\phi \in \phi$ such that for all $x, y \in X$,

$$[d(ABx, STy)]^2 \le \phi \left(\left(d(Px, ABx) \right)^2, \left(d(Py, STy) \right)^2, d(Px, STy) d(Px, ABx), d(Py, STy) d(Px, ABx), d(ABx, STy) d(Px, Py) \right)$$

Where ϕ satisfies the condition:

$$2C_4$$
 - for any $t > 0$, $\phi(t, t, a_1t, a_2t, t) < t$, where $a_1 + a_2 = 3$.

Then A, B, S, T and P have a unique common fixed point in X.

Proof: Let x_0 be and arbitrary point in X, then $Px_0 \in X$, since P(X) is contained in AB(X), there exists a point $x_1 \in X$, such that, $Px_0 = ABx_1$. Since P(X) is also Contained in ST(X), we can choose a point $x_2 \in X$, such that

$$Px_1 = STx_2$$
.

In general we construct the sequence of elements of X such that,

$$ABx_{2n} = Px_{2n+1}$$
 and $STx_{2n+1} = Px_{2n+2}$

For all $n = 0, 1, 2, 3 \dots$

Now

$$d(Px_{2n+1}, Px_{2n+2}) = d(ABx_{2n}, STx_{2n+1})$$

From $2C_3$, we have,

$$[d(ABx_{2n}, STx_{2n+1})]^{2} \leq \phi \begin{pmatrix} \left(d(Px_{2n}, ABx_{2n})\right)^{2}, \left(d(Px_{2n+1}, STx_{2n+1})\right)^{2}, \\ d(Px_{2n}, STx_{2n+1})d(Px_{2n}, ABx_{2n}), \\ d(Px_{2n+1}, STx_{2n+1})d(Px_{2n+1}, ABx_{2n}), \\ d(ABx_{2n}, STx_{2n+1})d(Px_{2n}, Px_{2n+1}) \end{pmatrix}$$

$$[d(Px_{2n+1}, Px_{2n+2})]^{2} \leq \phi \begin{pmatrix} \left(d(Px_{2n}, Px_{2n+1})\right)^{2}, \left(d(Px_{2n+1}, Px_{2n+2})\right)^{2}, \\ d(Px_{2n}, Px_{2n+2})d(Px_{2n}, Px_{2n+1}), \\ d(Px_{2n+1}, Px_{2n+2})d(Px_{2n+1}, Px_{2n+1}), \\ d(Px_{2n+1}, Px_{2n+2})d(Px_{2n}, Px_{2n+1}) \end{pmatrix}$$

Let us assume that, $d(Px_{2n+1}, Px_{2n+2}) = d_{2n+1}$ then

$$d_{2n+1} \le \left[\phi\left(\left(d_{2n}^2, d_{2n+1}^2, \left(d_{2n} + d_{2n+1}\right)^2, 0, d_{2n+1}d_{2n}\right)\right]^{\frac{1}{2}}$$

$$d_{2n+1} \leq d_{2n}$$

Consequently, {d_{2n}} is a non decreasing sequence of non negative real's, hence

$$d_1 \leq \gamma (d_0)$$

in general, we have $d_n \leq \gamma^n(d_0)$ so if $d_0 > 0$, $t \square en$ by lemma 1.1 gives

$$\lim_{n\to\infty} d_n = 0$$

Since then $d_n = 0$ for each n.

Now we wish to prove that the sequence $\{Px_n\}$ is a Cauchy sequence. Since $\lim_{n\to\infty} d_n = 0$. It is sufficient to show that the sequence $\{Px_n\}$ is a Cauchy sequence, suppose that $\{Px_n\}$ is not a Cauchy sequence. then there is an $\epsilon > 0$ such that for each even integers 2k, $k = 0,1,2,\ldots$ There exists even integers 2n(k) and 2m(k) with $2k \le 2n(k) \le 2m(k)$ such that,

$$d(Px_{2n(k)}, Px_{2m(k)}) > \varepsilon \tag{2.2.1}$$

Let for each even integer 2k, 2m(k) be the least integer exceeding 2n(k) and satisfying (2.2.1) therefore

$$d(Px_{2n(k)}, Px_{2m(k)-2}) \le \varepsilon$$
 and $d(Px_{2n(k)}, Px_{2m(k)}) > \varepsilon$ (2.2.2)

Then, for each even integer 2k we have,

$$\varepsilon < d(Px_{2n(k)}, Px_{2m(k)}) \le d(Px_{2n(k)}, Px_{2m(k)-2}) + d(Px_{2m(k)-2}, Px_{2m(k)-1}) + d(Px_{2n(k)-1}, Px_{2n(k)})$$

So by 2.2.2, and $d_n \rightarrow 0$, we obtain

$$\lim_{n\to\infty} d(Px_{2n(k)}, Px_{2m(k)}) = \varepsilon$$

It follows immediately from the triangular inequality that,

$$\left| d(Px_{2n(k)}, Px_{2m(k)-1}) - d(Px_{2n(k)}, Px_{2m(k)}) \right| \le d_{2m(k)-1}$$

$$\left| d(Px_{2n(k)+1}, Px_{2m(k)-1}) - d(Px_{2n(k)}, Px_{2m(k)}) \right| \le d_{2m(k)-1} + d_{2n(k)}$$

Hence by 2.2.2, as $k \to \infty$

$$d(Px_{2n(k)}, Px_{2m(k)-1}) \rightarrow \epsilon \text{ and } d(Px_{2n(k)+1}, Px_{2m(k)-1}) \rightarrow \epsilon$$
 Now, (2.2.3)

$$d(Px_{2n(k)}, Px_{2m(k)}) \le d(Px_{2n(k)}, Px_{2n(k)+1}) + d(Px_{2n(k)+1}, Px_{2m(k)})$$

By using $2C_3$ and 2.2.3 $\lim_{n\to\infty} d_n = 0$, and upper semicountinuity and non decreasing property of ϕ in each co-ordinate variable, we have

$$\varepsilon \leq \phi(\varepsilon, 0, \varepsilon, \varepsilon, 0) \leq \gamma(\varepsilon) < \varepsilon$$

As $k \to \infty$, which contradiction. Thus $\{Px_n\}$ is a Cauchy sequence and hence by completeness of X, there is a, $u \in X$ such that $Px_n \to u$. since the sequence $\{ABx_n\}$ and $\{STx_n\}$ are Subsequence of $\{Px_n\}$ which follows $\{ABx_{2n}\}$ and $\{STx_{2n+1}\}$ also converges to the same point 'u' in X, i.e

$$lim_{n\to\infty} Px_{2n} \ = \ \lim_{n\to\infty} ABx_{2n} \ = \lim_{n\to\infty} STx_{2n+1} \ = \ u \tag{2.2.4}$$

$$Pu = ABu = STu$$

Let us assume that $Bu \neq u$, then we take from $2C_3$

$$[d(AB(Bu),STu)]^{2} \leq \phi \begin{pmatrix} \left(d\big(P(Bu),AB(Bu)\big)\right)^{2}, \left(d(Pu,STu)\right)^{2}, \\ d(P(Bu),STu)d(P(Bu),ABu), \\ d(Pu,STu)d\big(Pu,AB(Bu)\big), \\ d(AB(Bu),STu)d(P(Bu),Pu) \end{pmatrix}$$

Which follows,

$$d(Bu, u) \le \gamma^{\frac{1}{2}} d(Bu, u)$$

Which contradiction,

Similarly we can show that,

$$Tu = u = STu = S(Tu) = Su$$

i.e, u is a common fixed point of A, B, S, T, and P in X.

Uniqueness: Let us assume that 'w' is another fixed point of A, B, S, T, and P in X, different from 'u'. i.e $u \neq w$, then

$$d(u, w) = d(Pu, Pw) = d(ABu, STw)$$

By using $2C_3$, we get

$$[d(ABu, STw)]^{2} \le \phi \begin{pmatrix} (d(Pu, ABu))^{2}, (d(Pw, STw))^{2}, \\ d(Pu, STw)d(Pu, ABu), \\ d(Pw, STw)d(Pw, ABu), \\ d(ABu, STw)d(Pu, Pw) \end{pmatrix}$$

$$d(u, w) \le \gamma^{\frac{1}{2}} \cdot d(u, w)$$

Which contradiction.

u is unique common fixed point of A, B, S, T and P in X.

REFFERENCE:

- [1] Fisher. B. "Mapping with a common fixed point", Math. Seminar Notes 7(1979), 81-84.
- [2] Fisher, B., "Common Fixed Points and Constant Mappings Satisfying a Rational Inequality," Mathematics Seminar Notes, 6, pp. 29-35, 1978.
- [3] Banach S. "Surles operation dans les ensembles abstract etleur application aux equations integrals" Fun. Math. Vol. 3(1922), 133-181.
- [4] Jungck, G," Commuting Mappings and Fixed points", Amer. Math. Mont. 83(1976), 261-263.
- [5] Chatterjee S.K., "Fixed point theorems," Comptes. Rend. Acad, Bulgaria Sci. Vol. 25(1972) 727-730.
- [6] Fisher B., "A fixed point theorem in Compact metric space", Publ. Inst. Math. Soc. Vol.25 (1976), 193-194.
- [7] Kannan R. "Some results on fixed points- II. Buletin of Calcutta Math. Soc. Vol. 60(1969) 71-76.
- [8] Jaggi D. S. "Some unique fixed point theorems" Indian Journal of Pure & Applied Mathematics, Vol. 8(1977), 223-230.
- [9] Jaggi, D. S and Dass B. K. "An extension of Banach contraction theorem through rational expression" Bull. Cal. Math. (1980) 261-266.
- [10] Das, B. K. and Gupta, S. "An extension of Banach contraction principle through rational expression" Indian Journal of Pure and Applied Math. 6 (1975) 1455-1458.
- [11] Jaggi, D. S. and Das, B. K. "An extension of Banach's fixed point theorem through rational expression" Bull. Cal. Math. Soc.72 (1980) 261-264.
- [12] Khan M. S.,"A theorem on fixed point", Math. Seminar Notes, (Presently Kobe Jour. Of Math) 4(1976), 227-228.
- [13] Khan M. S., "On fixed point theorems", Math. Japonica 23, No.2 (1978), 201-204.
- [14] Sessa S. "On a commutativity condition in fixed point considerations", Publ. Inst. Math., 32(46) (1982), 149-153.
- [15] Singh S. P and Meade B. E." On common fixed point theorems" Bull. Austr. Math. Soc. 16(1977), 49-53.
- [16] Reich S. "Some remarks concerning contraction mappings", Canada Math. Bull. Vol. 1(1971) 121-124.
